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Many researchers and organizations are interested in creating a mechanism ca-
pable of automatically predicting software defects. In the last years, machine
learning techniques have been used in several researches with this goal. Many
recent researches use data originated from NASA (National Aeronautics and
Space Administration) IV&V (Independent Verification & Validation) Facility
Metrics Data Program (MDP). We have recently applied a constructive neural
network (RBF-DDA) for this task, yet MLP neural networks were not investi-
gated using these data. We have observed that these data sets contain inconsis-
tent patterns, that is, patterns with the same input vector belonging to different
classes. This paper has two main objectives, (i) to propose a modified version of
RBF-DDA, named RBF-eDDA (RBF trained with enhanced Dynamic Decay
Adjustment algorithm), which tackles inconsistent patterns, and (ii) to com-
pare RBF-eDDA and MLP neural networks in software defects prediction. The
simulations reported in this paper show that RBF-eDDA is able to correctly
handle inconsistent patterns and that it obtains results comparable to those of
MLP in the NASA data sets.

1 Introduction

Machine learning techniques have already been used to solve a number of soft-
ware engineering problems, such as software effort estimation [5], organization
of libraries of components [17] and detection of defects in software [3, 9]. This
paper is concerned with the detection of defects in software. We aim to predict
if a software module contains some defect, without regard of how many defects
it contains. For detecting defects in current software projects, a classifier needs
to be trained previously with information about defects of past projects. In
many papers, the data used during the experiments are obtained from a public
repository made available by NASA [1] and by the Promise Repository [15].
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These repositories contain static code measures and defect information about
several projects developed by NASA.

Bezerra et. al [3] have evaluated the performance of some classifiers in the
problem of defect detection. They reported that some patterns of the NASA
data sets of the Promise Repository were inconsistent, that is, they had the same
input vector and a class different from that of the other replicas. Inconsistent
patterns are an inherent feature of some defect detection data sets and therefore
should be handled appropriately by the classifiers. For instance, we can have
two different software modules characterized by exactly the same features (such
as (i) number of operators, (ii) number of operands, (iii) lines of code, etc). The
problem is that the first can have defect and the other can be free of defects.
This leads to inconsistent patterns (same input vector but different classes).
Note that this situation arises because the input information regarding the
software modules is not sufficient to differentiate them.

Bezerra et. al [3] have used the RBF-DDA classifier in their experiments and
reported an important drawback in the DDA (Dynamic Decay Adjustment)
algorithm: it does not work with inconsistent patterns. Therefore, in their ex-
periments, patterns that had repetitions with conflicting classes (that is, incon-
sistent patterns) were discarded [3], which means loosing information. One of
the contributions of this paper is to propose a modified version of RBF-DDA,
referred to as RBF-eDDA, which is able to handle inconsistent patterns.

The DDA algorithm was originally proposed for constructive training of RBF
neural networks [2]. The algorithm has achieved performance comparable to
MLPs in a number of classification tasks and has a number of advantages for
practical applications [2, 13], including the fact that it is a constructive algo-
rithm which is able to build a network in only 4 to 5 epochs of training [2].

The use of neural networks for software defect prediction is rare in com-
parison to other techniques such as Decision Trees J4.8 [4, 7, 10, 12], k-Nearest
Neighbor (kNN) [4, 7, 10], and Naive Bayes [7, 10, 12]. Furthermore, multi-layer
perceptron (MLP) neural networks was not used for the detection of fault-prone
modules using the NASA data. MLPs were used for software defect prediction,
yet using other data (not from NASA), such as in [9]. In this way, our exper-
iments utilize MLP neural networks trained with backpropagation to evaluate
its performance in the detection of software defects and to compare it to RBF-
eDDA in this task.

In summary, the main contributions of this paper are: (i) to propose a mod-
ified version of the RBF-DDA algorithm, named RBF-eDDA, which aims to
handle inconsistent patterns, (i) to apply RBF-eDDA to software defect pre-
diction in the NASA data sets, and (iii) to apply MLP to software defect pre-
diction in the NASA data sets and to compare the results obtained to those of
RBF-eDDA.

The rest of this paper is organized as follows. Section 2 briefly reviews the
standard RBF-DDA network and describes the proposed method, RBF-eDDA.
Sections 3 presents the methods used to assess and compare the classifiers
whereas Section 4 presents the experiments and discusses the results obtained.
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Finally, the Section 5 presents the conclusions and suggestions for future re-
search.

2 The Proposed Method

RBF-DDA neural networks have a single hidden layer, whose number of units
is automatically determined during training. In this way, during training, the
topology starts with an empty hidden layer. Next, the neurons are dynamically
included on it until a satisfactory solution has been found [2, 13]. The activation
R;(¥) of a hidden neuron i is given by the Gaussian function (Eq. 1), where
T is the input vector, 7, is the center of the ith Gaussian and o; denotes its
standard deviation, which determines the Gaussian’s width.

R;(T) = exp <—M>

g

i

(1)

RBF-DDA uses 1-of-n coding in the output layer, with each unit of this layer
representing a class. Classification uses a winner-takes-all approach. In this way,
the output unit with the highest activation gives the class. Each hidden unit is
connected to exactly one output unit and has a weight A;, whose value is deter-
mined by the training algorithm. Output units use linear activation functions
with values computed by f(7') = Y1~ A; x R;(7'), where m is the number
of RBFs connected to that output. In this paper, each output is normalized
as proposed by et al. Bezerra in [3]. Thus, the RBF-DDA becomes capable to
produce continuous outputs that represent the probability of a module being
fault-prone.

The DDA algorithm has two parameters, namely, 7 and 0~, whose default
values are 0.4 and 0.1, respectively [2]. These parameters are used to decide on
the introduction of new neurons in the hidden layer during training. The DDA
training algorithm for one epoch is presented in the Algorithm 1 [2].

It was originally believed that the parameters T and 6~ would not influ-
ence RBF-DDA performance. Yet, Oliveira et al. have recently demonstrated
that the value of #~ may significantly influence classification performance [13].
Therefore, in this paper we use the default value for 7 (6" = 0.4) and select
the best value of §~ for each data set via cross-validation, as in [13].

2.1 Training RBF Networks with the Enhanced DDA
Algorithm

Before the explanation of the modifications in the DDA algorithm, it is nec-
essary to understand its drawbacks regarding inconsistent patterns. For this
task, we use an example that has a one-dimensional training set composed by
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Algorithm 1 DDA algorithm (one epoch) for RBF Training

1: for all prototypes pf do > Reset weights
2. Ak =00

3: end for

4: for all training pattern (= ,c) do > Train one complete epoch
5: if 3p¢ : R¢(T) > 01 then

6: A4+ =10

7 else

8: add new prototype p, |, with: > Commit: introduce new prototype
9: ?fnc+l =7
10: Ol = MATken1<j<myp 10 R%C+1(7}?) <6~}
11: AL =10
12: me+ =1
13: end if
14: for all k #¢,1 <j<my do > Shrink: adjust conflicting prototypes
15: cr;? = max{o : Rf(?) <07}
16: end for
17: end for

three patterns: (P1)=0, class=C1; (P2)=10, class=C0; (P3)=10, class=C1.
The patterns P2 and P38 have the same input, but are from distinct classes.

Following Algorithm 1, when P1 is presented, there is no neuron in the hidden
layer, and then a new Gaussian (RBF) is created with 7p, = [0], Ap, = 1 and
class = C1 (Fig. 1(a)). When P2 is encountered, the DDA algorithm introduces
a new Gaussian with 7p, = [10], Ap, = 1 and class = C0, since there was no
neuron from class CO.

After P2’s Gaussian have been included, all others Gaussians with class
different from CO have their width shrank (Fig. 1(b)). When P3 is presented,
the algorithm realizes that it has the same class of PI and that its activation
is less than 6T, then a new prototype should be introduced. At this moment,
DDA’s drawback can be observed. The P3’s Gaussian conflicts with that of P2,
because both have the same center but distinct classes. Thus, the Euclidean
distance between the centers of P2 and P3 is zero. In other words, Eq. 1 gives
|Zp, — 7r,|| = 0, and that makes the standard deviation of P3 equal to zero
as well (op, = 0), causing a division by zero (see line 10 of Algorithm 1). The
result can be seen in Fig. 1(c).

After P3 is introduced, the algorithm shrank the width of Gaussians with a
class different of C'1. In this way, op, receive zero because ||zp, —7p, | = 0, then
it will happen to P2 the same as P3, as can be seen in Fig. 1(d). Therefore,
the algorithm never converges to one solution, because the final SSE (Sum of
Squared Errors) is always calculated as NaN (Not-a-Number).

To handle the problem caused by inconsistent patterns just described, we
propose a modified version of RBF-DDA, named RBF-eDDA, which aims to
turn it robust enough to treat the problem of inconsistent patterns. We began
from the principle that the hidden layer could not hold this type of conflict,
because it will influence the inclusion of new Gaussians and the adjustment of its
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Fig. 1 An example of the DDA Algorithm’s drawback: (a) PI is encountered and a new
RBF is created; (b) P2 leads to a new prototype for class C0 and shrinks the radius of the
existing RBFs of class C1; (c¢) P3 Gaussian is presented and cannot be calculated because
opy = 0; (d) during the shrink of the Gaussians, op, = 0 and P2 also cannot be calculated.

width. In RBF-eDDA, whenever a new Gaussian is included, the algorithm will
verify if it is conflicting with some pre-existent Gaussian. If it is not conflicting,
the algorithm will create the Gaussian normally; otherwise, the algorithm will
not create a new Gaussian. Instead, the algorithm will reduce the weight A; =
A; — 1 of the pre-existent Gaussian that is conflicting. If the Gaussian weight
becomes zero, it is removed from the hidden layer.

3 Assessing the Performance

The defect detection is a cost-sensitive task whereby a misclassification is more
costly than correct classification. Other problem is that the data sets utilized
to train the predictors have a skewed class distribution, that is, these data sets
have more modules with defects than modules without defects. Then, we need
to use evaluation metrics capable to assess the performance of the classifiers,
and that handle these constraints. The ROC curve [18] is the best way to deal
with cost-sensitive problems and unbalanced datasets because it depicts the
performance of a classifier regardless of the class distribution or the error costs
[18]. Thus, in order to assess the classifiers, we use ROC’s AUC (Area Under
Curve). The best classifier is the one with the higher AUC [18].

A defect predictor is a binary classifier that has four possible outcomes, as
shown in Fig. 2, which depicts the confusion matrix. Considering the defect
detection problem, the columns of the Fig. 2 represent the actual class of a
software module while the rows represent the class predicted by the classifier.
Thus, the NO column represents the modules that do not have defects while
the YES column represents the inverse. Conversely, the no row represents the
modules labeled as fault-free by the classifier, while the yes row represents the
modules labeled as fault-prone.

The confusion matrix is the core of several evaluation metrics. The Accuracy
(Acc) is the proportion of the total number of modules that were correctly clas-
sified (Eq. 2). The Probability of Detection (PD) is the proportion of defective
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Fig. 2 Confusion Matrix of a Binary Classifier.

modules that were correctly identified (Eq. 3). In the other case, the Proba-
bility of False Alarm (PF) (Eq. 4), is the proportion of correct modules that
were incorrectly identified. Another metric is the Precision (Prec), that is the
proportion of the predicted defective modules that were correct (Eq. 5).

Ace= 7 +(71:z]; i ?1\3[)+ FN) @
PD = % (3)
PF= (FPF+PTN) @
Pree= (TPT+PFP) )

These four metrics are used during our experiments to evaluate the perfor-
mance, yet their values depend on the adjustment of the classifiers’ operation
point (threshold), because it modifies the class memberships and, consequently,
the confusion matrix distribution. To choose the classifier’s best threshold, we
also use the ROC curves; the threshold is the best ROC’s point, which is the
one closer to the point (z-azis=0, y-azis=1) [6].

4 Experiments

This Section presents the experiments carried out with the proposed method,
RBF-eDDA, as well as with MLP neural networks. In the experiments with
RBF-eDDA, we adjusted the parameter ~ to find the best performance of the
classifier [13]. We employed the following values for this parameter: 0.2, 1071,
1072, 1073, 1074, 1075 and 10~C. These values were chosen because they were
used successfully in previous papers [13, 3].

In this study, we compare the performance of RBF-eDDA with other neural
network, the MLP trained with Backpropagation [8]. MLP is a feedforward
neural network. As its architecture is not constructive, it is necessary to vary
its topology to choose the one that performs well for a given problem. In the
experiments we varied three parameters of the MLP: the number of neurons
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in the hidden layer, the learning rate (n) and the momentum. The simulations
using MLP networks were carried out using different topologies, that is, number
of neurons in the hidden layer. The values used were: 1, 3, 5, 9 and 15. The
values used for the learning rate were 0.001 and 0.01; for the momentum we
used 0.01 and 0.1.

In our experiments we are concerned with the reproducibility, then, we de-
cided that the five data sets used - CM1, JM1, KC1, KC2 and PC1 — should
be obtained from the Promise Repository [15], since it stores data sets that
can be reused by other researches. Each dataset has 21 input features based on
software metrics such as cyclomatic complexity, lines of comments, total oper-
ators, total lines of codes, etc. Detailed information about each feature can be
obtained freely on the MDP web site [1].

To compare two or more classifiers, it is important that the data used in the
evaluation are exactly the same. Then, to guarantee the reproducibility of our
results, all experiments utilized the same data set separation. In order to do
this, the fold separation and the stratification were made by the Weka [18]. We
set the Weka’s random seed to 1 and made the separation of the datasets in 10
stratified folds. Then, using the Weka framework and Promise datasets, other
researchers can reproduce the experiments reported here.

Before the simulations, we made a preprocessing in the datasets. This is
a procedure whereby the data are cleaned and prepared for training and for
testing the classifiers. Initially we observed that some patterns had missing
values. These patterns with missing values were removed, since they represented
a very small sample of the total number of patterns in each data set (less than
0.1%) and therefore could be discarded [11]. The next step of the preprocessing
was the dataset normalization because the values of each feature had different
amplitudes in relation to the others, and this could induce skewed results. Table
1 summarizes the characteristics of each dataset after preprocessing. Notice that
all datasets have a small percentage of modules with some defect.

Table 1 Summary of the datasets used in this paper.

Dataset #Modules %Modules with defects

CM1 498 9.83
JM1 10885 19.35
KC1 2109 15.45
KC2 522 20.50

PC1 1109 6.94
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4.1 Analysis of Results

In our comparison between RBF-eDDA and MLP, the AUC is used as the main
criterion; we also report the PD, PF, Acc and Prec obtained by the classifiers
for comparison. The AUC was selected as the most important criterion because
it summarizes the global performance of the classifier in a single scalar value.
The simulations’ results of the RBF-eDDA and MLP are reported in Table 2.

Table 2 Results of the classifiers RBF-eDDA and MLP with backpropagation.

RBF-eDDA MLP with BackPropagation

Dataset 6~ #Units AUC PD PF Acc Prec AUC PD PF Acc Prec
CM1 103 336 0.773 0.837 0.347 0.671 0.208 0.760 0.755 0.327 0.681 0.201
JM1 102 7238 0.596 0.653 0.461 0.561 0.254 0.718 0.652 0.326 0.670 0.324
KC1 1075 999 0.712 0.801 0.384 0.644 0.276 0.792 0.755 0.309 0.701 0.309
KC2 10-1 252  0.744 0.766 0.313 0.703 0.387 0.825 0.757 0.186 0.803 0.513
PC1 10=2 613 0.859 0.805 0.218 0.784 0.216 0.819 0.805 0.300 0.707 0.167
Average 0.737 0.772 0.345 0.673 0.268 0.783 0.745 0.289 0.712 0.303

For RBF-eDDA, Table 2 shows the best 8~ for each dataset and the num-
ber of neurons of the hidden layer. For the MLP networks the configuration
that obtained the best stability and performance across all datasets was the
configuration with 3 neurons in the hidden layer, learning rate set to 0.01 and
momentum set to 0.1. Using the AUC for the comparison, notice that the MLP
outperformed the RBF-eDDA classifier on the JM1, KC1 and KC2 datasets; on
the other hand, the RBF-eDDA outperformed the MLP in the CM1 and the
PC1. In the CM1 dataset, the difference between the classifiers was small, but
in the PC1 dataset it was higher.

Fig. 3 shows the ROC curve of the classifiers for each dataset along with
the best operation points. The values of PD, PF, Acc and Prec were computed
using these operation points. A prominent result of the MLP has occurred in
the KC2 dataset, with PD=75.7% and a high accuracy and small amount false
alarms. In the case of RBF-eDDA, the best result occurred in the PC1 dataset,
with a PD=80.5%, PF=21.8% and a high accuracy.

5 Conclusions

This paper contributes by proposing RBF-eDDA, an enhanced version of the
DDA algorithm. RBF-eDDA aims to handle inconsistent patterns, which occur
in software defect detection data sets. The original RBF-DDA algorithm was not
able to train if the data set contains inconsistent patterns. We report a number
of experiments that have shown that RBF-eDDA handles inconsistent patterns
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Fig. 3 ROC Curves obtained by the MLP and RBF-eDDA classifiers for the datasets CM1(a),
JM1(b), KC1(c), KC2(d) and PCl1(e).

adequately. Our experiments also aimed to compare the proposed method to
MLP networks for software defect prediction. The experiments have shown that
RBF-eDDA and MLP have similar performance in this problem. RBF-eDDA
offers an advantage over MLP since it has only one critical parameter (67)
whereas MLP has three.

Considering the study of Shull et al. [16], which asserts that in a real de-
velopment environment a peer review catches between 60-90% of the defects,
our results are useful, since RBF-eDDA achieved mean PD of 77.2% and the
MLP achieved 74.5%.

We endorse the conclusions of Menzies et al.[12], since they state that these
predictors would be treat as indicators and not as definitive oracles. Therefore,
the predictors are suitable tools to guide test activities, aiding on the priori-
tization of resources and, hence, in the reduction of costs in software factories
where the development resources are scarce.

As future work, we propose to investigate a committee machine composed of
RBF-eDDA and MLP networks to achieve a better classification performance;
this was already used with success in time series novelty detection [14]. The mo-
tivation for such a committee is that in some data sets RBF-eDDA outperforms
MLP whereas in others the inverse occurs.
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