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DETECTING STEGANOGRAPHY USING
MULTI-CLASS CLASSIFICATION

Benjamin Rodriguez and Gilbert Peterson

Abstract When a digital forensics investigator suspects that steganography has
been used to hide data in an image, he must not only determine that
the image contains embedded information but also identify the method
used for embedding. The determination of the embedding method –
or stego fingerprint – is critical to extracting the hidden information.
This paper focuses on identifying stego fingerprints in JPEG images.
The steganography tools targeted are F5, JSteg, Model-Based Embed-
ding, OutGuess and StegHide. Each of these tools embeds data in a
dramatically different way and, therefore, presents a different challenge
to extracting the hidden information. The embedding methods are dis-
tinguished using features developed from sets of stego images that are
used to train a multi-class support vector machine (SVM) classifier. For
new images, the image features are calculated and evaluated based on
their associated label to the most similar class, i.e., clean or embedding
method feature space. The SVM results demonstrate that, in the worst
case, embedding methods can be distinguished with 87% reliability.
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1. Introduction

Steganography is a data hiding and transmission technique that at-
tempts to conceal and prevent the detection of the true content of a
message. The steganographic process uses a cover object – often an im-
age – to conceal the message (“stego data”). An embedding algorithm
combines a cover image and the stego data to produce a stego image,
which is an image that contains the hidden message. Steganalysis, the
process of breaking steganography, involves examining a set of cover ob-
jects to determine if steganography was used, identifying the fingerprint
of the embedding algorithm, and then extracting the embedded content.
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Several methods are available for detecting hidden information in im-
ages, but the embedding algorithm must be known for any of these meth-
ods to be effective. Unfortunately, such steganography fingerprinting is
a major challenge as there are more than 250 steganography programs
available [16]. To address this issue, it is necessary to develop detection
methods that use a combination of features to identify the class or type
of embedding method.

This paper presents a multi-class classification method that focuses on
classifying unseen instances to their specific embedding method (class).
The method categorizes JPEG stego images based on feature classifica-
tion in which instances are associated with exactly one element of the
label set. The multilevel energy band features presented in this paper
are used with the multi-class support vector machine (SVM) classifica-
tion technique. The features are generated from higher order statistics
of the multilevel energy bands of the discrete cosine transform (DCT).

The test results are based on an image database of 1,000 high-quality
JPEG images taken with a Nikon Coolpix 5. The stego images were
created using five steganography tools (F5, JSteg, Model-Based Embed-
ding, OutGuess and StegHide). Each of these tools embeds data using a
different technique, with the exception of OutGuess and StegHide that
embed similarly but use different randomization techniques. The re-
sults demonstrate that, in the worst case, embedding methods can be
distinguished with 87% reliability.

The next section discusses embedding methods and multi-class classi-
fiers. Section 3 describes the multilevel energy feature generation tech-
nique. This is followed by a description of the multi-class SVM clas-
sification method in Section 4. Section 5 presents the results of the
SVM classifier using multilevel energy features. This paper ends with
concluding remarks and a discussion of future work.

2. Related Work

Each embedding method leaves a fingerprint on the stego image repre-
sentative of the algorithm used to create the image. Our approach is to
use multi-class classifiers to detect specific classes of embedding methods
using stego fingerprints. This section discusses the main JPEG image
data embedding methods used by steganography tools and the primary
multi-class classification methods.

2.1 Embedding Methods

Digital images are often used to hide stego data because numerous
redundant portions within the images can be altered without affecting
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the quality as observed by the human eye [16]. This paper examines
five prominent tools for embedding data in JPEG images: F5, JSteg,
Model-Based Embedding, OutGuess and StegHide.

The JPEG image format is currently the most prevalent image storage
format [16]. The vast number of JPEG images available on the Internet
makes them ideal cover images for hiding secret data. A JPEG embed-
ding process embeds the data in discrete cosine transform (DCT) coeffi-
cients. First, the DCT coefficients of an image are computed; the coef-
ficients of an 8×8 block of image pixels f(x, y) are denoted by F (u, v).
The coefficients are divided by the quantization matrix, which quantizes
the coefficients for compression. After this process, most JPEG embed-
ding methods use the least significant bits (LSBs) of the quantized DCT
coefficients. Redundant bits are used to embed the hidden message so
that the embedding has no effect on the binary encoder. While the
embedding does not affect the compression process, modifying a single
DCT coefficient affects all 64 pixels in the 8×8 image block.

F5 [18] was developed as a challenge to the steganalysis community.
This method exploits the JPEG compression algorithm by decrement-
ing the absolute values of the DCT coefficients in a process known as
matrix encoding. An estimated embedding capacity is computed based
on the total number of DCT coefficients. A recursive algorithm is then
used to match the bits of the message in a hash function to determine
the encoding, stopping when one of the coefficients is reduced to zero.
An F5 embedding is identifiable by the unnatural coefficient histograms
produced by the embedding technique.

Model-Based Embedding [14] fits the coefficient histogram into an ex-
ponential model using maximum likelihood. This method addresses the
limitations of other embedding methods; it can successfully hide large
messages so that they are undetectable by certain statistical analyses
and it can achieve maximum capacity. Model-Based Embedding is ac-
complished by identifying the ideal embedding structure based on the
statistical model of the DCT coefficients of the original cover image, and
ensuring that the statistical model is retained after the embedding. Al-
though the embedding technique is similar to that used by F5, it does
not produce unnatural histogram frequencies for adjacent DCT coef-
ficients. This embedding technique is identified by combining several
higher-order statistics.

The JSteg tool encodes messages in JPEG images by manipulating the
LSBs of the quantified DCT coefficients. The message is formatted so
that the first five bits of the frequency band coefficient indicate the length
of the band (size of the embedded message), which is also referred to as
the capacity of the block. The next set of bits indicates the bit length
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of the actual message. This message length indication scheme avoids
generating large numbers of zeros that occur when short messages are
embedded using a fixed bit length to indicate message size [10]. This type
of embedding does not spread the encoded bits among the 14 coefficients;
therefore, it can be identified using a first-order statistic (e.g., mean).

OutGuess [13] was designed to evade detection by statistical steganal-
ysis techniques such as the chi-square statistical attack. The embed-
ding technique modifies the LSBs of the DCT coefficients by statisti-
cally checking the original image DCT heuristics against the embedded
image; it then manipulates nearby DCT blocks to maintain the original
DCT histogram. The coefficients (F (u, v) /∈ [0, 1]) are selected using
a pseudo-random number generator. The statistical correction method
embeds hidden data within the coefficient LSBs while offsetting nearby
LSB coefficients with minor bit changes to preserve the chi-square statis-
tic.

StegHide [8] hides data in multiple types of image and audio files. In
the case of JPEG images, the color representation sample frequencies
are not changed, which makes this method robust to first-order statisti-
cal attacks. This robustness is the direct result of embedding stego data
within the LSBs of DCT coefficients that have large variations with ad-
jacent coefficients. However, this embedding technique can be detected
using a higher-order statistic (e.g., energy).

Proper identification of the embedding technique is crucial to any
attempt at extracting the hidden information. The five tools considered
in this paper embed data into the quantized DCT coefficients of a JPEG
image. Each DCT encoding introduces certain statistical irregularities
that constitute a signature. The fundamental problem is to classify the
signatures left by the tools.

2.2 Multi-Class Classification Methods

More than 250 tools are available for performing steganography on
digital images [16]. Because of this, multi-class classification is an attrac-
tive technique for identifying the potential signatures of steganography
embedding algorithms. This section describes two promising multi-class
classification techniques.

In many multi-class classification methods, two-class classifiers are
combined using the posterior probabilities of their outputs. The multi-
class learning algorithm must create hyperplane boundaries in kernel
space where each hyperplane depends on the margin of separation ob-
tained at the support vector nodes. This is achieved by combining the
two-class classification methods using voting and combinations of ap-
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proximate posterior probabilities, where the use of posterior probabili-
ties enhances the solution by eliminating ties [12]. Another approach is
to use combinations of binary classification methods with a naive Bayes
classifier, which generalizes to multiple classes [17].

Several multi-class SVM classifiers employ a winner-take-all approach,
assigning the class labeling based on a majority vote for the class [7]. The
winner-take-all approach uses multiple two-class SVM prototypes per
class, separating one class identity from the others. The method com-
bines multiple sets of support vectors to create a large decision bound-
ary separating the desired classes. This is achieved using a constrained
quadratic search to find locally-optimal solutions for non-convex objec-
tive functions. In this way, the winner-take-all strategy creates a set of
linear functions, each of which provides an ordering of the classes for a
sample, where the “winner” is the first class in the ordering.

Our approach uses a majority-vote-wins strategy. However, in order to
perform classification, a suitable set of features is required. The following
section describes the features used to perform steganalysis via multi-class
classification.

3. Features

This section describes the DCT multilevel energy bands method for
calculating the transform domain features from a JPEG image. The
features are obtained by computing the DCT energy bands for each
block of 8×8 coefficients.

The transform domain features presented in Figure 1 focus on the en-
ergy bands of the DCT coefficients. Figure 1(b) shows the representation
of the energy bands after the DCT. The DCT used in JPEG compres-
sion does not generate the multilevel energy bands produced by wavelet
decomposition. Moreover, the multilevel energy band representation in
Figure 1(b) does not allow for the energy levels to be extracted based on
the edges of the original image as shown in Figure 1(c). Instead, the DCT
output is rearranged in a wavelet decomposition structure to show the
energy bands. This structure is created using 8×8 pixel blocks, which are
the same as those used during JPEG compression. For each 8×8 block,
the DCT energy band decomposition of vertical, diagonal and horizontal
edges are formed via zigzag (Figure 1(d)) and Peano scans (Figure 1(e).
Rearranging the coefficients of the DCT splits the frequency spectrum
into uniformly spaced bands containing vertical, horizontal and diag-
onal edges. The ideal representation of the energy bands is shown in
Figure 1(f).
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(a) (b) (c)

(d) (e) (f)

Figure 1. DCT multilevel energy bands: (a) Input image; (b) Energy band represen-
tation; (c) Extracted edges; (d) Vector with zigzag; (e) Peano scan matrix; (f) Level1
representation.

The structure presented captures the energy better than the normal
DCT, and at least as well as wavelet decompositions used in image pro-
cessing. The transformed coefficients are matched to higher level lin-
ear predicted neighboring coefficients, which result in an unstructured
(non-Gaussian) distribution. Higher-order statistics are appropriate for
measuring the coefficients for non-Gaussian processes.

The features are calculated using a mask, which, for a coefficient c,
calculates the difference between c and its neighbors q, as shown in
Figure 2. Similar methods have been used in pattern recognition [2] and
steganography detection [1, 11] with wavelets. Higher-order statistics
and predicted log errors are calculated across all of the mask values in
order to create additional features.

Our classification methodology uses the features calculated from the
DCT multilevel energy bands of JPEG images to separate the various
embedding algorithms. This approach differs from other feature genera-
tion schemes (e.g., [1, 11]) that use different coefficients or wavelets. The
most similar work to ours is that of Fridrich [6], which uses features that
are specifically designed to distinguish classes of embedding algorithms,
e.g., features that can distinguish an F5 embedding from an OutGuess
embedding. Our features are developed for JPEG images, which makes
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Figure 2. Target coefficients.

them applicable to the more general problem of anomaly detection as
well.

4. SVM Multi-Class Classification

Multi-class classifiers are built on a winner-take-all set of class labels,
each label representing one of the available classes. We employ a multi-
class support vector machine (SVM) classifier, which separates classes
by creating a hypersurface that maximizes the margins between all the
classes.

SVMs have traditionally been applied to two-class or binary classi-
fication problems [15]. However, SVMs can be applied to multi-class
classification. The techniques include: (i) the one-versus-all approach,
which uses binary classifiers to encode and train the output labels; (ii)
the one-versus-one approach, which uses a multi-class rule based on the
majority-vote-wins approach; and (iii) training two-class classifiers and
using voting and combinations of approximate posterior probabilities.
Another approach to multi-class SVM classification is to train multi-
class kernel-based predictors that use a compact quadratic optimization
solution [5]. Our approach to SVM multi-class classification uses a one-
versus-one majority-vote-wins strategy.

Figure 3 shows a multi-class SVM with support vectors (encapsulated
in circles) and inter-class decision boundaries. SVM classification is per-
formed by placing the classifying hyperplane, which separates the classes,
in the center of the margin of separation. The margin of separation is
calculated by locating the training points, xi, that are closest to the op-
posing class and result in the largest margins of separation. Under this
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(a) (b)

Figure 3. Multi-class SVM: (a) SVM without hyperplane; (b) SVM with hyperplane.

condition, the decision surface is referred to as the maximally separating
hyperplane [3] (Figure 3(a)). The result shown in Figure 3(b), which is
used to perform multi-class steganalysis, was obtained using the maxi-
mization of the margins of separation as the classification mechanism.
This produces fewer false positives for each of the classes, but increases
the number of anomalies when the data is unknown.

Our classification problem involves several aspects such as the amount
of stego, the embedding method and the compression scaling factor. This
leads to a complex multi-class classifier. In order to generate a multi-
class classifier, a set of binary classifiers g1, ..., gM is first constructed;
next, each binary classifier is trained to separate one class from the rest;
then, the classifiers are combined using a majority-vote-wins policy [3].
In the case of SVM, multi-class generalization involves a set of discrimi-
nant functions designed according to the maximal output. The majority
voting strategy is used to implement the multi-class classifier [4]:

f(x) = arg max
j=1,...,M

gj(x) (1)

where gj(x) =
∑

yiα
j
iK(x, xi) + bj. The classification yi provides the

sign of the coefficients of xi. The weight values αj
i are proportional to

the number of times the misclassification of xi causes the weights to
be updated. K(x, xi) is a radial basis kernel (RBF), and bj is the bias
vector. Each gj(x) value is a classifier’s assignment for a sample, which
may also be used to decide when a classification is too close to call and
should be rejected.

The kernel function is used to transform input data sets in the fea-
ture space (which are not linearly separable) to the kernel feature space
where the classification is performed. In general, the kernel function is
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explicitly specified (it implicitly defines the feature space). By defin-
ing the kernel function, the complexity of non-linear class separation
is avoided not only when computing the inner product, but also when
designing the learning machine. In this work, the training vectors xi

are mapped into a higher-dimensional space by the mapping function
φ. The kernel function used is a Gaussian radial basis kernel function
< φ(x)φ̇(xi) >= K(x, xi) = e|x−xi|2/σ2

[9].
To understand our approach, assume that the difference between the

two largest gj(x) values is used as the measure of confidence in the
classification of x. If the measure falls short of a threshold, the classifier
rejects the pattern and does not assign it to a class (which produces an
anomaly). The consequence is that a lower error rate is produced for
the remaining patterns.

5. Results

This section presents the results based on testing data sets from the
five tools (F5, JSteg, Model-Based Embedding, OutGuess, StegHide),
and a clean data set. The experiments used a mixture of 1,000 (512×512
color JPEG) files comprising clean images and images created using the
six embedding techniques described in Section 2.1. A total of 4,000 char-
acters – equivalent to about one page of text – was embedded within each
image file. The percentage of altered coefficients varied with the embed-
ding method. The numbers of features used to represent the images
were reduced from 120 to 40 features by eliminating features with sim-
ilar correlations. The results in Table 1 were generated using five-fold
cross validation where 80% of the data was used for training and 20%
for testing; the test was conducted five times.

Table 1 shows the confusion matrix for the classification of the clean
image set and five embedding method sets (F5, JSteg (JS), Model-Based
Embedding (MB), OutGuess (OG) and StegHide (SH)). The matrix
shows that the clean set is clearly separable from the remaining fea-
ture sets (Clean column and Clean row). In this multi-class classifica-
tion, OutGuess and StegHide have the largest number of exemplars that
are misclassified as each other. While these two methods are immune
to statistical methods such as the chi-square test, they are vulnerable
to higher-order statistics and transforms. These statistics, e.g., inertia,
“compress” the energy bands of the DCT when the coefficients have not
been modified and “expand” the energy bands when coefficients have
been modified.

F5 and Model-Based Embedding also have mixed classification re-
sults. Therefore, we combined OutGuess and StegHide along with F5
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Table 1. Confusion matrix for a six-class SVM classification.

Actual
Pred Clean F5 MB OG JS SH

Clean 90.2 ± 4.5 3.4 ± 2.0 4.9 ± 2.2 1.4 ± 1.6 0.1 ± 0.0 0.0 ± 0.0
F5 4.2 ± 1.5 83.0 ± 5.4 6.7 ± 3.2 4.8 ± 1.1 0.2 ± 0.0 1.1 ± 0.9
MB 3.6 ± 2.3 16.8 ± 5.2 75.1 ± 9.1 2.4 ± 1.2 0.1 ± 0.0 2.0 ± 1.3
OG 0.4 ± 0.01 1.4 ± 1.6 0.4 ± 0.2 52.3 ± 12.2 6.6 ± 2.9 38.9 ± 7.6
JS 1.0 ± 0.5 3.4 ± 1.6 2.2 ± 2.0 6.8 ± 3.8 82.2 ± 5.8 4.4 ± 3.0
SH 0.6 ± 0.0 1.2 ± 0.7 1.7 ± 1.8 40.0 ± 7.0 7.1 ± 2.8 49.4 ± 10.9

and Model-Based Embedding to create a four-class classification (Ta-
ble 2). Unlike OutGuess and StegHide, F5 and Model-Based Embed-
ding produce DCT coefficients that are undetectable using sophisticated
statistical measures. The features for F5 and OutGuess are not affected
by the re-compression of the embedding. The statistical measures of
inertia, energy and entropy show prominent features in the diagonal,
vertical and horizontal energy bands, respectively. These findings stress
the importance of separating the energy bands into the edge components
and measuring each energy band with various statistics.

Table 2. Confusion matrix for a four-class SVM classification.

Actual
Pred Clean F5 & MB OG & SH JS

Clean 94.8 ± 3.3 2.4 ± 1.7 1.5 ± 0.4 1.3 ± 0.8
F5 & MB 4.5 ± 2.9 87.0 ± 7.6 6.5 ± 2.6 2.0 ± 1.8
OG & SH 3.2 ± 0.9 3.6 ± 2.0 90.7 ± 3.8 2.5 ± 2.2
JS 0.0 ± 0.0 4.0 ± 1.7 6.4 ± 2.4 89.6 ± 6.7

Because of similarities in the embedding techniques, the multi-class
classifier was unable to identify the embedding methods in the six-class
classification (Table 1). However, better classification results were ob-
tained by recognizing similarities in the embedding techniques and per-
forming a four-class classification (Table 2). The results in Table 2 show
that combining OutGuess and StegHide produces a classification ac-
curacy of 90.7% (up from roughly 50%). This allows the identifica-
tion of the two embedding techniques. While the results for F5 and
Model-Based Embedding are not as dramatic as those for OutGuess
and StegHide, an increase in classification accuracy is achieved, which
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enables the two techniques to be distinguished from the other embedding
techniques.

6. Conclusions

It is practically impossible to extract hidden data from a stegano-
graphic image without first identifying the embedding technique. The
multi-class SVM-based technique presented in this paper can reliably de-
termine if a JPEG image contains a hidden message and, if so, the type
of lossy steganography that embedded the hidden data. The novel clas-
sification approach uses features constructed from DCT energy bands
and engages a winner-take-all hierarchical classification structure.

Our future research will focus on two problems that must be solved
after the embedding technique is identified. The first is to identify the
algorithm that performed the embedding; this will require an additional
multi-class classifier that is trained to recognize specific embedding algo-
rithms. The second problem is to predict the amount of data embedded
in an image and identify the image regions that contain the most embed-
ded data; solving this problem would, of course, be crucial to developing
techniques for extracting hidden messages.

Acknowledgements

This research was partially funded by the U.S. Air Force Research
Laboratory, Information Directorate/Multi-Sensor Exploitation Branch,
Rome, New York. The views expressed in this paper are those of the
authors and do not reflect the official policy or position of the U.S. Air
Force, U.S. Department of Defense or the U.S. Government.

References

[1] S. Agaian and H. Cai, Color wavelet based universal blind steganal-
ysis, presented at the International Workshop on Spectral Methods
and Multirate Signal Processing, 2004.

[2] R . Buccigrossi and E. Simoncelli, Image compression via joint sta-
tistical characterization in the wavelet domain, IEEE Transactions
on Image Processing, vol. 8(12), pp. 1688–1701, 1999.

[3] C. Burges, A tutorial on support vector machines for pattern recog-
nition, Data Mining and Knowledge Discovery, vol. 2(2), pp. 121–
167, 1998.

[4] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods, Cam-
bridge University Press, Cambridge, United Kingdom, 2000.



204 ADVANCES IN DIGITAL FORENSICS III

[5] J. Fridrich, G. Miroslav and H. Dorin, New methodology for break-
ing steganographic techniques for JPEGs, Proceedings of the SPIE
Symposium on Electronic Imaging, pp. 143–155, 2003.

[6] J. Fridrich and T. Pevny, Determining the stego algorithm for JPEG
images, IEE Proceedings, vol. 153(3), pp. 75–139, 2006.

[7] S. Har-Peled, D. Roth and D. Zimak, Constraint classification for
multiclass classification and ranking, in Advances in Neural Infor-
mation Systems 15, S. Becker, S. Thrun and K. Obermayer (Eds.),
MIT Press, Cambridge, Massachusetts, pp. 785–792, 2003.

[8] S. Hetzl, StegHide (steghide.sourceforge.net).

[9] C. Hsu, C. Chang and C. Lin, A practical guide to support vec-
tor classification (www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide
.pdf), 2005.

[10] T. Lane, P. Gladstone, L. Ortiz, L. Crocker, G. Weijers and other
members of the Independent JPEG Group, JSteg (www.stegoarch
ive.com).

[11] S. Lyu and H. Farid, Steganalysis using color wavelet statistics and
one-class support vector machines, Proceedings of the SPIE Sympo-
sium on Electronic Imaging, 2004.

[12] J. Platt, N. Cristianini and J. Shawe-Taylor, Large margin DAGs for
multiclass classification, in Advances in Neural Information Systems
12, S. Solla, T. Leen and K. Muller (Eds.), MIT Press, Cambridge,
Massachusetts, pp. 547–553, 2000.

[13] N. Provos, OutGuess (www.outguess.org).

[14] P. Sallee, Model-based steganography, Proceedings of the Second In-
ternational Workshop on Digital Watermarking, pp. 154–167, 2003.

[15] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond, MIT Press,
Cambridge, Massachusetts, 2002.

[16] StegoArchive.com (www.stegoarchive.com).

[17] A. Tewari and P. Bartlett, On the consistency of multiclass classi-
fication methods, Proceedings of the Eighteenth Annual Conference
on Learning Theory, pp. 143–157, 2005.

[18] A. Westfeld, F5 – A steganographic algorithm, Proceedings of the
Fourth International Workshop on Information Hiding, pp. 289–
302, 2001.


