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Abstract In this paper we present an application of Reinforcement Learning (RL)
methods in the field of robot control. The main objective is to analyze the behavior
of batch RL algorithms when applied to a mobile robot of the kind called Mobile
Wheeled Pendulum (MWP). In this paper we focus on the common problem in clas-
sical control theory of following a reference state (e.g., position set point) and try to
solve it by RL. In this case, the state space of the robot has one more dimension, in
order to represent the desired variable state, while the cost function is evaluated con-
sidering the difference between the state and the reference. Within this framework
some interesting aspects arise, like the ability of the RL algorithm to generalize to
reference points never considered during the training phase. The performance of the
learning method has been empirically analyzed and, when possible, compared to a
classic control algorithm, namely linear quadratic optimal control (LQR).

1 Introduction

This paper is about the application of Reinforcement Learning (RL) methods [10] in
the field of robot control. To achieve optimal performance, many feedback control
techniques (e.g., PID, direct pole placement, optimal control, etc.) generally require
very accurate models of the dynamics of the robot and of its interaction with the
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surrounding environment, which is often infeasible in many real situations. Using
traditional RL techniques (e.g., Q-learning), a robot can learn the optimal control
policy by directly interacting with the environment, without knowing any model in
advance. On the other hand, collecting data through direct interaction is a very long
process when real robots are considered. Furthermore, RL algorithms are typically
used to solve single-task problems such as balancing an inverted pendulum, driving
the robot to a goal state, or learning to reach a given set point. This implies that
every time the goal changes the learning process must restart from scratch, thus
making infeasible to cope with a common problem in control theory like following
a continuously changing reference point (e.g., position or speed set points). To face
this class of problems, the state space of the problem needs to be enlarged by adding
a new variable to represent the desired state, while the cost function can be defined
on the error signal (i.e., the distance between the current state and the desired one).
In this paper, we propose to use fitted Q-iteration algorithms [6, 9, 2], i.e., batch

algorithms that decompose the original RL problem into a sequence of supervised
problems defined on a set of samples of state transitions. Since the value of the ref-
erence state does not affect the transition model, but only the reward function, using
a batch approach allows to reuse the same set of transition samples to train the con-
troller for different values of the reference state thus reducing the time of direct inter-
action with the environment. Within this framework some interesting aspects arise,
for example the ability of the RL algorithm to generalize to reference points never
seen during the training phase. The experimental activity has been carried on using
a model of a mobile robot of the kind called Mobile Wheeled Pendulum. We ex-
perimentally evaluate batch RL algorithms using different function-approximation
techniques, and compare their accuracies when following a given angle profile.
The rest of the paper is organized as follows: next section briefly motivates the

use of batch RL algorithms and reviews the main state-of-the-art approaches. Sec-
tion 3 describes the dynamic model of the robot Tilty used in the experiments. In
Section 4 we describe how to collect data and how to train batch RL algorithms
to build automatic controllers, and in Section 5 we show the results obtained using
both neural networks and extra-randomized trees. Section 6 draws conclusions and
proposes new directions for future research.

2 Batch Reinforcement Learning

In reinforcement learning [10] problems, an agent interacts with an unknown envi-
ronment. At each time step, the agent observes the state, takes an action, and re-
ceives a reward. The goal is to learn a policy (i.e., a mapping from states to actions)
that maximizes the long-term return. An RL problem can be modeled as a Markov
Decision Process (MDP) defined by a tuple ⟨S ,A ,T ,R,γ⟩, whereS is the set of
states, A (s) is the set of actions available in state s, T : S ×A ×S → [0,1]
is a transition distribution that specifies the probability of observing a certain
state after taking a given action in a given state, R : S ×A → R is a reward
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function that specifies the instantaneous reward when taking a given action in a
given state, and γ ∈ [0,1) is a discount factor. The policy of an agent is charac-
terized by a probability distribution π : S ×A → [0,1] that specifies the prob-
ability of taking a certain action in a given state. The utility of taking action a
in state s and following a policy π thereafter is formalized by the action-value
function Qπ

(s,a) = E
[

∑∞
t=1 γ

t−1rt |s= s1,a= a1,π
]

, where r1 = R(s,a). RL ap-
proaches aim at learning the policy that maximizes the action-value function in
each state. The optimal action-value function is the solution of the Bellman equa-
tion:Q∗(s,a)=R(s,a)+γ ∑s′T (s,a,s′)maxa′Q∗(s′,a′). The optimal policy π∗(·, ·)
takes in each state the action with the highest utility.
Temporal Difference algorithms [10] allow the computation of Q∗(s,a) directly

interacting with the environment with a trial-and-error process. Given the tuple
⟨st ,at ,rt ,st+1⟩ (experience made by the agent), at each step, action values may
be estimated by online algorithms, such as Q-learning [10], whose update rule is:
Q(st ,at)← (1−α)Q(st ,at)+α (rt + γmaxa′Q(st+1,a′)):α ∈ [0,1] learning rate.
RL has proven to be an effective approach to solve finite MDPs. On the other

hand, using RL techniques in robotic and control applications rises several dif-
ficulties. Since state and action spaces are high-dimensional and continuous, the
value function cannot be represented by means of tabular approaches, but function-
approximation techniques are required. Despite some successful applications, cou-
pling function approximation with online RL algorithms can lead to oscillatory be-
haviors or even to divergence [1]. The reason for this is that, unlike in the supervised
case, in RL we cannot sample from the target function, and the training samples de-
pend on the function approximator itself. Recently, several studies have focused on
developing batch RL algorithms. While in online learning the agent modifies its
control policy at each time step according to the experience gathered from the envi-
ronment, the batch approach aims at determining the best control policy given a set
of experience samples ⟨st ,at ,rt ,st+1⟩ previously collected by the agent following
a given sampling strategy. In particular, good results have been achieved by fitted
Q-iteration algorithms derived from the fitted value iteration approach [3]. The idea
is to reformulate the RL problem as a sequence of supervised learning problems.
Given the dataset, in the first iteration of the algorithm, for each tuple ⟨si,ai,ri,s′i⟩,
the corresponding training pair is set to (si,ai)→ ri, and the goal is to approximate
the expected immediate reward Q1(s,a) = E[R(st ,at)|st = s,at = a].
The second iteration, based on the approximation of the Q1-function, extends the

optimization horizon one step further: Q2(s,a) = R(s,a)+γmaxa′ Q̂1(s′,a′). At the
Nth iteration, using the approximation of the QN−1-function, we can compute an
approximation of the optimal action-value function at horizon N.
The batch approach allows to use any regression algorithm, and not only para-

metric function approximators as happens for stochastic approximation algorithms.
Several studies have reported very good results with a wide range of approxima-
tion techniques: kernel-based regressors [6], tree-based regressors [2], and neural
networks [9]. All these works show how batch mode RL algorithms allow to effec-
tively exploit the information contained in the collected samples, so that, even using
small datasets, very good performances can be achieved. The size of the dataset is
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Fig. 1 The MWP robot Tilty and its degrees of freedom

a key factor for robotic applications, since collecting a large amount of data with
real robots may be expensive and dangerous. As shown in [9], it is possible to solve
simple control problems, such as balancing a pole, with a dataset obtained by per-
forming random actions for a few minutes.
In this paper, we study the problem of controlling a mobile wheeled pendulum to

follow a time-dependent set point. As we will explain in Section 5, fitted Q-iteration
algorithms are well-suited to cope with this class of problems and we will show the
results achieved with different function approximators.

3 The Robot: Tilty

The mobile wheeled inverted pendulum robot named Tilty has been considered for
the tests. Tilty has an aluminum frame, a pair of wheels on the same axis connected
to a DC motor each, batteries and a programmable drive. The robot structure is
represented in Figure 1. The system has two types of sensors onboard: encoders on
motors and a dual-axis accelerometer.

3.1 Dynamical Model

The first analysis consists in the study of the equations that describe the dynamics
of the robot. In our case the model describing Tilty is non-linear: i.e., the system
cannot be described by a system of equations of the form ẋ(t) = A · x(t)+B · u(t),
with A and B constant matrices, but by the general form ẋ= f(x(t),u(t)).
For mechanical or dynamical models, a common way to obtain such non-linear

equations is to use the Lagrange equations [4], [8]:

d
dt

(

∂T
∂ q̇

)

−

∂T
∂q
−

∂V
∂q

= τ, (1)
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where q is the generic variable describing the pose of the system (i.e., degree of
freedom), T is the kinetic energy, V is the potential energy, and τ represents the
generalized force acting on the system. Tilty is described by two degrees of freedom
when considering a linear motion (see Figure 1): the position of the center of the
wheels x, and the angle ϑ between the pole and the vertical axis, while the input is
represented by the motor torque C acting between the motors and the pendulum.
The equations for the kinetic and potential energy of the system are:

{

T(x,ϑ) =
1
2 ·Mtot ẋ2+

1
2 · Jtot ϑ̇

2
+Htot · cos(ϑ)ϑ̇ ẋ

V(x,ϑ) = −Htot(1− cos(ϑ)) ·g (2)

where Mtot = ∑mi is the total mass of the system, Jtot = ∑Ji +∑mi · d2i is the
moment of inertia w.r.t. the wheel axis, and Htot =∑mi ·di is the first order moment.
In order to calculate the generalized forces τ in (1), the virtual work of acting

forces has to be determined: τi = δ ∗L
∂qi

with δ ∗L = 2C ·

(

δ ∗x
Rwheel

− δ ∗ϑ
)

. Where C is
the motor torque acting on wheels. Solving the equations in (1) with the expressions
in (2) brings to the following system of equations:

{

Mtot ẍ+Htot cos(ϑ) · ϑ̈ −Htot sin(ϑ) · ϑ̇ 2 =
2C

Rwheel
Jtot ϑ̈ −Htot cos(ϑ) · ẍ−Htot sin(ϑ) ·g = −2C

(3)

which represents the non-linear dynamics of Tilty. The system in (3) can be rear-
ranged in the form:

{

ẍ, ϑ̇ , ϑ̈
}

′

=

[

A
(

ϑ , ϑ̇
)]

·

{

ẋ,ϑ , ϑ̇
}

′

+{B(ϑ)} ·C (4)

ThematrixA and vectorB in (4) are the state space representation of the system’s
dynamics.

3.2 Design of the controller

The system needs a regulator able to keep it in equilibrium. We developed a regula-
tor of the kind LQR (linear quadratic regulator), obtained by optimal control theory
[5]. Optimal control finds a regulator able to give the best performance with respect
to a specific measure of the performance itself. LQR procedure is interesting be-
cause it allows to minimize the cost functional of the following equation (5) giving
stable controllers and because it is applicable to Multi-Input Multi-Output (MIMO)
systems.

J=

∫ ∞

0

(

x′ · Q̃ · x+u′ · R̃ ·u
)

dt, (5)

where x is the state of the system, u is the input variable, Q̃ and R̃ are weight matrices
for state variables and actions. The values Q̃ and R̃ have been chosen to optimize the
system response in the conditions of the experiments. The feedback control law that
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minimizes the value of the cost is u = −K · x. This feedback law is determined by
solving the Riccati Equation [5]. Therefore, it is necessary to linearize (4) around an
equilibrium point, so that matrix A and vectorB become state independent. This ap-
proach gives controllers with good behavior, but are heavily dependent on the model
of the system: it is necessary to describe exactly the geometry and the dynamics and
assume that the linear approximation is good. RL methods, proposed here, do not
need any prior knowledge about the system, so appear to be interesting when the
model is strongly non-linear or when its parameters can be hardly estimated.

3.3 Simulation of the dynamics

The behavior of the controlled system has been simulated as accurately as possible,
considering, among others, the following aspects:

• control frequency of 50Hz,
• the robot inclination ϑ is available by reading the output of the 2-axis accelerom-
eter, obtaining the inclination by comparing the two data,

• the robot angular velocity ϑ̇ is not directly available by sensor reading, so its
value is determined by means of a reduced observer block.

The model described here has been used to gather all the data used to apply batch RL
algorithms and to compare the performance of the LQR controller with the policy
determined by the learning algorithms.

4 Experimental Settings

The application of RL methods requires the agent to interact with the environment
in order to learn the optimal policy. The interaction can be direct (on-line) or indi-
rect (off-line). In the first case, the agent itself chooses the action based on what it
has learned until then, and the policy (the Q-function) is estimated progressively. In
the second case, the policy update is done in a batch fashion. Rather than choos-
ing actions based on a policy, the agent observes state transitions due to actions
externally determined. On the basis of the whole dataset, the optimal policy is com-
puted. Therefore, the first step in batch RL methods consists in collecting samples
⟨s,a,r,s′⟩.

4.1 Data collection

The kind of raw data needed for training is made of tuples (s,a,s′), where s =

{ẋ,ϑ , ϑ̇} is the present state of the robot, a is the torque C applied, and s′ =
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{ẋ′,ϑ ′, ϑ̇ ′} is the next state reached from state s when C is applied. The whole
dataset is composed by seven-tuple samples:

{

ẋ,ϑ , ϑ̇ ,C, ẋ′,ϑ ′, ϑ̇ ′
}

.
Each sample represents aMarkovian transition. Using model-freeRL algorithms,

it is not required a priori knowledge about system dynamics, since it can be implic-
itly inferred by the samples obtained through direct interaction with the real robot.
In our approach, we consider the dynamical model described in Section 3.1. The

model is initialized with a random state defined by the vector [0,ϑin,0]′, with ϑin
varying in the range of ±0.3rad. A random motor torque uniformly distributed in
±Cmax = 7.6 Nm is then applied to the system at frequency of 50Hz and the se-
quence of the states reached is collected with the same frequency. When the sys-
tem reaches dangerous conditions (i.e., |ϑ | ≥ 0.5rad), the simulation is stopped
and the system is initialized again. All the experiments have been carried out us-
ing datasets with 1,000, 3,000, and 5,000 samples, that correspond, respectively,
to 20s, 60s, and 100s of training in real time. During the phase of data collection
no reference value is considered. Then, we have considered angular references by
adding two values to each sample, thus obtaining the input vector of the training set:
{

ẋ,ϑ , ϑ̇ ,ϑre f ,C, ẋ′,ϑ ′, ϑ̇ ′,ϑ ′re f
}

. We made the assumption that the reference varies
slowly w.r.t. the frequency of data collection, so that it can be considered constant
during a single transition (ϑ ′re f = ϑre f ). We consider the following set of reference
values: ϑre f ∈ {−0.1,0,0.1}rad. Since the reference value does not affect the dy-
namics of the system, we simply replicate the data previously collected for each
reference value.

4.2 Training

Once the input data have been collected, we need to compute the output values. The
first step is to consider the instantaneous rewards. The reward function is:

R (st ,at) =

{

−

∣

∣ϑt −ϑre f
∣

∣ when st+1 notfinal
−1 when st+1 final

(6)

where a final state is the one in which the magnitude of angle ϑ exceeds 0.5 rad.
As described in Section 2, fitted Q-iteration algorithms iteratively extend the time
horizon by approximating Q-functions defined according to the following equation:

Qk (s,a) = R (s,a)+ γ ·max
b
Qk−1

(

s′t ,b
)

. (7)

On the basis of the approximation of the Qk−1-function, it is possible to build the
training set in order to get an approximation of the Qk-function.
The first Q-function,Q1, is the approximation of the direct rewards as calculated

in (6). The training values of the following functions (Qk) are determined by (7),
using direct rewards and the approximation given in the previous step (Qk−1). These
values are the output values of Qk used by the approximator.
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For each experiment, we have approximated the Q-functions from Q0 to Q50
using two kinds of function approximators: neural networks and extra-trees, which
are briefly described in the following. For more details refer to [9, 2].

4.2.1 Training with neural networks

The training of neural networks follows the approach used for the NFQ algo-
rithm [9]. The Q-function at the kth step is represented by a neural network whose
input is the tuple (ẋ,ϑ , ϑ̇ ,ϑre f ,C). The model considered for the network uses 2
hidden layers composed of 5 neurons each and an output layer composed of one
neuron. The activation function is sigmoidal for the inner layers and linear for the
output layer. The training method used to determine the set of weights and biases is
Levenberg-Marquardt [7].

4.2.2 Training with Extra-Trees

Besides neural networks, we have performed experiments with extra-trees, a partic-
ular kind of regression tree ensemble. Each tree is built so that each test at a node is
determined by selecting K candidate tests at random, and choosing the one with the
highest score. The parameters used in our experiments are those proposed in [2]: 50
trees, 5 candidate tests, and each node must contain at least two samples.

5 Simulation Results

In this section, we present and discuss some of the results obtained with the fitted
Q-iteration algorithm using neural networks (NN) and with extra-trees. To give an
idea of the performances achievable by the learned controllers, in each graph we
report three simulations, which correspond to controllers learned using datasets with
different sizes. To compare the results, we show simulations starting from a fixed
angular position: 0.2 rad.
Figure 2 compares the behavior of the LQR control with the behavior of the

learned controllers when the angular set point is fixed to 0. It can be noticed that
all the learned controllers are much faster than LQR to reach the set point. In par-
ticular, extra-trees get very close to the set point after only a few control steps, and
neural networks take about one second to converge. On the other hand, using neural
networks the controllers are much smoother than those achieved by extra-trees.
Figures 3 to 5 show the behavior with ϑre f varying according to different pro-

files. It is worth noting that all the controllers are able to approximately follow the
given profiles, even if they have been trained only to follow three angular set points:
−0.1,0,0.1. However, as we can see, neural networks are much more accurate (al-
most overlapping with the reference profile) than extra-trees. Extra-trees perform
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Fig. 2 Performance with ϑre f = 0 (left:NN, right:Extra-Trees)
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Fig. 3 Performance with ϑre f piecewise constant (left:NN, right:Extra-Trees)
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Fig. 4 Performance with ϑre f piecewise ramp (left:NN, right:Extra-Trees)
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Fig. 5 Performance with ϑre f sinusoidal (left:NN, right:Extra-Trees)

quite poorly since they produce policies that make the robot reach speeds higher
than those experienced using random exploration during the training phase, thus
requiring hard extrapolation capabilities. This problem could be overcome by us-

159



A.Bonarini,C.Caccia,A.Lazaric,M.Restelli

ing the learned controller to collect and add further samples to the training set, and
restarting the fitted Q-iteration algorithm.
As expected, controllers trained with larger datasets have better performances,

even if it is worth noting that 1,000 samples (corresponding to 20s of real time
acquisition) are enough to learn quite good controllers.

6 Conclusions

In this paper, we presented batch RL methods to solve a robot control problem. The
system considered here is unstable and non-linear, thus classic controllers require an
approximatedmodel. RL methods do not need any model of the robot and overcome
problems of parameter identification. RLmethods are generally used to solve single-
task problems, while controllers generally follow changing reference points. We
extended the idea of reference following to RL. The experiments show that a few
tens of seconds are enough for batch RL algorithms to learn good controllers (even
better than a classic controller like LQR). In particular, we have proposed a novel
procedure that allows to learn controllers able to follow a varying reference point. It
is interesting to note that the learned controllers effectively generalize to reference
point not considered in the training phase. Given these encouraging results, we will
experiment the proposed approach on the real robot.
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