
Chapter 10

IMPLEMENTING BOOT CONTROL
FOR WINDOWS VISTA

Yuki Ashino, Keisuke Fujita, Maiko Furusawa, Tetsutaro Uehara and
Ryoichi Sasaki

Abstract A digital forensic logging system must prevent the booting of unautho-
rized programs and the modification of evidence. Our previous research
developed Dig-Force2, a boot control system for Windows XP plat-
forms that employs API hooking and a trusted platform module. How-
ever, Dig-Force2 cannot be used for Windows Vista systems because
the hooked API cannot monitor booting programs in user accounts.
This paper describes an enhanced version of Dig-Force2, which uses a
TPM and a white list to provide boot control functionality for Windows
Vista systems. In addition, the paper presents the results of security
and performance evaluations of the boot control system.

Keywords: Evidence integrity, boot control, Windows Vista

1. Introduction

Personal computers are often the instruments and/or victims of elec-
tronic crime. This makes it important to securely log and store all
potential evidence for use in legal proceedings [5]. The logging system
should operate in a “sterile” environment, log and store all operational
data and enable a third party to verify the integrity of the logged data.

We previously designed the Dig-Force system [1] to address these is-
sues. Dig-Force reliably records data pertaining to computer usage on
the computer itself and uses chained signatures to maintain the integrity
of the evidentiary data. Dig-Force has been shown to be effective even
on standalone computers located outside a protected network. Main-
taining the security of Dig-Force requires an environment that prevents
the execution of boot jamming programs as well as the modification of
the Dig-Force program itself.



134 ADVANCES IN DIGITAL FORENSICS V

Our next version, Dig-Force2 [2], was developed to maintain a secure
environment under Windows XP. Dig-Force2 implements boot control
using API hooking and incorporates a trusted platform module (TPM)
[7] to prevent boot jamming programs from executing and to detect
modifications to Dig-Force. Dig-Force2 runs as a Windows service and
hooks the RtlCreateProcessParameters API [3]. It verifies that any
booting program that executes is non-malicious using a white list and
TPM. Only a booting program on the white list is allowed to execute.

Unfortunately, Dig-Force2 does not operate on Windows Vista be-
cause the RtlCreateProcessParameters API hook cannot be used to
monitor booting programs in user accounts. This paper describes an
enhanced version of the boot control system, named Boot Control Func-
tion for Windows Vista (BCF/Vista). The enhanced system uses a TPM
and white list with a controller process that runs as a Windows service,
along with an agent process that executes within the user account.

2. Dig-Force2 Boot Control

Dig-Force2 [2] is designed to be used by administrators, users and
system verifiers. Administrators are responsible for setting up and con-
figuring computer systems. Users operate computers using their assigned
Windows XP accounts, which are referred to as “user accounts.” System
verifiers are responsible for verifying the log files created by the system.
An administrator can also serve as a system verifier.

Figure 1 presents the Dig-Force2 architecture. It has five components:
(i) logging module, (ii) storage module, (iii) boot control function, (iv)
Windows service, and (v) user account. The logging module captures
data about computer operations (e.g., user actions and system behavior)
and sends it to the storage module. The storage module tags the received
data with the date, time and data type. Additionally, it digitally signs
the data with a hysteresis signature [4, 6] using a public key stored in
the TPM before writing the data to the log file. The hysteresis signature
ensures that any alterations to the data in the log file are detected [1].

It is essential that boot jamming programs are prevented from exe-
cuting and that the logging and storage modules are not modified in an
unauthorized manner. In order to maintain such a secure environment,
Dig-Force2 hooks the RtlCreateProcessParameters API, which is in-
voked whenever a Windows XP program starts. Dig-Force2 then checks
that the program is on the white list before permitting it to execute. The
check involves computing a hash value of the program and comparing
the value with the matching digital signature from the white list after
decrypting it using a public key stored in the TPM.



Ashino, et al. 135

Figure 1. Dig-Force2 architecture.

3. Boot Control Function for Windows Vista

Dig-Force2 runs as a Windows service under Windows XP, which
means that it cannot be stopped by anyone except the administrator.
However, in Windows Vista, the hooking program must run under a user
account if Dig-Force2 is to hook programs executing in a user account.
This means that the user can stop the hooking program at any time
using the Windows Task Manager.

Figure 2. Boot Control Function (Windows Vista) architecture.

Figure 2 presents the architecture of the Boot Control Function for
Windows Vista (BCF/Vista). The agent is an enhanced hooking pro-
gram that executes in the user account; it monitors all booting programs
executed from the user account and communicates their condition to the
controller. The controller, which is implemented as a Windows service,
prevents a user from terminating the agent.



136 ADVANCES IN DIGITAL FORENSICS V

Figure 3. Controller logic flow diagram.

The remainder of this section describes the logic of the controller
and agent, and outlines the procedures that must be followed by an
administrator to set up BCF/Vista.

3.1 Controller

The controller is an administrator-level Windows service, which en-
sures that the agent hooking program is always running. Figure 3
presents the controller logic, which involves four main steps. First, the
controller creates a named pipe to communicate with an agent executing
in a user account. It then waits for an initialization signal from the agent
which indicates that a user has logged on. If an initialization signal from



Ashino, et al. 137

Figure 4. Agent logic flow diagram.

the agent is not received by the controller within a specified time inter-
val, the controller shuts down Vista. The controller then listens for a
heartbeat signal from the agent, which indicates that the agent is exe-
cuting. If the heartbeat signal is not received by the controller, Vista is
shut down. When the user logs off, the controller receives a finalization
signal from the agent, upon which it closes the named pipe.

3.2 Agent

The agent operates in a manner similar to Dig-Force2 except that
the CreateProcessW and CreateProcessA APIs are hooked instead of
RtlCreateProcessParameters. However, the BCF/Vista agent runs in
a user account to enable boot process hooking unlike Dig-Force2, which
runs as a Windows service.

Figure 4 presents the boot control logic of the agent. The agent first
opens the named pipe created by the controller. If the agent cannot open
the pipe, the agent forcibly logs out the user. Next, the agent sends an



138 ADVANCES IN DIGITAL FORENSICS V

initialization signal to the controller, reads the white list and hooks the
CreateProcessW and CreateProcessA APIs. This becomes a secondary
process that compares the hash value of the booting program with the
white list value as in the case of Dig-Force2. The agent then sends the
controller a heartbeat signal at a predefined interval. If the user shuts
down the computer or logs out, the agent sends a finalization signal to
the controller.

3.3 System Configuration

Before a user can access the computer, the administrator must con-
figure it using the following procedure:

Step 1: Add a standard user account for the user.

Step 2: In order to start the agent, add the task to the task
scheduler.

Step 3: Set the program permissions to “read only” from the user
account; this prevents the user from modifying programs.

Step 4: Set the permission for “Start-Up” in the user account to
“read only” to prevent the user from adding start-up programs.

Step 5: Check “Audit Process Tracking” in the local security
policy.

Step 6: Install the white list.

Step 7: Add the controller as a Windows service.

Step 8: Enable BitLocker.

Step 9: Set the BIOS password.

Step 10: In the safe mode, enable the booting service (Step 7).

The administrator then sets up the task scheduler as follows:

Step 1: Create a new task schedule in the folder Task Scheduler
Library of the task scheduler.

Step 2: Set “When running the task, use the following user ac-
count:” to point to the user account.

Step 3: Set “At log on” and “On an event” with target log to
“Security” when triggered.



Ashino, et al. 139

Step 4: Set “Start a program” to the status of “Action” and
register the program path of the agent.

Step 5: Uncheck the checkbox of “Start the task only if the com-
puter is on AC power.”

4. System Evaluation

We consider four attacks where the attacker is a user with a standard
user account: (i) BCF/Vista removal or modification, (ii) white list
modification, (iii) BCF/Vista start-up blocking, and (iv) jamming.

In order to remove or modify the BCF/Vista program file, an at-
tacker must have administrator privileges, which is not possible without
the administrator’s password. Alternatively, the attacker could attempt
to access the hard drive directly, for example, by booting another OS
from an alternative storage media or installing the hard drive in another
machine. However, the BIOS of the computer is set to boot only from
the hard drive, which is fully encrypted using BitLocker. These security
measures prevent access to the BCF/Vista program files.

The goal of an attack on the white list is to add a program to the list.
To do this, the attacker must be able to add the digital signature of the
program to the white list. This requires the secret key used to create
the list or the creation of a fabricated white list with a fake key pair.
But these will not work because the attacker neither has the secret key
nor the password required to install a fake public key in the TPM.

The third attack, blocking the booting of BCF/Vista, is not possible
because a Windows service cannot be modified without the administra-
tor’s password. This password is not available to the user.

A boot jamming attack is effective only if the jamming program starts
before CreateProcessW and CreateProcessA are hooked. Since the
agent and the hooking start automatically at login, the attacker would
have to add the jamming program to the start-up list. This is not
possible because the start-up directory permission level is set to “read
only.”

The evaluation of BCF/Vista was conducted using a Dell VOSTRO
1310 with a 2.5 GHz Intel Core2 Duo T9300 CPU and 4 GB RAM
running Windows Vista Ultimate Edition. The program required 1,080
seconds to create a white list by calculating the hash values and the
digital signatures for the 3,273 .exe files residing on the machine. The
signing process clearly requires a considerable amount of time. However,
it is performed only once when the white list is created and, therefore,
does not impact normal computer operations.



140 ADVANCES IN DIGITAL FORENSICS V

Table 1. Booting times.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

notepad.exe 1.5491 0.0105 0.0104 0.0105 0.0104
calc.exe 1.4850 0.0124 0.0126 0.0124 0.0125
Microsoft Word 2007 1.6446 0.0129 0.0127 0.0132 0.0127
Microsoft PowerPoint 2007 1.5849 0.0166 0.0169 0.0165 0.0169

Table 1 shows the time taken to boot four programs, where each
program was booted five times in succession (Trials 1–5). The boot
period of a program is measured from the time the boot control function
permits the program to boot to the time when CreateProcessW and
CreateProcessA are called.

Note that a significant amount of time (1.4850 to 1.6446 seconds)
is required for booting during the first trial when BCF/Vista has to
read the white list. After this, the booting time is much less because
BCF/Vista uses the white list data, which was read the first time it
was executed. The booting time is, thus, acceptable and BCF/Vista has
negligible impact on program operation.

5. Conclusions

BCF/Vista provides a secure and reliable environment for logging
data pertaining to computer operations. In particular, it preserves the
integrity of evidence by preventing the booting of unauthorized pro-
grams and evidence modification. The architecture, which uses special
controller and agent processes, a TPM and a white list to provide boot
control functionality for Windows Vista systems, has a negligible impact
on system performance.

References

[1] Y. Ashino and R. Sasaki, Proposal of digital forensic system using
security device and hysteresis signature, Proceedings of the Third In-
ternational Conference on Intelligent Information Hiding and Mul-
timedia Signal Processing, pp. 3–7, 2007.

[2] K. Fujita, Y. Ashino, T. Uehara and R. Sasaki, Using boot control to
preserve the integrity of evidence, in Advances in Digital Forensics
IV, I. Ray and S. Shenoi (Eds.), Springer, Boston, Massachusetts,
pp. 61–74, 2008.

[3] Microsoft Corporation, Services, Redmond, Washington (msdn
.microsoft.com/en-us/library/ms685141.aspx).



Ashino, et al. 141

[4] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki and
H. Yoshiura, Digital document sanitizing problem, Institute of Elec-
tronics, Information and Communication Engineers Technical Re-
ports, vol. 103(195), pp. 61–67, 2003.

[5] R. Sasaki, Y. Ashino and T. Masubuchi, A trial for systematiza-
tion of digital forensics and proposal on the required technologies,
Japanese Society of Security Management Magazine, April 2006.

[6] S. Susaki and T. Matsumoto, Alibi establishment for electronic
signatures, Transactions of the Information Processing Society of
Japan, vol. 43(8), pp. 2381–2393, 2008.

[7] Trusted Computing Group, Beaverton, Oregon (www.trustedcom
putinggroup.org).


