
Chapter 23

SYSTEM SUPPORT FOR
FORENSIC INFERENCE

Ashish Gehani, Florent Kirchner and Natarajan Shankar

Abstract Digital evidence is playing an increasingly important role in prosecuting
crimes. The reasons are manifold: financially lucrative targets are now
connected online, systems are so complex that vulnerabilities abound
and strong digital identities are being adopted, making audit trails more
useful. If the discoveries of forensic analysts are to hold up to scrutiny
in court, they must meet the standard for scientific evidence. Software
systems are currently developed without consideration of this fact. This
paper argues for the development of a formal framework for construct-
ing “digital artifacts” that can serve as proxies for physical evidence; a
system so imbued would facilitate sound digital forensic inference. A
case study involving a filesystem augmentation that provides transpar-
ent support for forensic inference is described.

Keywords: Automated analysis, evidence generation, intuitionistic logic

1. Introduction

As the population density increases, the competition for resources
intensifies and the probability of conflict between individuals rises com-
mensurately. The physical and virtual worlds have markedly different
mechanisms for managing the potential friction, each clearly influenced
by the context in which it was developed. The security requirements
of early computing systems were simple enough that they could be pre-
cisely specified and implemented [6]. This allowed criminal actions to be
prevented before they occurred. For example, if a principal attempted
to make an unauthorized change to a document, the reference moni-
tor interceded and disallowed the action. In contrast, principals have
greater leeway to violate rules in the physical world. However, they
are retroactively held accountable for their actions. The legal system,



302 ADVANCES IN DIGITAL FORENSICS V

thus, indirectly deters crime by punishing its perpetrators after they
have acted.

The difference in the two approaches to handling crime is fundamen-
tal. To proactively prevent crime, it is necessary to characterize what is
illegal a priori. Security agents must then monitor all activity and inter-
vene when prohibited acts are in progress. An important consequence
is that behavior can be policed even when users are pseudonymous. In
contrast, the reactive approach relies on losses being reported by vic-
tims. The legality of an action can be adjudicated a posteriori. This
allows complex contexts, such as intent, to be incorporated into the de-
cision about whether specific behavior should be deemed illegal. As the
population grows, the resources needed to proactively track every action
of every individual become prohibitive. Reactive enforcement requires
significantly less effort because the burden of monitoring is distributed
among the members of the population (who are potential victims).

As computer systems grow in complexity, the limitations of the proac-
tive model become increasingly apparent. Specifying enterprise-wide se-
curity policy is so challenging that corporations routinely outsource the
task to specialized consultants [5, 13]. Characterizing attack mecha-
nisms is an unending process, as evidenced by the need for continuous
updates of intrusion detection signatures, virus bulletins and stateful
firewall rules. Simultaneously, a major impediment to adopting a reac-
tive security model is being overcome. This is the ubiquitous availability
of a strong, nonrepudiable notion of identity without which accountabil-
ity is meaningless. With the help of trusted platform modules [15] in
commodity hardware and the mandatory use of cryptographic identi-
ties in the next-generation Internet infrastructure [4], global, certified
identities will facilitate a transformation in cyber security.

In this paradigm, the creation, discovery and forensic analysis of digi-
tal evidence will play a critical role, and we must ensure that the integrity
of digital evidence cannot be challenged. Consequently, it is important
to create mechanisms that augment digital evidence with artifacts that
are difficult to alter without detectable change. By building system sup-
port that transparently generates such metadata, digital evidence can be
imbued with a level of reliability that exceeds that of evidence gathered
from the physical world.

Generating forensically-sound digital evidence allows the use of a re-
active security model that would yield three immediate results. First,
security policy creators are relieved of the burden of defining exactly
who should be allowed to do what in every possible scenario. Instead,
they can define policy at a higher level of abstraction. Second, individ-
uals have the freedom to perform a much larger range of actions in the



Gehani, Kirchner & Shankar 303

virtual world. As in the physical world, they must be ready to justify
their actions if challenged. Third, the legal semantics of particular se-
quences of actions can be characterized ex post facto. This addresses
a fundamental weakness in current anomaly detection systems, which
incorrectly flag activity as suspicious, especially when they are tuned to
be sensitive enough to detect most real crimes. In the reactive paradigm,
since no actual crime occurs, no victim will report it; this eliminates the
false positives.

Once a loss is reported, the offense must be characterized. Forensic
analysis in the physical world relies on the trail of environmental changes
made by a crime’s perpetrator. In the digital world, criminals could con-
ceivably erase all traces of their activity. It is, therefore, incumbent upon
future computing systems to provide trustworthy audit trails with suf-
ficient detail to allow forensic conclusions to be drawn. However, the
indiscriminate addition of auditing to a runtime environment introduces
performance penalties for executing applications, requires large amounts
of storage, and may even compromise privacy. Consequently, it is neces-
sary to determine how to balance the needs of forensic analysis and the
users of a system.

2. Standards of Evidence

The Frye legal standard [3] derives from a 1923 case where systolic
blood pressure measurements were used to ascertain deception by an
individual. The method was disallowed because it was not widely ac-
cepted by scientists. The Frye standard was superseded by the Federal
Rules of Evidence in 1975, which require evidence to be based on scien-
tific knowledge and to “assist the trier of fact.” In 1993, the Daubert
family sued Merrell Dow, claiming that its anti-nausea drug, Bendectin,
caused birth defects. The case reached the U.S. Supreme Court, where
the Daubert standard [19] for relevancy and reliability of scientific evi-
dence was articulated. In order for digital evidence to be presented in
court, the process used to collect it must meet the Daubert standard. In
some states, the reliability of the evidence itself must be demonstrable.
For example, the Texas Supreme Court extended the Daubert standard
in the Havner case [14], ruling that if the “foundational data underlying
opinion testimony are unreliable,” then they would be considered “no
evidence”.

Current software systems produce ad hoc digital artifacts such as data
file headers and audit logs. These artifacts are created by applications
that may not meet the standards mentioned above, which reduces their
value as evidence in legal proceedings.



304 ADVANCES IN DIGITAL FORENSICS V

We argue that software systems should be developed to automatically
emit digital artifacts that cannot be forged, producing fragments whose
veracity can be checked during an investigation in the same way forensic
analysts currently verify physical evidence found by crime scene inves-
tigators. In addition, we suggest that a formal framework should be
utilized for analyzing a collection of such digital artifacts since this will
effectively codify the set of inferences that can be drawn in a court of
law. The combination will allow conclusions from digital forensics to
have the same weight as those drawn from physical evidence, once the
reliability of digital evidence is established by precedent in court.

3. Challenges

A number of challenges must be addressed in the process of developing
a framework for digital forensic analysis.

3.1 Evidence Selection

The first problem is to determine which parts of current proactive
protection mechanisms can be transformed into elements in a reactive,
accountability-based security apparatus. It is instructive to examine
how institutions in the physical world address this issue. When the
potential loss is high or the consequence is both likely and irreversible,
preventive protection is often utilized. For example, a bank does not
leave its vault unguarded and high-ranking public officials in the United
States are provided with Secret Service protection since they are likely
targets of attack.

Extant legislation already provides relevant guidelines. For exam-
ple, publicly-traded companies need information flow controls to comply
with the Sarbanes-Oxley Act [18], healthcare providers need data pri-
vacy protection to comply with the Health Insurance Portability and
Accountability Act (HIPAA) [16], and financial services firms and edu-
cational institutions have to safeguard personal information to comply
with the Gramm-Leach-Bliley Act [17].

A security system can be remodeled so that evidence of relevant ac-
tivity is generated transparently. For example, instead of specifying and
implementing access control for the vast majority of the data in a sys-
tem, accesses and modifications can simply be recorded. The owner of a
piece of data can inspect the corresponding audit trail. An owner who
discerns any activity that violates the policy can initiate action against
the perpetrator.



Gehani, Kirchner & Shankar 305

3.2 Forensic Analysis

Every crime leaves fragments of evidence. It is up to an investigator
to piece the fragments together and create a hypothesis of what tran-
spired. In doing so, the investigator must process the evidence and draw
conclusions about the likelihood that the hypothesis is correct. For the
operations to be considered forensically sound, at the very least they
must be reproducible by the opposing counsel’s experts. Consequently,
a framework for analysis of the evidence must be agreed upon by all
parties.

To see why it is important to have a standardized framework for rea-
soning about evidence, consider the effect of having different rules for
operations that can be performed on digital evidence. If two operations
are not commutative, then their composed output can be challenged
on the grounds of the order in which they were performed. If there
is agreement on commutativity, then the operations can be arbitrarily
composed and the output would be considered to be acceptable. Simi-
larly, if an operation is accepted as invertible, its input and output can
be compared and checked for consistency. Any inconsistency can serve
as grounds for having evidence discarded. In contrast, if an operation
is not deemed to be invertible and the output is unimpeachable, then
the absence of consistency between an input and output would not be
grounds for eliminating the input from consideration as evidence.

Operations must be repeatable in order to meet the Daubert standard
for scientific evidence. A digital forensic system must be designed to al-
low efficient distinctions to be made about which evidentiary properties
are satisfied. For example, if a piece of evidence was derived using ran-
domness, user input or network data, its legal admissibility will differ
from the content that can be completely recomputed when persistent
files are used as inputs.

3.3 Chain of Custody

When a piece of evidence is to be presented in a court, the chain of
custody of the evidence must be established to guarantee that it has not
been tampered with. The process makes two assumptions that do not
hold by default in the virtual world. The first is that the evidence was
not altered from the time it was created to the time it was collected. In a
world where data is rapidly combined to produce new content, it is likely
that the data found during an investigation will have already undergone
editing operations before it was collected as evidence. The second as-
sumption is that a piece of evidence was created by a single individual. A
virtual object is much more likely to have multiple co-authors. Note that



306 ADVANCES IN DIGITAL FORENSICS V

a co-author is a principal who owns one of the processes that operated
on any of the data used to create the object in question.

In principle, these issues can be addressed by designing software func-
tionality that transparently annotates data with the details of its prove-
nance. If the metadata generated is imbued with nonrepudiable authen-
ticity guarantees, it can serve as forensic evidence to establish a chain of
custody. A policy verification engine can be used to infer the set of co-
authors of a piece of data by inspecting a set of metadata provided as an
input. It can also follow the chain of metadata attestations about modi-
fications of the data to ensure that its evidentiary value is not negatively
impacted.

4. Formal Framework

The utilization of a formal framework with an explicitly defined logic
has a number of advantages over ad hoc analysis of digital evidence.

4.1 Standardization

The set of laws that govern forensic evidence handling and inference
can be codified in the rules of the logic. The variations and precedents
of each legal domain, such as a state or county, can be added as a set
of augmenting axioms and rules. In particular, such standardization
allows the prosecution and the defense to determine before trial what
conclusions will likely be drawn by expert witnesses in court. Further,
the significance of a digital artifact can be tested by checking which
conclusions are dependent upon it. Thus, standardization may decrease
the time to arrive at an agreement in court about which conclusions can
be drawn given a body of digital evidence.

4.2 Automation

A framework that is completely defined by a formal logic can serve
as a technical specification for implementing a forensic inference engine
in software. In the physical world, the number of pieces of evidence
introduced in court may be limited. In contrast, the number of pieces
of digital evidence that may need to be utilized to draw a high-level
conclusion may be significantly larger. In either case, as the number
of elements that must be assembled to draw a conclusion increases, the
effort to construct a sound inference grows exponentially. Automating
the process will become necessary to ensure that the cost of using a body
of digital evidence remains affordable in cases where the plaintiff or the
defendant has a limited budget.



Gehani, Kirchner & Shankar 307

4.3 Soundness

Automating the process of generating nonrepudiable digital artifacts
in software is likely to generate large bodies of digital evidence usable in
a court of law. If the evidence must be manually assembled into a chain
of inference, the likelihood of erroneous conclusions could be significant.
All the pieces of evidence must be arranged into a plausible timeline,
requiring numerous alternative orderings to be evaluated. Further, cer-
tain conclusions can be ruled out because the supporting evidence may
be contradictory, such as being predicated on a person being in two
locations at one time.

Manually verifying complex properties is likely to introduce errors
that may be too subtle to identify without investing substantial re-
sources. Automating the forensic inference process with an explicit for-
mally defined framework guards against the introduction of such errors
and ensures that the conclusions are sound.

4.4 Completeness

A formal framework that is complete yields a set of theorems that are
the only possible conclusions logically inferred from the set of axioms
determined by the digital evidence. If an attempt is made to draw
any other conclusion, a judge can use the completeness of the forensic
inference system to justify setting aside an argument on the grounds
that it does not follow from the evidence.

Given a set of elements corresponding to the digital evidence and a
decidable logic, an automated theorem prover can generate a sequence
of all possible theorems, each corresponding to a conclusion for which
a proof is available. A lawyer can examine the theorems (after filtering
using suitable constraints if there are too many to inspect) to see if any of
them either corroborate a hypothesis or to search for new hypotheses not
previously considered. Having exhausted the set of theorems produced,
the lawyer will be assured of not missing any possible line of argument
using the available evidence.

5. CyberTrail

Our framework for generating and reasoning about digital artifacts is
called CyberTrail. It utilizes CyberLogic [2] to reason about digital ev-
idence. CyberLogic allows protocols to be specified as distributed logic
programs that use predicates and certificates to answer trust manage-
ment queries from the available evidence. Since proofs of claims are
constructive, every conclusion is accompanied by an explicit chain of



308 ADVANCES IN DIGITAL FORENSICS V

evidence. The logic is general enough to be utilized in a broad set of
applications. In particular, its properties make it well suited for use by
CyberTrail, as described below.

5.1 Digital Artifacts

A key aspect of CyberTrail is its proactive generation of digital arti-
facts that are as reliable as evidence gathered from the physical world.
While there is no assurance that an artifact corresponding to any partic-
ular event of interest will be generated, the artifacts produced must be
difficult to forge. Otherwise, the creator of an artifact could repudiate it
on the grounds that someone else may have invested the effort to falsely
generate the artifact.

We utilize the CyberLogic primitive for attestation to generate non-
repudiable digital artifacts. Every authority that generates attestations
must have an associated signing key and verification key pair. An author-
ity can be any entity, from a user to a piece of software. An attestation
denoted by A :◃S indicates that statement S has been signed crypto-
graphically by authority A (using a digital signature algorithm and the
signing key of authority A).

By generating digital artifacts that attest to the state and operations
of a small subset of a system, CyberTrail seeks to leave a nonrepudiable
trail that would allow the forensic analyst to make inferences about the
global state and operations of the system. This is analogous to gathering
physical evidence from a crime scene to reconstruct the events that led
up to the activity that transpired during the actual crime.

5.2 Constrained Claims

Since software systems can make arbitrary claims by emitting a pred-
icate, it is necessary to ensure that the authority to make a claim is cap-
tured in CyberTrail. This is accomplished by leveraging CyberLogic’s
support for bounded delegation. Dn(Afrom, Ato, S) is generated by an
agent Afrom to indicate that Ato is authorized to make statement S
on Afrom’s behalf. The subscript n denotes how many successive levels
Ato is allowed to delegate the right. By making authorization explicit,
statements produced by software without accompanying evidence of del-
egation are constrained.

5.3 First-Order Logic

Propositional logic is not expressive enough to capture relationships
where the variables must be quantified. For example, checking whether
any file in the evidence was owned by a specific user u is easily expressed



Gehani, Kirchner & Shankar 309

in first-order logic as ∃f User(u) ∧ File(f) ∧ Owner(u, f) where the
predicate File(f) is true if f is a file; the predicate User(u) is true if
u is a user; and the predicate Owner(u, f) is true if user u owns file f .
CyberLogic can be extended to use higher-order logic if necessary.

5.4 Intuitionistic Logic

Classical logic, dating back to Aristotle, includes the Law of Excluded
Middle, which says that a statement is either true or false (and that there
is no third possibility); i.e., S∨¬S is a tautology, where S is a statement
in the logic. The original rule pertained to statements about finite sets
and its was subsequently extended to infinite sets [20]. However, this
gave rise to contradictions like Quine’s Liar Paradox [10]. Intuitionistic
logic [8] removes the Law of Excluded Middle from classical logic. The
result is that the logic is better able to model the ambiguity of the real
world.

Consider the statement that every user owns a file, which can be
formulated as ∀u ∃f User(u) ∧ File(f) ∧Owner(u, f). Given a partic-
ular user u and a fixed set of files, it is possible to determine whether
Owner(u, f) holds for each f in the set. However, in general, the set
of all files is not known, so it is not possible to determine whether
∃f User(u) ∧ File(f) ∧ Owner(u, f) holds or whether ¬(∃f User(u) ∧
File(f) ∧ Owner(u, f)) holds. If the statement S = ∃f User(u) ∧
File(f) ∧ Owner(u, f), then in classical logic, S ∨ ¬S would need to
hold. This property does not have to hold in intuitionistic logic, which
allows us to reason about situations where the universe is open. This is
important when dealing with evidence because artifacts are not limited
to originating from a predefined closed universe.

5.5 Temporal Modality

A statement may hold in a limited context rather than being univer-
sally true. An authority who makes a claim about a statement may wish
to convey the context explicitly. Modal logic introduces the ! and ♦

operators to indicate whether a statement is “necessarily” or “possibly”
true, respectively. Temporal logic allows the validity of the statement
in time to be specified. The utility is apparent when considering how
to qualify the validity period of a digital certificate. CyberLogic allows
an attestation to take the form A :◃=t S to indicate that it holds at
time t. This suffices for constructing other modalities of attestation by
quantifying the time. For example, !A :◃ S becomes ∀t A :◃t S.



310 ADVANCES IN DIGITAL FORENSICS V

6. Case Study

This section describes a case study involving a filesystem augmented
with CyberTrail features.

6.1 User-Space Filesystem

FUSE[12] provides a Linux kernel module that intercedes when filesys-
tem calls are made. The call and its arguments are passed to a user-space
daemon by communicating through a special character device defined for
the purpose. The call can then be handled by a user-defined function.
Our current prototype augments a subset of the VFS filesystem API and
constructs the metadata needed for CyberTrail predicates. However,
in its current form, information is inserted as records into a relational
database using SQL commands. Reasoning about this digital evidence
would require custom query tools built atop the SQL query interface.

Developing a new filesystem in user-space allows end users to utilize
it without having to modify the current filesystem. Legacy applications
can be executed and are presented with the same interface while the
user-space filesystem acts as a transparent layer between the application
and the native filesystem. Furthermore, errors in implementation do not
crash the kernel or corrupt portions of the native filesystem that were
not directly operated upon.

Since the prototype operates in user-space, it can only generate facts
signed by the user (which are useful to ensure that the user does not
subsequently make claims that could be repudiated by that user’s earlier
claims). A future extension could leverage a trusted platform module
[15] to transparently construct facts without the cooperation of the user
(to address a broader range of threats).

6.2 Transparent Reasoning

The next step in developing CyberTrail in the context of a filesys-
tem is to marry the predicate generation and attestation directly with
an automated reasoning environment. Every CyberLogic statement is
a hereditary Harrop formula, the logical construct that is the basis for
λ-Prolog [9]. We could invoke the λ-Prolog interpreter when the FUSE
user-space daemon starts, and then insert predicates and attestations
when the modified filesystem calls execute. By defining an inter-node
communication protocol between distributed instances of the λ-Prolog
interpreter, queries could be automatically resolved even when data has
been modified at multiple nodes and transferred between them. In par-
ticular, subgoals could be resolved at the nodes corresponding to their



Gehani, Kirchner & Shankar 311

targets, transparently guiding the distribution of the resolution proce-
dure.

6.3 Granularity

If all the input data, application code and system libraries used to gen-
erate an output are available, an operation can be verified by repeating
it. In practice, programs often read data from ephemeral sources such
as network sockets, filesystem pipes and devices that provide sources of
randomness. This prevents the output of the program from being in-
dependently validated in a distributed environment because the verifier
must trust the original executor’s claims about the contents derived from
these sources. Since the executor has the freedom to alter the ephemeral
inputs to yield a preferred output, checking the operation by repeating
it does not increase the likelihood that the claimed operation was the
one that was previously performed. Hence, our checks are restricted to
the persistent files that are read and written by a process.

6.4 Auditing

When the system boots, an audit daemon is initialized. This main-
tains a table that maps process identifiers to associated metadata. The
entry corresponding to each process entry contains an accessed list of
all files that have been read by it, and a modified list of all files that
have been written by it.

It is necessary to intercede on file open(), close(), read() and
write() system calls. When a file open() call occurs, a check is per-
formed to see if the calling process has an entry in the table. If not,
an entry is created and populated with empty accessed and modified
lists. When a read() operation occurs, the file being read is added to the
accessed list of the calling process. Similarly, when a write() occurs,
the file is added to the modified list of the calling process.

When a close() occurs, the modified list of the calling process is
checked. If the file has actually been written to (as opposed to just
being opened for writing or just having been read), the modified list
will contain it. In this case, the accessed list of the process is retrieved
from the table. It contains the list of files {i1, . . . , in} that have been
read during the execution of the process up to the point that the output
file o was closed.

6.5 Artifact Generation

CyberTrail generates a variety of logical facts. We define a filesystem
“primitive operation” to be an output file, the process that generated



312 ADVANCES IN DIGITAL FORENSICS V

it and the set of input files it read in the course of its execution. For
example, if a program reads a number of data sets from disk, computes a
result and records it to a file, a primitive operation has been performed.

A primitive operation can be described as follows. Let o be the output
file of the operation executed by user e using input files i1, . . . , in. If a
process writes to a number of files, a separate instance of a primitive
operation would represent each output file. Assume the predicates of
Section 5.3 and that Process(p) is true if p is a process; Output(p, o) is
true if file o has been written by process p; Input(p, i) is true if file i has
been read by process p; and Owner(e, p) is true if process p has been
executed by user e.

In practice, a file identifier i has the form i = (h, f, t) where h is the
hostname on which the file with name f was last modified at time t,
in order to disambiguate files on different nodes with the same name
as well as to differentiate between the state of the contents of a file at
different instants of time. The identity e must have global meaning.
We assume the availability of a public key infrastructure [7]. However,
any distributed mechanism for resolving identities, such as linked local
namespaces [1] or a web of trust [11], can be used instead.

The facts that correspond to the primitive operation are listed below.
Note that CyberTrail must emit them as facts so that they can be used
to resolve queries.

Process(p)
Owner(e, p)

File(o)
Output(p, o)

File(i1)
Input(p, i1)

...
File(in)

Input(p, in)

The above step would occur after all references to the file become in-
active. This possibility arises since multiple valid concurrent references
may result after a single open() call. Such a situation occurs when
a process spawns multiple threads and passes them a file descriptor.
Equivalently, this occurs when a process makes a fork() call, creating
another process that has copies of all its active file descriptors. Alterna-
tively, this can occur if a part of the file was mapped to memory. Once



Gehani, Kirchner & Shankar 313

all the active file descriptors are closed and the relevant memory blocks
are unmapped, digital artifact generation can proceed to completion.

Digital artifacts must be difficult to forge. Therefore, the set of facts
emitted above cannot serve as artifacts. They can be used during the
process of forensic analysis to determine what activity had occurred in
the system, but a suitable set of artifacts must also be found and as-
sembled to validate the reconstruction. The set of digital artifacts that
must be generated to accompany the set of facts listed above is given
below.

e :◃ Owner(e, p)
e :◃ Output(p, o)
e :◃ Input(p, i1)

...
e :◃ Input(p, in)

6.6 Forensic Analysis

If CyberTrail functionality is deployed ubiquitously in software sys-
tems, the likelihood of finding digital artifacts generated by the operat-
ing system or subsequently by applications as well will increase. When a
crime occurs and computer systems are involved, a forensic analyst will
be able to scour the systems for digital artifacts and enter them into a
database of evidence.

A forensic analyst may issue a variety of queries to the database of
evidence. For example, the analyst may wish to determine the chain
of custody for a piece of data. We use a query language with Prolog
semantics to demonstrate the query. If i0 denotes the file at beginning
of the period of interest and i1 denotes the same file at the end of the
period of interest, the following query would verify that a complete chain
of custody is available in the database:

Chain(i0, i1) :=
Chain(i, i1) ∧ Output(p, i) ∧ Input(p, i0) ∧
e :◃ Output(p, i) ∧ e :◃ Input(p, i0)

On the other hand, if the analyst wishes to check if all the users who
modified a particular file are known, the following query could be issued:



314 ADVANCES IN DIGITAL FORENSICS V

Authors(i0) :=
Output(p, i0) ∧ Owner(e, p) ∧ Input(p, i1) ∧ Authors(i1)

Note that the above query does not validate the query against digital
artifacts. If this is required, the query would be extended to:

Authors(i0) :=
Output(p, i0) ∧ Owner(e, p) ∧ Input(p, i1) ∧ Authors(i1) ∧
e :◃ Output(p, i0) ∧ e :◃ Owner(e, p) ∧ e :◃ Input(p, i1)

CyberTrail also enables a forensic analyst to find all the files that were
derived from a particular piece of data. The following query would be
issued:

Derivatives(i0) :=
Input(p, i0) ∧ Output(p, i1) ∧ Derivatives(i1)

Similarly, a query could be constructed to check if a particular user
had modified any of the data incorporated into a file. By adding more
facts and artifacts, such as details of the runtime environment of a pro-
cess at the time of auditing, other types of queries may be formulated.
For example, a forensic analyst may wish to find all the files that were
modified by an email client running under a suspect’s identity during a
given time period. Such a query could be constructed if the facts for
the Command(p) predicate were to be introduced at audit time, where
Command(p) is the command line used to create the process p.

7. Conclusions

Digital evidence is becoming increasingly important, but is often not
sound enough to withstand court challenges. The approach described
in this paper produces nonrepudiable digital artifacts in the context of
filesystem operations that would enable an investigator to answer a num-
ber of forensic queries. Extensions to other software systems are com-
plementary, enabling further inferences to be drawn from the resulting
digital artifacts.

Acknowledgements

This research was partially supported by the National Science Foun-
dation under Grant Nos. OCI-0722068 and CNS-0644783.



Gehani, Kirchner & Shankar 315

References

[1] M. Abadi, On SDSI’s linked local name spaces, Journal of Computer
Security, vol. 6(1-2), pp. 3–21, 1998.

[2] V. Bernat, H. Ruess and N. Shankar, First-Order CyberLogic, Tech-
nical Report, SRI International, Menlo Park, California (ftp.csl.sri
.com/pub/users/shankar/cyberlogic-report.pdf), 2005.

[3] Court of Appeals of the District of Columbia, Frye v. United States,
Federal Reporter, vol. 293, pp. 1013–1014, 1924.

[4] GENI Project Office, Global Environment for Network Innovations,
BBN Technologies, Cambridge, Massachusetts (www.geni.net).

[5] International Business Machines, Security policy definition, Ar-
monk, New York (www-935.ibm.com/services/us/index.wss/offer
ing/gbs/a1002391).

[6] B. Lampson, Protection, ACM Operating Systems Reviews, vol.
8(1), pp. 18–24, 1974.

[7] U. Maurer, Modeling a public key infrastructure, Proceedings of the
Fourth European Symposium on Research in Computer Security, pp.
325–350, 1996.

[8] J. Moschovakis, Intuitionistic logic, Stanford Encyclopedia of Philos-
ophy, Metaphysics Research Laboratory, Stanford University, Palo
Alto, California (plato.stanford.edu/entries/logic-intuitionistic).

[9] G. Nadathur, A proof procedure for the logic of hereditary Harrop
formulas, Journal of Automated Reasoning, vol. 11(1), pp. 115–145,
1993.

[10] W. Quine, The Ways of Paradox, Harvard University Press, Cam-
bridge, Massachusetts, 1962.

[11] M. Reiter and S. Stubblebine, Toward acceptable metrics of au-
thentication, Proceedings of the IEEE Symposium on Security and
Privacy, pp. 10–20, 1997.

[12] SourceForge, FUSE: Filesystem in userspace (fuse.sourceforge.net).

[13] Sun Microsystems, Security policy services, Santa Clara, California
(www.sun.com/service/security/securitypolicyservices.xml).

[14] Supreme Court of Texas, Merrell Dow Pharmaceuticals, Inc. v.
Havner, South Western Reporter, vol. 953(S.W.2d), pp. 706–733,
1998.

[15] Trusted Computing Group, Beaverton, Oregon (www.trustedcomp
utinggroup.org).



316 ADVANCES IN DIGITAL FORENSICS V

[16] U.S. Government, Health Insurance Portability and Accountabil-
ity Act, Public Law 104–191, United States Statutes at Large, vol.
110(3), pp. 1936–2103, 1997.

[17] U.S. Government, Gramm-Leach-Bliley Act, Public Law 106–102,
106th Congress, United States Statutes at Large, vol. 113(2), pp.
1338–1481, 2000.

[18] U.S. Government, Sarbanes-Oxley Act, Public Law 107–204, 107th
Congress, United States Statutes at Large, vol. 116(1), pp. 745–810,
2003.

[19] U.S. Supreme Court, Daubert v. Merrell Dow Pharmaceuticals, Inc.,
United States Reports, vol. 509, pp. 579–601, 1983.

[20] J. van Heijenoort, From Frege to Godel: A Source Book in Math-
ematical Logic 1879–1931, Harvard University Press, Cambridge,
Massachusetts, 1967.


