Multi-objective Model Predictive Optimization
using Computational Intelligence
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Abstract In many engineering design problems, the explicit function form of ob-
jectives/constraints can not be given in terms of design variables. Given the value of
design variables, under this circumstance, the value of those functions is obtained
by some simulation analysis or experiments, which are often expensive in prac-
tice. In order to make the number of analyses as few as possible, techniques for
model predictive optimization (also referred to as sequential approximate optimiza-
tion or metamodeling) which make optimization in parallel with model prediction
have been developed. In this paper, we discuss several methods using computational
intelligence for this purpose along with applications to multi-objective optimization
under static/dynamic environment.

1 Brief Review of Model Predictive Methods

To begin with, we shall review several typical methods for model prediction. Re-
sponse Surface Method (RSM) has been probably most widely applied to our aim
[6]. The role of RSM is to predict the response ¥ for the vector of design variables
x = (z1,...,Z,) on the basis of the given sampled observations (&;,¥;),i =
1,...,4

Usually, Response Surface Method is a generic name, and it covers a wide range
of methods. Above all, methods using design of experiments are famous. However,
many of them use relatively low order (say, 1st or 2nd) polynomials on the basis of
statistical analysis in design variable space. They may provide a good approximation
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of black-box functions with a mild nonlinearity. It is clear, however, that in cases in
which the black-box function is highly nonlinear, we can obtain better performance
by methods using computational intelligence such as RBFN (Radial Basis Function
Networks) or SVR (Support Vector Regression) taking into account not only the
statistical property in design variable space but also that of range space of the black-
box function (in other words, the shape of function).

In design of experiments, for example, D-optimality may be used for selecting
a new additional sample to minimize the variance covariance matrix of the least
squared error prediction. With the design matrix X, this reduces to minimize the
matrix (X7 X)~! which is attained by maximizing det(X” X). This is the idea of
D-optimality in design of experiments.

Other criteria are possible: to minimize the trace of (X X)~! (A-optimality),
to minimize the maximal value of the diagonal components of (X x )~! (minimax
criterion), to maximize the minimal eigen value of X7 X (E-optimality). In general,
D-optimality criterion is widely used for many practical problems.

Jones et al. [5] suggested a method called EGO (Efficient Global Optimiza-
tion) for black-box objective functions. They applied a stochastic process model
for predictor and the expected improvement as a figure of merit for additional sam-
ple points. Regard y as a realized value of the stochastic variable Y, and let f?.
be the minimal value of p-samples which are evaluated already. For minimization
cases, the improvement at @ is I = max(f”, — Y, 0). Therefore, the expected
improvement is given by

E[I(x)]=E [max( b =Y, O)] .

We select a new sample point which maximizes the expected improvement. Al-
though Jones et al. proposed a method for maximizing the expected improvement
by using the branch and bound method, we can select the best one among several
candidates which are generated randomly in the design variable space. It has been
observed through our experiences that this method is time consuming.

2 Using Computational Intelligence

Recently, the authors proposed to apply machine learning techniques such as RBF
(Radial Basis Function) networks and Support Vector Machines (SVM) for approx-
imating the black-box function [7], [8]. There, additional sample points are selected
by considering both global and local information of the black-box function.
Support vector machine (SVM) has been recognized as a powerful machine
learning technique. SVM was originally developed for pattern classification and
later extended to regression ([1], [13]). In pattern classification problems with
two class sets, it generalizes linear classifiers into high dimensional feature spaces
through nonlinear mappings defined implicitly by kernels in the Hilbert space so
that it may produce nonlinear classifiers in the original data space. Linear classi-
fiers then are optimized to give the maximal margin separation between the classes.
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This task is performed by solving some type of mathematical programming such as
quadratic programming (QP) or linear programming (LP).

Linear classifiers on the basis of goal programming, on the other hand, were de-
veloped extensively in 1980’s [3], [4]. The authors developed several varieties of
SVM using multi-objective programming and goal programming (MOP/GP) tech-
niques [10]. In the goal programming approach to linear classifiers, we consider two
kinds of deviations: One is the exterior deviation &; which is a deviation from the
hyperplane of a point x; improperly classified; The other one is the interior devia-
tion 7); which is a deviation from the hyperplane of a point x; properly classified.
Several kinds of objective functions are possible in this approach as follows:

i) minimize the maximum exterior deviation (decrease errors as much as pos-
sible),

ii) maximize the minimum interior deviation (i.e., maximize the margin),
iii) maximize the weighted sum of interior deviation,

iv) minimize the weighted sum of exterior deviation.

Introducing the objective iv) above leads to the soft margin SVM with slack
variables (or, exterior deviations) &; (i = 1, ... ,¢) which allow classification errors
to some extent.

Taking into account the objectives (ii) and (iv), we can have the same formulation
of v-support vector algorithm developed by Scholkopf et al. [12]. Although many
variants are possible, u—v—SVM considering the objectives 1) and ii) is promising,
because p—v—SVM for regression has been observed to provide a good sparse
approximation [10].

The primal formulation of u—v—SVR is given by

L 1 2
minimize = |w||3 + ve + pu(& +€)
whetl 2

subject to (szi—&—b)—yigs—i—& i=1,...,4,
yi—(szi+b)§6+é, ’L.Zl,...,g,

,

E? 57 é- z 0’
where v and y are trade-off parameters between the norm of w and € and & (f ).
Applying the Lagrange duality theory, we obtain the following dual formulation
of u—v—SVR:
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It has been observed through our experiences that u—r—SVR provides the least
number of support vectors among existing SVRs. This implies that y—v—SVR can
be effectively applied for selecting a new sample on the basis of information of
support vector.

3 Using global and local information for adding new samples

If the current solution is not satisfactory, namely if our stopping condition is not
satisfied, we need some additional samples in order to improve the approximation
of the black-box objective function.

If the current optimal point is taken as such additional data, the estimated optimal
point tends to converge to a local maximum (or minimum) point. This is due to lack
of global information in predicting the objective function.

On the other hand, if additional data are taken far away from the existing data,
it is difficult to obtain more detailed information near the optimal point. Therefore,
it is hard to obtain a solution with a high precision. This is because of insufficient
information near the optimal point.

It is important to get well balanced samples providing both global information
and local information on black-box objective functions. The author and his core-
searchers suggested a method which gives both global information for predicting
the objective function and local information near the optimal point at the same time
[7]. Namely, two kinds of additional samples are taken simultaneously for relearn-
ing the form of the objective function. One of them is selected from a neighborhood
of the current optimal point in order to add local information near the (estimated)
optimal point. The size of this neighborhood is controlled during the convergence
process. The other one is selected far away from the current optimal value in order to
give a better prediction of the form of the objective function. The former additional
data gives more detailed information near the current optimal point. The latter data
prevents converging to local maximum (or minimum) point.
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4 Multi-objective Model Predictive Optimization: Static Cases

In multi-objective optimization, the so-called Pareto solution is introduced. Since
there may be many Pareto solutions in practice, the final decision should be made
among them taking the total balance over all criteria into account. This is a prob-
lem of value judgment of DM. The totally balancing over criteria is usually called
trade-off. Interactive multi-objective programming searches a solution in an inter-
active way with DM while making trade-off analysis on the basis of DM’s value
judgment. Among them, the aspiration level approach is now recognized to be
effective in practice. As one of aspiration level approaches, one of authors pro-
posed the satisficing trade-off method [9]. Suppose that we have objective functions
f(x) = (fi(z),..., fr(x)) to be minimized over x € X C R™.In the satisficing

trade-off method, the aspiration level at the k-th iteration fk is modified as follows:

F=ToP(F).

Here, the operator P selects the Pareto solution nearest in some sense to the given
L. —k . .
aspiration level f . The operator T is the trade-off operator which changes the k-th

.. —k . . . . —k
aspiration level f~ if DM does not compromise with the shown solution P(f").
. —k. . . . . . .
Of course, since P(f ") is a Pareto solution, there exists no feasible solution which

makes all criteria better than P(f ), and thus DM has to trade-off among criteria if
he wants to improve some of criteria. Based on this trade-off, a new aspiration level

is decided as T'o P (?k) Similar process is continued until DM obtains an agreeable
solution. . .

The operation which gives a Pareto solution P(f ) nearest to f is performed
by some auxiliary scalar optimization:

max w; (fi(@) — ;) + @) _wifi(®), (1
i=1

1<iSr

where « is usually set a sufficiently small positive number, say 1076,

The weight w; is usually given as follows: Let f* be an ideal value which is
usually given in such a way that f* < min {f;(x) | ¢ € X }. For this circumstance,
we set

wh = % )
fi = IF

Now, we propose a method combining the satisficing trade-off method for in-
teractive multi-objective programming and the sequential approximate optimization
using u—v—SVR. In the following, we explain the method along an example of the
welded beam design problem [2] shown by Fig. 1. The problem is formulated as
follows:
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Fig.1 Welded beam design problem
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The ideal value and aspiration level are given s follows:

ideal value := (f;, f3) = (0, 0)
aspiration level 1 := (7, ) = (4, 0.003)
aspiration level 2 := (7?,?;) (20, 0.002)
aspiration level 3 := (f?, fg) (40, 0.0002)
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Table 1 Result by SQP using a quasi-Newton method without model prediction
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! t b f1 fa # evaluation
asp. | average | 0.5697 | 1.7349 10 0.5804 | 5.0102 | 3.78E-03 2499
level stdv | 0.0409 | 0.1826 0 0.0072 | 0.0420 | 4.83E-05 69.6
1 max | 0.5826 | 2.2546 10 0.5826 | 5.0235 | 3.92E-03 369.0
min 04533 | 1.6772 10 0.5599 | 4.8905 | 3.77E-03 164.0
asp. | average | 1.0834 | 0.8710 | 10.0000 | 1.7685 | 13.7068 | 1.25E-03 2042
level stdv | 0.3274 | 0.1662 | 5.11E-08 | 0.1828 | 1.3793 [ 1.13E-04 30.1
2 max | 2.0132 | 0.9896 10 2.1263 | 16.3832 | 1.31E-03 2630
min 0.9221 | 04026 | 10.0000 | 1.6818 | 13.0527 | 1.03E-03 1720
asp. | average | 1.7345 | 0.4790 10 5 36.4212 | 4.39E-04 2519
level stdv 0.0000 | 0.0000 0 0 0.0000 | 5.71E-20 146.2
3 max 1.7345 | 04790 10 5 364212 | 4.39E-04 594.0
min 1.7345 | 04790 10 5 364212 | 4.39E-04 1120
Table 2 Result by the proposed method with 100 evaluations of function
h l t b fi f2
asp. average 0.5223 1.9217 9.9934 0.5825 5.0344 3.78E-03
level stdv 0.0374 0.1656 0.0136 0.0011 0.0130 1.08E-05
1 max 0.5832 22742 10 0.5845 5.0692 3.81E-03
min 0.4520 1.6859 9.9558 0.5817 5.0224 3.77E-03
asp. average 0.8921 1.0398 9.9989 1.6809 13.0653 1.31E-03
level stdv 0.0898 0.1106 0.0012 0.0012 0.0081 7.79E-07
2 max 1.0787 1.1895 10 1.6824 13.0781 1.31E-03
min 0.7849 0.8273 9.9964 1.6789 13.0531 1.31E-03
asp. average 2.2090 0.4486 10 5 36.6830 4.39E-04
level stdv 0.9355 0.2293 0 0 0.2695 5.71E-20
3 max 3.7812 0.8734 10 5 37.1257 4.39E-04
min 1.0391 0.1895 10 5 364212 4.39E-04

Table 1 shows the result by the simple satisficing trade-off method using SQP
and a quasi-Newton method for randomly chosen starting points in 10 times. Table 2
shows the result by our proposed method combining the satisficing trade-off method
and the model predictive optimization using p-v-SVR with 100 sample points. Since
we used the usual gradient based optimization method for the simple satisficing
trade-off method, the number of function evaluation would be almost 4 times for
black box functions because we have to apply the numerical differentiation on the
based on the incremental difference.
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S Multi-objective Model Predictive Optimization: Dynamic
Cases

For dynamic optimization problems, the model predictive control has been devel-
oped along a similar idea to the above. Let u(¢), x(t) denote the control (input)
vector and the state vector, respectively. Our problem is represented by

Minimize J = ¢[x(T)] +/ (z,u,t)dt 3)

T
F )
0
subject to &= f(x(t),u(t),t), x0)=mxzo 4)

If the function form in the above model is explicitly given, then we can ap-
ply some techniques in optimal control theory. However, we assume that some of
function forms, in particular the dynamic system equation (4), can not explicitly be
given. Under this circumstance, we predict some of future state (¢t +1),... ,x(t+
k) for given w(t +1),... ,u(t+p). The period [t + 1, + k] is called the prediction
period, and [t 4 1, ¢ 4 p] the control period. Our aim is to decide the optimal control
sequence u(t) over [0, 7).

For predicting the future state, we apply a support vector regression technique,
namely ;1 — v—SVR which was stated in the previous section. In the following,
we show a numerical result by using the satisficed trade-off method with model
prediction. Our problem to be considered in this paper has multiple objectives

J=(J,.... ).

For example, those objectives are the energy consumption, constraints of terminal
state, the terminal time (7") itself and so on.

Step 1. Predict the model f based on (x(k),u(k),z(k + 1)), k=0,1,... t—
1, z(0) = xo.
Step 2.  Generate individuals of control sequence by GA algorithm

ui(t), ui(t + 1), e ,ui(T — 1), i1=1,2,... aNpopul(Ltiorr

e Predict the state resulting from each control sequence from the present time
to the terminal time

x(k+1) = f(z(k),uk)), k=t,t+1,... , T—1, z(0)=x9. (5)

e Evaluate each individual in terms of auxiliary scalar objective function of sat-
isficing trade-off method
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e Select the best individual (control sequence) u*. Calculate (¢ + 1) by (5)
using z(t) and u(t) = u*(t).

Step 3.

The solutions for two different aspiration levels are depicted in Fig. 2. It may be
seen that the proposed method provides reasonable solutions flexibly depending on

F = max w; (Jl(:c) —75) —|—azr:wi (Jz(af) —75)

1<i<r

T-1

J=T, Jo=> u’(k).

the apiration levels.

k=t

t «— t+ 1 and go to Step 2.
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Fig.2 Multi-objective model predictive control
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6 Concluding Remarks

We discussed methods combining the satisficing trade-off method and model pre-
dictive optimization methods using computational intelligence under static and dy-
namic environment. The proposed method provides an approximate Pareto solution
closest to the given aspiration level. It is promising in practical problems since it has
been observed through several numerical experiments that the method reduces the
number of function evaluation up to less than 1/100 to 1/10 of usual methods.
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