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FUSION OF STEGANALYSIS SYSTEMS
USING BAYESIAN MODEL AVERAGING

Benjamin Rodriguez, Gilbert Peterson and Kenneth Bauer

Abstract The increasing use of steganography requires digital forensic examiners
to consider the extraction of hidden information from digital images
encountered during investigations. The first step in extraction is to
identify the embedding method. Several steganalysis systems have been
developed for this purpose, but each system only identifies a subset of
the available embedding methods and with varying degrees of accuracy.
This paper applies Bayesian model averaging to fuse multiple steganal-
ysis systems and identify the embedding used to create a stego JPEG
image. Experimental results indicate that the steganalysis fusion system
has an accuracy of 90% compared with 80% accuracy for the individual
steganalysis systems.
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1. Introduction

The problem of steganalysis has moved from simply determining if
an image contains hidden information to extracting the hidden message.
However, it is not possible to extract the hidden information without first
identifying the method used to create the steganographic image. With
more 250 steganography tools available on the Internet it is important to
develop multi-class steganalysis systems that can label a suspect image
as containing a specific type of steganography.

Several steganography detection systems are available, including re-
search prototypes [4, 9, 11, 14, 18, 21] and commercially-available tools
(e.g., ILook Investigator, Inforenz Forager, SecureStego, StegDetect [12]
and WetStone Stego Suite). Each system has its own advantages and
disadvantages. But with so many detection systems available to the ste-
ganalyst, a problem arises in deciding which system is best to use. A



346 ADVANCES IN DIGITAL FORENSICS IV

Figure 1. Multi-class detection system.

solution to this problem is to fuse the results from the various detection
systems to more accurately identify the embedding method.

This paper focuses on the detection of six steganography methods:
F5 [22], JP Hide and Seek [8], JSteg [20], Model Based [16], OutGuess
[13] and StegHide [5]. Bayesian model averaging [6] is used to combine
four multi-class steganalysis detection systems. The first steganalysis
system is StegDetect [12], which is capable of detecting F5, JP Hide and
Seek, JSteg and OutGuess. The remaining three systems are one-vs-
one multi-class classifiers [4, 9, 15] that use a two-class support vector
machine (SVM) for classification. Test results show that the steganalysis
fusion system has an accuracy of 90% compared with 80% accuracy for
the individual multi-class steganalysis systems.

2. Related Work

Commercially available steganography detection tools are designed to
give the analyst an initial indication if a set of images contains hidden
information. These tools include ILook Investigator, Inforenz Forager,
SecureStego, StegDetect [12] and WetStone Stego Suite. However, no
tool targets all the common embedding methods. For example, StegDe-
tect detects four (F5, JP Hide and Seek, JSteg and OutGuess) of the six
common embedding methods.

The steps involved in multi-class steganalysis detection are illustrated
in Figure 1. A data set containing clean and stego images is used to
train a multi-class detection system.

The first step involves the generation of features from the input im-
ages; feature generation significantly reduces the amount of information
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sent to the classifier. The feature generation techniques used in our work
are the wavelet-based method of Lyu and Farid [9], a DCT-based fea-
ture generation method [11], and a method that generates features from
DCT decomposed coefficients [15].

The next step, feature pre-processing, employs two procedures. The
first procedure normalizes the set of input features; this reduces the like-
lihood that features with large values would have a greater influence on
the cost function than features with small values. The second procedure
eliminates the less important features while retaining satisfactory class
discrimination capability.

Many multi-class classifiers for steganalysis [11, 14] use a two-class
SVM classification method in conjunction with a one-vs-one approach
to combine individual classifiers. Multiple SVM classifiers are trained
to distinguish clean images and images created with specific embedding
methods. The overall multi-class classification system counts the votes
from each SVM classifier; the final classification (identification of the
embedding method used) is determined as the classification with the
most number of votes.

The next section describes our steganalysis fusion system. It incor-
porates four systems discussed in this section: StegDetect [12], wavelet
feature generation [9], DCT-based feature generation [11], and DCT de-
composition feature generation [15].

3. Steganalysis Fusion System

The fused multi-class steganalysis detection system uses multi-class
classifiers with Bayesian model averaging. The steganography tech-
niques targeted by the detection system include F5 [22], JP Hide and
Seek [8], JSteg [20], Model Based [16], OutGuess [13] and StegHide[5].
All these embedding methods hide data by manipulating the quantized
discrete cosine transform (DCT) values generated during the JPEG im-
age compression process. This section provides details of the feature
generation, classification and labeling steps involved in multi-class de-
tection (Figure 1).

3.1 Feature Generation

Three feature generation methods – wavelet feature generation [9],
DCT based feature generation [11] and DCT decomposition feature gen-
eration [15] – are used to create a multi-class steganalysis classification
system.

Wavelet feature generation first performs a multi-scale Haar wavelet
decomposition of an image [9]. Next, higher-order statistics are calcu-
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lated over each pixel in the wavelet and the pixel’s relationship to its
neighbors in the current and higher scales. 36 coefficient statistics and
36 error statistics are computed to yield a total of 72 statistics. These
statistics form the feature vectors used to discriminate between clean
and stego images.

DCT based feature generation calculates first- and second-order fea-
tures over the DCT values and pixel values (spatial domain) of an image
[11]. The features in the DCT and spatial domains are calculated us-
ing several functions applied to the stego JPEG image. These functions
include the global DCT coefficient histogram, co-occurrence matrix, spa-
tial blockiness and others [11]. The stego image is decompressed to the
spatial domain, cropped by four pixels in each direction and recom-
pressed with the same quantization table used in decompression. An
approximation of the hidden information is generated by applying the
same functions to the cropped image. This feature generation technique
produces 274 features.

DCT decomposition feature generation divides a processed DCT block
into directional and frequency bands [15]. The DCT coefficients are sep-
arated into low, medium and high frequencies as well as in the vertical,
diagonal and horizontal directions. This is referred to as DCT decom-
position. In addition, the coefficients are categorized into raw, shifted
and predicted coefficients. The shifted coefficients are used to identify
embedding blockiness between neighboring 8×8 blocks. The predicted
coefficients estimate the coefficients altered by an embedding method.
The features are generated by calculating several higher-order statistics
(first, second, third and fourth moments; second, third and fourth cen-
tral moments; and entropy) for the sets of selected coefficients. This
produces 234 total features consisting of 72 shifted coefficients, 72 raw
coefficients, 72 predictors and 18 histogramming features.

3.2 Support Vector Machine

The support vector machine (SVM) is a classification algorithm that
provides state-of-the-art performance in a variety of application domains
[1, 17]. In particular, the SVM produces a model that predicts the class
of data instances in a testing set given only the attributes. SVM performs
pattern recognition for two-class problems by determining the separating
hyperplane that has maximum distance between the closest points of
each class in the training set; the closest points to the hyperplane are
called support vectors. This is accomplished by performing a nonlinear
separation of the input space using a nonlinear transformation φ(·) that
maps data instances x (with features xi) from the input space into a
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higher-dimensional space called kernel space. The mapping, φ(·) →
φ(xi), is performed by the SVM classifier using a kernel function K(·, ·).
The SVM decision function is linear in the kernel space, albeit not in the
feature space. We use LibSVM [2] in our work. This implementation
employs sequential minimal optimization for a binary SVM with an L1-
soft margin [3].

3.3 One-vs-One Methodology

Two-class classifiers are combined using a one-vs-one methodology
[19]. This technique trains several classifiers; each individual classifier
compares one class against one of the other classes. For k classes, this
produces k(k−1)/2 classifiers that each vote on the class assignment for
a data instance. The algorithm then identifies the final classification as
the class with the highest vote. The goal is to train the multi-class rule
based on the majority vote strategy. The method is fairly reliable when
the feature space is separable for the various classes.

Seven classes (6 stego + 1 clean, i.e., k = 7) are targeted by the
steganalysis fusion system; this requires 21 classifiers to be trained. The
output of each SVM is a vote that is tallied. The classification with the
majority of votes for a class wins.

3.4 Multi-Class Detection System

Multi-class detection requires a training set for which the number of
classes have been assigned. In our work, we attempt to detect stego im-
ages created using six embedding methods (F5, JP Hide and Seek, JSteg,
Model Based, OutGuess and StegHide). Consequently, the training set
consisted of seven classes of images (6 stego and 1 clean). Multi-class
detection based on the training set involves the following steps:

1. Feature Generation: This step generates features from each
JPEG test image. Three feature generation methods [9, 11,
15] are used to develop three distinct multi-class systems.

2. Feature Pre-Processing: This step normalizes the feature val-
ues and selects a subset of features based on the Fisher’s dis-
criminant ratio ranking. Other pre-processing methods could
be applied for outlier removal, data normalization, feature
selection and feature extraction [7].

3. Classification: This step uses an SVM to train each one-vs-
one classifier based on the training data set.
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Figure 2. Bayesian model averaging structure.

4. Majority Vote Assignment: This step assigns a class label
based on a majority vote from each classifier.

3.5 Bayesian Model Averaging

Bayesian model averaging merges several multi-class classifiers by
combining the probability density estimation of each classifier’s clas-
sification accuracy as a mixture of Gaussians [6, 10]. The Bayes Net
Toolbox for Mathlab [10] was used to perform the model averaging com-
putations. The probability density estimation specifies the local con-
ditional probability distribution (CPD) for a classification model, Mk,
where k is one of K classifiers and M is the set of all classifiers. The
CPD of each model Mk is p(Mk|T ), which represents the probability
that a classification model will classify a target instance T . For exam-
ple, given a target image that contains data hidden using JP Hide and
Seek, p(Mk|T =JP Hide and Seek) represents the probability distribu-
tion over all of the possible classifications Mk could make, i.e., F5, JP
Hide and Seek, etc. In our implementation, the confusion matrix, which
represents the correct and incorrect classifications for a multi-class clas-
sifier, provides the probability density estimation for each classifier.

The fusion process uses the classifications from the classification mod-
els, M , to compute the joint probability distribution over each target
classification T = c:

p(T = c|M) = η
K∏

k=1

p(Mk|T = c)p(T = c).

The final classification is designated as the target classification T = c
with the highest probability. The prior probabilities p(T ) are calculated
based on the number of clean images and the number of images of each
type of embedding used in the testing.
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Figure 2 illustrates an example Bayesian model averaging system. The
four nodes at the top represent the classifiers and CPDs for each Mk.
The Bayesian model averaging node contains the p(T ) CPD that merges
the results of the four models and makes the final classification.

The following seven steps are involved in using Bayesian model aver-
aging for steganalysis:

1. Generate features.

2. Select relevant features.

3. Create the classification model based on one-vs-one training.

4. Use the majority vote strategy to populate the confusion ma-
trix containing actual and predicted classified values for the
clean, F5, JP Hide and Seek, JSteg, Model Based, OutGuess
and StegHide training sets.

5. Repeat Steps 1 through 4 for each of the three feature gen-
eration methods [9, 11, 15].

6. Create a confusion matrix for StegDetect [12].

7. Use the four confusion matrices as classifier models for the
Bayesian averaging technique.

This seven-step procedure produces a multi-class model that receives
four inputs (three from each of the trained detection systems and one
from StegDetect) in order to classify a suspect image. The resulting
steganalysis fusion system is shown in Figure 2.

4. Results

The results presented in this section are based on a data set containing
1,000 512×512 RGB JPEG (stego and clean) images. The training set
consisted of 200 clean images and 100 images for each of the six embed-
ding methods (F5, JP Hide and Seek, JSteg, Model Based, OutGuess
and StegHide). The test set contained 50 clean images and 25 images for
each embedding method. The clean images in the test set did not over-
lap with the stego images, nor did any of the images from one stego type
overlap with another; for example, none of the F5 images were the same
as the JSteg images. Approximately one page of text (4,000 characters)
was hidden in each stego image.

The following were the percentages of altered coefficients for the six
embedding methods:
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Table 1. Test set classification accuracy for individual detection systems.

Image Wavelet DCT StegDetect Combined
Type Features Features DCT Features

Clean 45.4 ± 1.1 42.6 ± 2.1 40.6 ± 1.1 42.8 ± 0.8
F5 21.4 ± 0.8 24.2 ± 1.8 25.0 ± 0.0 18.0 ± 0.7
JP Hide (JP) 22.2 ± 0.5 21.8 ± 0.8 17.4 ± 1.1 20.0 ± 1.0
JSteg (JS) 20.8 ± 0.8 22.0 ± 1.6 20.0 ± 2.1 22.8 ± 0.8
Model Based (MB) 13.2 ± 1.3 16.4 ± 0.5 0.0 ± 0.0 17.8 ± 0.5
Outguess (OG) 17.0 ± 0.7 13.8 ± 0.5 17.4 ± 2.1 18.4 ± 0.5
StegHide (SH) 17.6 ± 1.1 16.4 ± 0.5 0.0 ± 0.0 18.0 ± 0.7

F5 had an average of 0.3% of the coefficients altered.

JP Hide and Seek had an average of 2.8% of the coefficients altered.

JSteg had an average of 6.7% of the coefficients altered.

Model Based had an average of 7.8% of the coefficients altered.

OutGuess and StegHide had an average of 1% of the coefficients
altered.

The testing was performed using five-fold cross validation. Note that
the results are not intended to benchmark one system against the others.
Rather, they are used to show that the steganalysis fusion system takes
advantage of the strengths of the individual systems and improves the
overall accuracy.

Table 1 presents the results for the individual steganalysis systems.
The results reveal that no multi-class classification algorithm outper-
forms the others. For example, StegDetect detects all the F5 images;
wavelet feature generation (Wavelet) labels the fewest clean images as
stego; DCT based feature generation (DCT) identifies the largest num-
ber of JP Hide and Seek images; and DCT decomposition feature gener-
ation (Combined DCT) identifies the most Model Based and OutGuess
images.

Table 2 presents the results obtained for the steganalysis fusion sys-
tem. It is clear that the fusion system consistently outperforms the
individual systems. The only exception is for the F5 embedding, where
the fusion system and StegDetect detect all the images.

5. Conclusions

The steganalysis fusion system uses Bayesian model averaging to com-
bine three multi-class SVM classifiers, each of which uses a different
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Table 2. Confusion matrix obtained by Bayesian model averaging.

Actual Predicted

Clean F5 JP JS MB OG SH

Clean Ave. 46.8± 0.8± 0.2± 0.2± 0.2± 1.6± 0.2±
σ2 0.8 0.5 0.5 0.5 0.5 0.9 0.5

F5 Ave. 0.0± 25.0± 0.0± 0.0± 0.0± 0.0± 0.0±
σ2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

JP Ave. 0.0± 0.0± 23.6± 1.4± 0.0± 0.0± 0.0±
σ2 0.0 0.0 0.6 0.6 0.0 0.0 0.0

JS Ave. 0.0± 0.0± 1.4± 23.2± 0.0± 0.4± 0.0±
σ2 0.0 0.0 0.6 0.8 0.0 0.6 0.0

MB Ave. 4.6± 1.6± 0.0± 0.0± 18.0± 0.2± 0.6±
σ2 0.6 0.6 0.0 0.0 0.7 0.5 0.6

OG Ave. 1.8± 0.4± 0.0± 0.0± 0.0± 18.8± 4.0±
σ2 0.5 0.6 0.0 0.0 0.0 0.5 0.7

SH Ave. 1.2± 0.0± 0.0± 0.0± 0.0± 2.6± 21.2±
σ2 0.5 0.0 0.0 0.0 0.0 0.6 0.8

feature extraction method. This strategy improves the overall accuracy
with which steganography embedding algorithms are identified.

Future research will involve the addition of new steganalysis systems
to the fused multi-class system, and the creation of richer JPEG data
sets with images of various sizes and compression ratios. This work,
which will utilize embedding signatures based on image size and com-
pression changes, will further enhance the detection and identification
of steganography embedding methods.
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