
Chapter 12

TRACKING CONTRABAND FILES
TRANSMITTED USING BITTORRENT

Karl Schrader, Barry Mullins, Gilbert Peterson and Robert Mills

Abstract This paper describes a digital forensic tool that uses an FPGA-based
embedded software application to identify and track contraband digital
files shared using the BitTorrent protocol. The system inspects each
packet on a network for a BitTorrent Handshake message, extracts the
“info hash” of the file being shared, compares the hash against a list of
known contraband files and, in the event of a match, adds the message
to a log file for forensic analysis. Experiments demonstrate that the
system is able to successfully capture and process BitTorrent Handshake
messages with a probability of at least 99.0% under a network traffic
load of 89.6 Mbps on a 100 Mbps network.

Keywords: Peer-to-peer file sharing, BitTorrent, forensic tool, packet analysis

1. Introduction

The use of the Internet for peer-to-peer (P2P) file sharing has steadily
increased since Napster was introduced in 1999. A 2000 University of
Wisconsin study [9] found that Napster traffic had supplanted HTTP
traffic as the dominant protocol used in the university’s network. In
2002, researchers at the University of Washington [10] determined that
P2P traffic accounted for 43% of all university traffic, with only 14%
of traffic devoted to HTTP. Another study [2] found that 50-65% of
downloads and 75-90% of uploads were P2P related. A 2005 survey [2]
estimated that P2P networks contained more than 2.8 billion download-
able files. According to a Cachelogic report [11], approximately 61% of
all Internet traffic is P2P related, compared with only 32% for HTTP.

The long-term goal of our research is to develop a system that identi-
fies and tracks any type of digital file that is transmitted on a network
using P2P protocols. The final system will consist of a suite of tools



160 ADVANCES IN DIGITAL FORENSICS V

to detect P2P transmissions on a target network, classify them accord-
ing to the P2P protocol used, compare the digital file being transmitted
against a contraband list, and identify the sender and recipient by their
IP addresses. This system, implemented as a digital forensic tool, will
enable a user to monitor network traffic in real-time for files shared via
P2P protocols that meet the user’s definition of contraband. Therefore,
the system should be of great interest to systems administrators as well
as law enforcement personnel. Law enforcement agents could use the sys-
tem to identify child pornography being transmitted across a network,
and track the sender and receiver to their sources.

The rest of this paper is organized as follows. Section 2 discusses
methods for tracking illegal file sharing and describes the BitTorrent
P2P protocol. Section 3 describes the process used to build our Field
Programmable Gate Array (FPGA)-based forensic tool that detects Bit-
Torrent packets and matches the files being shared to a contraband list.
Section 4 discusses the experiments used to evaluate the ability of the
tool to capture and analyze packets at near line speed. Section 5 presents
the experimental results and analysis, and Section 6 presents our con-
clusions and directions for future work.

2. Related Work

This section describes methods for identifying illegal file sharers and
the popular BitTorrent protocol, which is the focus of our work.

2.1 Identifying Illegal File Sharers

Given the rapid increase in P2P file sharing, law enforcement agencies
and copyright holders are struggling to identify illegal file sharers. Sev-
eral methods are available for identifying and tracking illegal file down-
loaders. One approach is to use honeypots. A newer method, which is
used to identify illegal downloads on BitTorrent, involves the exhaustive
search of tracker servers.

Honeypots In the context of this discussion, a honeypot is a trap
designed to detect and track illegal file sharing activities. The most
basic form of a honeypot involves setting up a computer with a collection
of illegal files on the Internet. When another computer attempts to
download the illegal files, the downloader’s IP address and port number,
the date and time of the download, and the downloaded packets are
recorded by the honeypot.

Badonnel, et al. [1] have developed a management platform for track-
ing illegal file sharers in P2P networks using honeypots. However, there



Schrader, Mullins, Peterson & Mills 161

are some shortcomings to using honeypots for identifying and tracking
illegal file sharers. In order to be effective, the file sharer must be able
to find and access the honeypot. To prevent this, programs such as Peer
Guardian contain blacklists of IP addresses known to contain honeypots
and prevent the user’s P2P software from downloading files from these
blacklisted sites [5]. Another shortcoming is that the use of a honeypot
represents an active method of detection – file sharers must download
from the honeypot in order to be identified by law enforcement agencies.
In the case of highly illegal files (e.g., child pornography), private invite-
only websites and/or hard-to-locate websites help keep away members
of the general public and law enforcement agents [7].

BitTorrent Monitoring System The BitTorrent Monitoring Sys-
tem (BTM) [2] can also be used to detect and track illegal file down-
loaders. BTM automatically searches for BitTorrent-based download-
able files, analyzes the files to determine if they are illegal, attempts to
download the suspected illegal files, and records tracking information
about the computer that provided the files for download.

BTM has the potential to become a powerful tool for combating illegal
file sharing. However, the system has some drawbacks. First, due to the
massive number of files that are available on most BitTorrent websites,
BTM currently has a very slow processing time. As the number of
sublevels covered by the search algorithm increases, the number of total
.torrent files to be analyzed increases exponentially. Because it cannot
run in real time, BTM is unable to cope with the constantly-changing
peer lists produced by the tracker sites being monitored.

2.2 BitTorrent Protocol

This paper focuses on the BitTorrent protocol [4]. BitTorrent differs
from other distributed P2P protocols in that it allows downloaders to
obtain pieces of files from tens or hundreds of other users simultaneously.
To further speed up downloads, any user who downloads pieces of files
also uploads those pieces he already possesses. The protocol achieves
very high download rates by aggregating the slower upload speeds of
hundreds of peers [3].

The key BitTorrent component used in this research is the “info hash”
of the file dictionary, which is found in the .torrent file that contains
metadata about the data to be shared. To create the info hash, the SHA-
1 algorithm [8] is applied to the information dictionary contained in the
.torrent file. The resulting message digest is labeled as the “file info
hash,” which uniquely identifies the file offered for download regardless
of the file description in the .torrent file. The client provides the file



162 ADVANCES IN DIGITAL FORENSICS V

Figure 1. Packet data flow through the forensic tool.

info hash as the file identifier in the request for a peer list and also when
establishing connections using the Handshake message. By comparing
this hash value against a list of hashes compiled from the .torrent files
associated with the data of interest, it is possible to determine if the
client is attempting to share a file on the contraband list.

3. Forensic Tool

The goal of this research is to develop an FPGA-based embedded
software system that allows for the capture and evaluation of Ethernet
packets transmitted on a LAN and between the LAN and the Internet.
The FPGA implementation enables the software application to directly
access the Ethernet controller buffers, bypassing the rest of the network
stack and enhancing system simplicity and speed.

Figure 1 shows the packet data flow through the forensic tool. When
a packet enters the system, the first 32 bits of the payload are extracted
and compared with the first 32 bits of a valid BitTorrent Handshake
message, which is 0x13426974. The frame is discarded if the first word
of the payload of the frame does not match this string. If the word does
match, the first 32 bits of the info hash of the Handshake packet’s file
are extracted from another location in the frame, and compared against
a list of hashes belonging to files of interest. If the file info hash is not
in the list, the frame is dropped. If the file info hash is in the list, the
frame is saved in a Wireshark-readable log file and placed on a compact
flash card. The frames recorded in the log file are subsequently analyzed
to extract IP address information for tracking and forensic analysis.

3.1 Initial System Configuration

The current prototype is implemented as an embedded software ap-
plication using the Power PC core of a Virtex II Pro FPGA development



Schrader, Mullins, Peterson & Mills 163

board. Xilinx-supplied drivers and built-in functions are used where pos-
sible, with custom software used to accomplish certain functions: load-
ing the data file containing the file info hashes of the contraband data,
performing packet payload inspections, copying BitTorrent Handshake
frames to on-chip RAM, comparing hash values, and writing frame data
to the compact flash card.

The salient features of the prototype are:

All the modules are implemented in software. However, the hard-
ware is modified to enable the Ethernet controller to operate in
the promiscuous mode.

Packets of interest are copied three times. The first is from the
Ethernet controller to RAM upon detection of the 32-bit BitTor-
rent signature in the packet payload. If the file info hash is found
in the list, the frame is copied from RAM to a character array, and
then from the array to the log file on the compact flash card.

Frames are copied to the compact flash card as they are processed.
The system waits until the current packet has been processed com-
pletely and sent to the compact flash card before it processes an-
other packet.

3.2 System Optimization

The following optimizations were investigated to improve the perfor-
mance of the prototype (i.e., increase packet processing speed):

Removing all user notifications of packets found using the serial
port and HyperTerminal (“User Alerts” configuration): Because
the serial port runs at a much lower speed than the CPU and
processing bus, it is hypothesized that sending data over the RS-
232 connection dramatically increases the overall processing time.

Storing all captured frames of interest within a RAM block instead
of writing them individually to the compact flash card (“Packet
Write” configuration): By storing the data within RAM, write
functions to the compact flash card are only performed before
packet sniffing begins and after packet sniffing terminates. It is
hypothesized that writing to the compact flash card is a high-
latency process and eliminating it saves a significant amount of
processing time.

Adding a second receive buffer to the Ethernet controller (“Dual
Buffer” configuration): This enables one frame to be processed
while the next frame is received: The goals are to give the com-



164 ADVANCES IN DIGITAL FORENSICS V

Figure 2. Experimental setup.

parison and copying routines additional time to execute, and to
limit the number of frames dropped due to a full receive buffer.

Enabling the instruction and data caches of the Power PC proces-
sor (“Cache” configuration): It is hypothesized that allowing the
FPGA to cache processor instructions, heap data and stack data
instead of performing multiple reads and writes to block RAM
results in significant processing time savings.

Integrating the four optimization techniques in a single system
(“Combined” configuration): The goal is to leverage each opti-
mization individually and to gain synergistic time savings by com-
bining all four optimizations.

4. Testing Methodology

Figure 2 shows the experimental setup used to test the various config-
urations and validate the system design. The experimental setup incor-
porates two Dell Inspiron Windows XP laptops loaded with uTorrent, a
popular BitTorrent client, and a Dell Inspiron Linux laptop configured
with the hping utility to inject crafted BitTorrent Handshake packets.
The three laptops are connected to a Cisco Catalyst 2900XL 100 Mbps
switch. Our Virtex II Pro FPGA system is connected to a spanning
port on the switch. One Dell Inspiron Windows XP laptop loaded with
Wireshark is placed on a second spanning port as a control packet an-
alyzer. The other Dell Windows XP laptop is used to configure and
load the Virtex II Pro via a USB port and to receive alerts through a
HyperTerminal connected via serial port. A data file containing 1,000
file info hashes is used as the list of interest in our experiments.

Two experiments were conducted. The first experiment recorded the
numbers of cycles required to process three types of packets. The sec-



Schrader, Mullins, Peterson & Mills 165

ond experiment tested the ability of the system to detect and process
Handshake packets with the network running at near maximum capacity.

4.1 Packet Processing Time

The first test involved sending a series of packets from the Crafted
Packet Injector to the BitTorrent Client Downloader. A series of 50
frames were sent for each of three types of packets and the CPU cy-
cles needed to process the packets were recorded. The three types of
packets tested were: (i) packets that did not correspond to BitTorrent
Handshake messages, (ii) Handshake message packets whose file info
hash values were not in the list of interest, and (iii) Handshake messages
whose file info hash values were in the list of interest. The three test
packet series were created by extracting the payloads from a series of
actual BitTorrent file transfers, copying the payload contents into a bi-
nary file with a hex editor, and using the hping utility to inject exactly
50 of each type of copied packet into the network.

The following configurations were tested in order to assess the im-
provement provided by each optimization technique: Control (software-
only implementation with no user alerts), Control with User Alerts,
Packet Write, Dual Receive Buffer, Cache and Combined.

4.2 Probability of Intercept Under Load

The second test involved sending a series of BitTorrent Handshake
messages from the Crafted Packet Injector to the BitTorrent Client
Downloader with the network under a heavy load. To create the load,
a 1.5 GB video file was transferred from the BitTorrent Client Uploader
laptop to the BitTorrent Client Downloader laptop using the Windows
NETBIOS file transfer protocol. While the download was in progress, a
series of 300 BitTorrent Handshake messages (whose file info hash val-
ues were in the list) were sent 0.2 seconds apart to the BitTorrent Client
Downloader laptop using the hping utility. Because the packets were
injected 0.2 seconds apart, the results of each trial (either the packet
was captured or not captured) can be assumed to be independent of
each other. At the end of the test, the number of packets successfully
written to the log file was recorded for each configuration.

To measure the minimum overall network load, the Wireshark utility
was used to analyze all the traffic sent during the test and to compute
the average network load. The configurations used in the first test were
used to assess the improvement provided by each optimization technique.
To permit better comparisons, this test also used the Wireshark packet
analyzer tool.



166 ADVANCES IN DIGITAL FORENSICS V

Table 1. Packet processing times for non-BitTorrent packets.

Configuration Mean Percent Standard Confidence

Change Deviation Interval (95%)

Control 1,206 0.00 0.00 (1,206, 1,206)

User Alerts 1,152 4.48 0.00 (1,152, 1,152)

Dual Buffer 1,344 (11.44) 109.10 (1,313, 1,375)

Packet Write 1,146 4.98 0.00 (1,146 1,146)

Cache 276 77.11 0.00 (276, 276)

Combined 303.5 74.83 25.76 (296.18, 310.82)

5. Results and Analysis

This section presents the results obtained with respect to packet pro-
cessing times and packet interception probabilities under network load,
along with the accompanying analysis.

5.1 Packet Processing Times

Table 1 presents the results of one-variable t-tests performed for the
six configurations using the non-P2P packet type. For each configura-
tion, the table lists the mean number of CPU cycles required to process
non-P2P packets, the percent change in processing time from the Control
configuration, the standard deviation, and the 95% confidence interval
for the mean. The number of cycles required ranges from 276 cycles
to 1,344 cycles, which equates to a range of 0.92 to 4.48 microseconds
per packet. As shown in the table, the addition of a second receive
buffer requires additional processing time; all the other configurations
require fewer cycles. Note that a significant number of cycles are saved
by enabling the instruction and data caches.

Table 2 presents the results of one-variable t-tests performed for the
six configurations using BitTorrent Handshake packets whose file info
hash values were not in the list of interest. For each configuration, the
table lists the mean number of CPU cycles required to process the Bit-
Torrent packets, the percent change in processing time from the Control
configuration, the standard deviation, and the 95% confidence interval
for the mean. The number of cycles required ranges from 1,145 cycles
to 7,770 cycles, which equates to a range of 3.82 to 25.9 microseconds
per packet. The second receive buffer and the alternate packet writing
method require additional processing time; all the other configurations



Schrader, Mullins, Peterson & Mills 167

Table 2. Packet processing times for BitTorrent packets not in the list.

Configuration Mean Percent Standard Confidence

Change Deviation Interval (95%)

Control 7,296 0.00 0.00 (7,296, 7,296)

User Alerts 1,044,756 (14,219.60) 730 (1,044,549, 1,0449,63)

Dual Buffer 7,770 (6.50) 0.00 (7,770, 7,770)

Packet Write 7,593 (4.07) 0.00 (7,593, 7,593)

Cache 1,145 84.31 0.00 (1,145, 1,145)

Combined 1,205 83.48 0.00 (1,205, 1,205)

require fewer cycles. Once again, a significant number of cycles are saved
by enabling the instruction and data caches.

Table 3. Packet processing times for BitTorrent packets in the list.

Configuration Mean Percent Standard Confidence

Change Deviation Interval (95%)

Control 116,207 0.00 22,418 (109,836, 122,578)

User Alerts 1,702,125 (1,364.74) 22,880 (1,695,623, 1,708,628)

Dual Buffer 118,986 (2.39) 22,391 (112,623, 125,350)

Packet Write 53,034 54.36 1,146 (52,708, 53,360)

Cache 14,679 87.37 2,064 (14,093, 15,266)

Combined 9,125 92.15 108.8 (9,093.7, 9,155.5)

Table 3 presents the results of one-variable t-tests performed for the
six configurations using BitTorrent Handshake packets whose file info
hash values were in the list of interest. For each configuration, the table
lists the mean number of CPU cycles required to process the BitTorrent
packets, the percent change in processing time from the Control con-
figuration, the standard deviation, and the 95% confidence interval for
the mean. The number of cycles required ranges from 9,125 cycles to
118,986 cycles, which equates to a range of 30.42 to 396.62 microseconds
per packet. The second receive buffer requires additional processing
time; all the other configurations require fewer cycles. Note that the
Packet Write configuration requires fewer CPU cycles than the other



168 ADVANCES IN DIGITAL FORENSICS V

configurations; this is because it is the only test where packets were
written to the log file.

The following observations can be made based on the data:

Adding user alerts significantly increases the processing time for
BitTorrent packets. This is because user alerts are transmitted via
a serial port at 115,200 baud, which is much slower than the 300
MHz processor speed and 100 MHz bus speed used by the FPGA.

Adding a second receive buffer increases the number of CPU cycles
required to process a packet regardless of the type of packet. The
additional processing cycles are required to check both the receive
buffers in order to determine which buffer contains the next packet
to be processed. However, as discussed in Section 5.2, the increase
in CPU cycles is more than offset by the benefits obtained by
introducing the second receive buffer.

As expected, modifying the packet writing routine only decreases
the number of CPU cycles required to process packets when packets
are actually written to the log file. No significant processing time
is gained or lost with this optimization technique when packets are
not written.

Enabling the instruction and data caches produces a significant
reduction in the number of CPU cycles required to process packets
regardless of packet type.

5.2 Packet Intercept Probabilities Under Load

Table 4 presents the results of the packet intercept test under a heavy
network load. In particular, the table shows the number of packets
captured out of the 300 sent packets for each configuration. The prob-
ability of intercept and the corresponding 95% confidence interval are
also shown for each configuration. In all the tests, the total load on
the network as measured by the Wireshark packet analyzer was between
89.6 Mbps and 89.7 Mbps, which equates to a 90% load (approx.) on the
100 Mbps network. However, this measurement is not absolute because
Wireshark can drop packets under a heavy load. Since it is not known
how many packets were actually dropped by Wireshark, we consider
89.6% to be the minimum load on the test network.

The results in Table 4 demonstrate that while the User Alerts and
Packet Write configurations capture more packets of interest than the
Control configuration (166 and 174 versus 159), the overlapping confi-
dence intervals suggest that the differences are not statistically signifi-
cant. Also, the Cache and Dual Buffer configurations perform signifi-



Schrader, Mullins, Peterson & Mills 169

Table 4. Packet intercept probability under high network load.

Configuration Packets Packets Probability Confidence

Captured Sent of Capture Interval (95%)

Control 159 300 0.5300 (0.4718, 0.5876)

User Alerts 166 300 0.5533 (0.4951, 0.6105)

Packet Write 174 300 0.5800 (0.5219, 0.6365)

Cache 289 300 0.9633 (0.9353, 0.9816)

Dual Buffer 292 300 0.9733 (0.9481, 0.9884)

Combined 300 300 1.0000 (0.9901, 1.0000)

Wireshark 298 300 0.9933 (0.9761, 0.9992)

cantly better than the Control configuration. Moreover, the Combined
configuration performs the best – a 100% capture rate for packets of
interest. Using a 95% confidence interval, this equates to a minimum
capture rate of 99.0%; this rate is comparable to the performance of
Wireshark, which yielded a minimum capture rate of 97.6%.

Table 5. Hypothesis testing (Control): Packet intercept under high network load.

Alternative Hypothesis with Estimate for Z Value of P Value of

95% Confidence Interval Difference Diff. Test Diff. Test

p(User Alerts) > p(Control) 0.0233 0.57 0.283

p(Packet Write) > p(Control) 0.0500 1.23 0.109

p(Cache) > p(Control) 0.4333 14.07 0.000

p(Dual Buffer) > p(Control) 0.4433 14.64 0.000

p(Combined) > p(Control) 0.4700 16.31 0.000

To further assess the statistical significance of the results, we per-
formed a hypothesis test between each configuration and the Control
configuration. As shown in Table 5, the p-value for the one-sided test
involving the User Alerts and Control configurations is too high (0.283)
to state with confidence that the increase in the probability of intercept
is statistically significant. In the one-sided test involving the Packet
Write and Control configurations, the p-value is again too high (0.109)
to reject the hypothesis outright; however, it can be inferred that there
is some improvement in the probability of intercept. Finally, p-values of



170 ADVANCES IN DIGITAL FORENSICS V

Table 6. Hypothesis testing (Combined): Packet intercept under high network loads.

Alternative Hypothesis with Estimate for Z Value of P Value of

95% Confidence Interval Difference Diff. Test Diff. Test

p(Combined) > p(User Alerts) 0.4467 15.56 0.000

p(Combined) > p(Packet Write) 0.4200 14.74 0.000

p(Combined) > p(Cache) 0.0367 3.38 0.000

p(Combined) > p(Dual Buffer) 0.0267 2.87 0.002

p(Combined) > p(Wireshark) 0.0067 1.42 0.078

0.000 are obtained for the one-sided tests for the Cache, Dual Buffer and
Combined configurations. Thus, a strong statistical certainty exists that
each of these configurations is better than the Control configuration.

To determine the overall performance of the Combined configuration,
hypothesis tests were performed for the Combined configuration versus
the individual optimizations and Wireshark. As shown in Table 6, the
p-values for the one-sided tests involving the User Alerts, Packet Write,
Cache and Dual Buffer configurations range between 0.000 and 0.002, in-
dicating a strong statistical certainty that the Combined configuration is
better than each individual optimization. For the performance of Wire-
shark versus the Combined configuration, Table 6 shows that the p-value
for the one-sided test is 0.078, which is too high to reject the hypothesis;
but it still indicates that the two have comparable performance.

5.3 Analysis of Results

The most significant reduction in the number of CPU cycles needed to
process packets of interest occurs when the data and instruction caches
are enabled for the Power PC processor. By allowing the FPGA to
cache processor instructions as well as heap and stack data, the packet
processing time is reduced by 77% to 84% depending on packet type.
In addition, by delaying the compact flash write operations until after
sniffing has terminated, the packet processing time is reduced by 54% for
packets written to the log file. When all four optimizations are combined,
a 74% to 92% improvement is obtained in the packet processing time over
the Control configuration (depending on packet type).

The significant packet loss rate for the single receive buffer configura-
tions in the packet capture tests is likely due to the inability of an Eth-
ernet frame to be processed and cleared from the buffer before the next
frame arrives. At 100 Mbps, the mandatory interframe gap required



Schrader, Mullins, Peterson & Mills 171

by the Ethernet protocol produces a 0.96 microsecond delay between
frames. Because multiple instructions are required to transfer data from
the Ethernet buffer, read the payload contents and analyze the data, the
system – which can perform at most 300 instructions per microsecond
– cannot keep up with the data flow. This results in significant packet
loss as the system approaches 100% utilization. However, it is important
to note that this observation does not hold for the Cache configuration:
enabling the caches provides a capture rate of 96%, even in the case of
a single buffer. This is likely due to the fact that the extremely small
processing times provided by the cache enable packets to be processed
in the short interframe time gap.

Adding a second receive buffer to the Ethernet controller dramatically
increases the probability of packet intercept under load – a 97% capture
rate even with no other optimizations. The use of two receive buffers
enables a packet to be processed from one buffer while the next packet is
being received in the other buffer. Specifically, the additional buffer pro-
vides a minimum of 576 additional bit times ((7-byte preamble + 1-byte
delimiter + 64-byte minimum frame size) × 8 bits/byte) [6] for process-
ing each frame over the single buffer option. Although this improvement
comes at the cost of additional processing cycles, the expanded process-
ing window provided by the second buffer more than offsets the cost
incurred by individual packet processing. When combined with caching
and an improved packet writing scheme, the infrequency of packets of
interest and the small likelihood of traffic saturation on the network link,
the final design allows the system to successfully capture and process all
the packets of interest on the wire.

6. Conclusions

This paper has described the design of a specialized forensic tool
that uses a Virtex II Pro FPGA to detect BitTorrent Handshake pack-
ets, compare the packets’ file info hash values against a list of hashes
preloaded into memory, and in the event of matches, and save the packets
in a log file for further analysis. Several optimization techniques for re-
ducing the CPU time required to process packets are investigated, along
with their ability to improve packet capture performance. The results
demonstrate that the fully optimized forensic tool can intercept, process
and store packets of interest with a minimum of 99.0% probability of
success even under heavy network load.

The next step in our research is to extend the system to include other
P2P protocols while maintaining its overall speed and accuracy. Specif-
ically, we are focusing on the Session Initiation Protocol (SIP), which



172 ADVANCES IN DIGITAL FORENSICS V

is widely used in Voice-over-IP applications. In addition, we plan to
investigate system performance at higher network speeds using a gigabit
network and Xilinx Virtex-5, a more powerful FPGA board. Our fu-
ture research will also focus on message stream encryption and protocol
encryption capabilities of BitTorrent clients.

References

[1] R. Badonnel, R. State, I. Chrisment and O. Festor, A management
platform for tracking cyber predators in peer-to-peer networks, Pro-
ceedings of the Second International Conference on Internet Moni-
toring and Protection, p.11, 2007.

[2] K. Chow, K. Cheng, L. Man, P. Lai, L. Hui, C. Chong, K. Pun, W.
Tsang, H. Chan and S. Yiu, BTM – An automated rule-based BT
monitoring system for piracy detection, Proceedings of the Second
International Conference on Internet Monitoring and Protection, p.
2, 2007.

[3] B. Cohen, Incentives build robustness in BitTorrent (www.bittor
rent.org/bittorrentecon.pdf), 2003.

[4] B. Cohen, BEP3: The BitTorrent protocol specification (www.bittor
rent.org/beps/bep 0003.html), 2008.

[5] P. Gil, “Peer Guardian” Firewall: Keep your P2P private (netfor
beginners.about.com/od/peersharing/a/peerguardian.htm), 2009.

[6] Institute of Electrical and Electronics Engineers, IEEE Standard
802.3-2005: Local and Metropolitan Area Networks – Specific Re-
quirements Part 3: Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and Physical Layer Spec-
ifications, Piscataway, New Jersey (standards.ieee.org/getieee802
/802.3.html), 2005.

[7] R. MacManus, The underground world of private P2P networks
(www.readwriteweb.com/archives/private p2p.php), 2006.

[8] National Institute of Standards and Technology, Secure Hash Stan-
dard (FIPS 180-1), Federal Information Processing Standard Pub-
lication 180-1, Gaithersburg, Maryland (www.itl.nist.gov/fipspubs
/fip180-1.htm), 1995.

[9] D. Plonka, UW-Madison Napster traffic measurement, University of
Wisconsin, Madison, Wisconsin (net.doit.wisc.edu/data/Napster),
2000.



Schrader, Mullins, Peterson & Mills 173

[10] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble and H. Levy, An anal-
ysis of Internet content delivery systems, Proceedings of the Fifth
Symposium on Operating Systems Design and Implementation, pp.
315–327, 2002.

[11] TorrentFreak, The“one-third of all Internet traffic”myth (torrentfre
ak.com/bittorrent-the-one-third-of-all-internet-traffic-myth), 2006.


