
Chapter 23

INVESTIGATING COMPUTER ATTACKS
USING ATTACK TREES

Nayot Poolsapassit and Indrajit Ray

Abstract System log files contain valuable evidence pertaining to computer at-
tacks. However, the log files are often massive, and much of the infor-
mation they contain is not relevant to the investigation. Furthermore,
the files almost always have a flat structure, which limits the ability to
query them. Thus, digital forensic investigators find it extremely diffi-
cult and time consuming to extract and analyze evidence of attacks from
log files. This paper describes an automated attack-tree-based approach
for filtering irrelevant information from system log files and conducting
systematic investigations of computer attacks.

Keywords: Forensic investigation, computer attacks, attack tree, log file filtering

1. Introduction

Following a large-scale computer attack an investigator (system ad-
ministrator or law enforcement official) must make a reasoned determi-
nation of who launched the attack, when the attack occurred, and what
the exact sequence of events was that led to the attack. The system
log file, which contains records of all system events, is often the starting
point of the investigation. However, extracting and analyzing relevant
information from log files is almost always performed manually; these
tasks are prone to error and often produce inconclusive results.

There are three major contributing factors. First, a standard model
does not exist for log file organization. Log files are usually flat text
files (Figure 1), which limits the ability to query them. Second, there
is no minimum requirement for information that needs to be stored in
a log file; log files are invariably massive, and most of the information
they contain is not relevant to the investigation. Finally, there are no
established procedures for filtering and retrieving information from log



332 ADVANCES IN DIGITAL FORENSICS III

1697†05/04/1998†08:51:19†00:00:06†172.016.113.084†172.016.113.064/28††cp
2525†05/04/1998†09:12:42†00:00:01†172.016.114.158†172.016.114.128/28††nessus
2538†05/04/1998†09:13:21†00:00:07†172.016.114.159†172.016.114.128/28††nessus
2701†05/04/1998†09:16:02†02:42:20†135.013.216.191†135.013.216.10/24†††mv
2731†05/04/1998†09:17:09†00:05:00†135.013.216.182†135.013.216.10/24†††telnet
3014†05/04/1998†09:23:44†00:00:07†172.016.114.158†172.016.114.128/28††ftp
3028†05/04/1998†09:24:54†00:00:07†172.016.114.159†172.016.114.128/28††cp
3461†05/04/1998†09:37:14†00:00:13†172.016.114.159†172.016.114.128/28††telnet
4598†05/04/1998†10:01:51†00:00:01†196.037.075.158†196.037.075.10/24†††finger
4612†05/04/1998†10:02:37†00:00:01†196.037.075.050†196.037.075.10/24†††xterm
4834†05/04/1998†10:09:39†00:00:01†172.016.114.158†172.016.114.128/28††rlogin
4489†05/04/1998†10:10:22†00:00:01†195.073.151.050†195.073.151.10/24†††smtp
4859†05/04/1998†10:10:33†00:00:01†195.073.151.150†195.073.151.10/24†††smtp
4930†05/04/1998†10:11:36†00:00:06†172.016.114.158†172.016.114.128/28††telnet
5014†05/04/1998†10:13:55†00:00:06†172.016.114.148†172.016.114.128/28††bind
5092†05/04/1998†10:14:59†00:00:10†172.016.114.159†172.016.114.128/28††suid
5308†05/04/1998†10:21:38†00:00:01†194.027.251.021†194.027.251.021/24††smtp
5323†05/04/1998†10:23:11†00:00:01†196.037.075.158†196.037.075.5/24††††ssh
5456†05/04/1998†10:28:50†00:00:01†194.027.251.021†194.027.251.021/24††ftp
5467†05/04/1998†10:29:26†00:00:01†196.037.075.158†196.037.075.10/24†††sftp
5730†05/04/1998†10:36:58†00:00:03†135.008.060.182†135.008.060.10/24†††ssh
7270†05/04/1998†11:09:08†00:00:02†135.008.060.182†135.008.060.10/24†††mv
8098†05/04/1998†11:33:26†00:00:13†172.016.114.158†172.016.114.128/28††telnet
9057†05/04/1998†11:57:00†00:00:01†172.016.112.207†172.016.112.10/24†††smtp
9113†05/04/1998†11:58:26†00:00:08†172.016.114.148†172.016.114.128/28††telnet
9352†05/04/1998†12:48:01†00:00:01†172.016.113.078†172.016.113.64/28†††cp

Figure 1. Sample system log file.

files other than sequential backward scans starting from the most recent
entry. Therefore, investigators typically rely on their experience and
intuition to conduct ad hoc manual searches of log file entries.

To address this problem, we propose an attack-tree-based approach
for filtering log files. The attack tree model captures the different ways a
particular system can be attacked based on knowledge about system vul-
nerabilities and exploits. The filtering approach then selects the records
from the log file that are relevant to the attack by matching against the
attack tree. Subsequently, SQL queries may be used to extract evidence
from the filtered records in an automated manner.

The next two sections present the basic attack tree model, and an
augmented model that associates malicious operations with attack trees.
Section 4 describes our attack-tree-based approach for filtering log files.
The final section, Section 5, presents our concluding remarks.

2. Attack Trees

Attack trees have been proposed [2, 5, 8] as a systematic method
for specifying system security based on vulnerabilities. They help orga-
nize intrusion and/or misuse scenarios by (i) identifying vulnerabilities
and/or weak points in a system, and (ii) analyzing the weak points and
dependencies among the vulnerabilities and representing these depen-
dencies in the form of an AND-OR tree.



Poolsapassit & Ray 333

An attack tree is developed for each system to be defended. The nodes
of the tree represent different stages (milestones) of an attack. The root
node represents the attacker’s ultimate goal, which is usually to cause
damage to the system. The interior nodes, including leaf nodes, repre-
sent possible system states during the execution of an attack. System
states may include the level of compromise (e.g., access to a web page
or acquisition of root privileges), alterations to the system configuration
(e.g., modification of trust or access control, or escalation of privileges),
state changes to specific system components (e.g., placement of a Trojan
horse), or other subgoals that lead to the final goal (e.g., the sequence
of exploited vulnerabilities). The branches of an attack tree represent
change of states caused by one or more actions taken by the attacker.

Changes in state are represented as AND-branches or OR-branches in
an attack tree. Each node in an attack tree may be decomposed as:

A set of events (exploits), all of which must be achieved for the
subgoal represented by the node to succeed. These events are com-
bined by an AND branch at the node. An example is a root account
compromise, which involves changing the file mode of /proc/self/
files and executing the suid command (CVE-2006-3626).

A set of events (exploits), any one of which will cause the subgoal
represented by the node to succeed. These events are combined
by an OR branch at the node. An example is a root compromise
resulting from a stack buffer overflow that exploits the libtiff
library in SUSE v10.0 (CVE-2006-3459) or the SQL injection in
Bugzilla v2.16.3 (CVE-2003-1043).

Attack trees are closely related to attack graphs used for vulnerability
analysis [1, 3, 4, 6, 9, 10]. The difference lies in the representation of
states and actions. Attack graphs model system vulnerabilities in terms
of all possible sequences of attack operations. Ritchey and Ammann [7]
have observed that scalability is a major shortcoming of this approach.
In contrast, attack trees model system vulnerabilities in terms of cause
and effect, and the sequential ordering of events does not have to be
captured in an attack tree. Therefore, it is much simpler to construct an
attack tree than an attack graph. One criticism of attack trees (vis-a-vis
attack graphs) is that they cannot model cycles. However, we believe
that this criticism is valid only when attack trees are used to represent
sequences of operations leading to attacks, not when they are used to
represent the dependencies of states that are reached. Another criticism
is that attack trees tend to get unwieldy when modeling complex attack
scenarios, but the same is true for attack graphs.



334 ADVANCES IN DIGITAL FORENSICS III

Internet

Web Server

Workstation Workstation Workstation

DNS Server

Firewall

Machine D

Figure 2. Corporate network configuration.

Figure 2 presents the network configuration of a hypothetical com-
pany. We use this network configuration to demonstrate how an attack
tree is used to represent system vulnerabilities.

The company has installed a firewall to protect its network from the
Internet. The company’s web server is located in the de-militarized
zone (DMZ). Other machines are on the local area network behind the
firewall. The company’s system administrator has configured the firewall
to block port scans and flooding attacks. The firewall allows incoming
connections only via port 25 (smtp) and port 80 (http).

Assume that a disgruntled employee, John Doe, plans to attack the
company’s network. He performs a vulnerability scan of network and
determines that he needs to obtain root privileges on the web server to
achieve his objective.

John Doe discovers that there are two alternative ways for gaining
root privileges – his ultimate goal. One is by launching the FTP/.rhost
attack. In this attack, the .rhost file on the web server is overwritten
by a .rhost file of John Doe’s choosing (say the .rhost file on his own
machine) by exploiting a known vulnerability. This exploit causes the
web server to trust John Doe’s machine, enabling John Doe to remotely
login on the server from his machine without providing a password.
Having gained access to the web server, John Doe conducts the well-
known setuid buffer overflow attack and obtains root privileges.

The second way to attack the web server is via a buffer overflow attack
on the local DNS server. John Doe knows that the system administrator
uses an old unpatched version of the BIND DNS application program.
This enables him to perform the BIND buffer overflow attack on the
local DNS server to take control of the machine. Next, he installs a
network sniffer on the DNS server to observe sessions across the network.



Poolsapassit & Ray 335

Found
ftp / .rhost 

vulnerability

Found BIND 
buffer overflow 

vulnerability

Obtain root 
privilege on 
DNS server

BIND buffer
overflow attack

Observe
session across 

network

Install network
sniffers

Web server 
trusts Machine 

D

Ftp / .rhost
attack

User privilege at 
web server

Remote login

User privilege at 
web server

setuid buffer
overflow attack

session hijack
OR

Figure 3. Attack tree for the corporate network.

Eventually, he hijacks the system administrator’s telnet session to the
web server and gains root privileges.

The two attacks are concisely represented in the simple attack tree in
Figure 3. In general, an attack tree can be created to capture all the
ways a system can be breached (clearly, it would not represent unknown
or zero-day attacks). Such an attack tree can greatly simplify log file
analysis: it is necessary to search the log file only for those operations
that lie in the paths leading to the attack. For example, with reference
to the attack tree in Figure 3, if an investigator knows that the root
account at the web server was compromised, he needs to examine the
log file only for the sequences of operations in the left and right branches
of the attack tree. These operations must be in the same temporal order
as the nodes going down the tree; any other order is not relevant to the
attack. In fact, if the attack-tree-based log file analysis approach does
not manifest a sequence of events leading to a specific attack, the attack
in question is an unknown or zero-day attack.

3. Augmented Attack Trees

To facilitate the use of attack trees in forensic investigations, we define
an “augmented attack tree,” which extends the basic attack tree by as-
sociating each branch of the tree with a sequence of malicious operations
that could have contributed to the attack.



336 ADVANCES IN DIGITAL FORENSICS III

Definition 1 An atomic event is an ordered pair ⟨operation, target⟩.

Definition 2 An atomic event is an incident if its execution contrib-
utes to a system compromise.

Definition 3 An augmented attack tree is a rooted labeled tree given by
AAT = (V, E, ϵ, Label, SIGu,v), where

1. V is the set of nodes in the tree representing different states of par-
tial compromise or subgoals that an attacker needs to move through
in order to fully compromise a system. V ∈ V is the root node of the
tree representing the ultimate goal of the attacker (full system com-
promise). The set V is partitioned into two subsets, leaf nodes
and internal nodes, such that

(i) leaf nodes ∪ internal nodes = V ,

(ii) leaf nodes ∩ internal nodes = φ, and

(iii) V ∈ internal nodes

2. E ⊆ V × V constitutes the set of edges in the attack tree. An
edge (u, v) ∈ E defines an “atomic attack” and represents the state
transition from a child node v to a parent node u (u, v ∈ V ). An
atomic attack is a sequence of incidents. The edge (u, v) is said to
be “emergent from” v and “incident to” u.

3. ϵ is a set of tuples of the form ⟨v, decomposition⟩ such that

(i) v ∈ internal nodes and

(ii) decomposition ∈ [AND-decomposition, OR-decomposi-
tion]

4. Label is the name of the exploit associated with each edge

5. SIGu,v is an attack signature (defined below).

Definition 4 An incident-choice is a group of related incidents, the
occurrence of any one of which can contribute to a state transition in
the attack tree.

Definition 5 An attack signature SIGu,v is a sequence of incident-
choices ⟨incident-choice1, incident-choice2, . . . , incident-choicen⟩ for
which the sequence (incidenti,1, incidentj,2, . . . , incidentm,n) consti-
tutes an atomic attack.



Poolsapassit & Ray 337

Relational Log

Augmented
Attack Tree

Log
Filtering

Suspicious
Activities Table

Evidence

Evidence

Per User
Analysis

Other
Analysis

Flat Log
File

Figure 4. Log file investigation process.

The attack signature corresponding to the attack discussed in Bug-
traq:3446 (CVE-1999-1562) – involving the execution of wuftp on a tar-
get machine (say A) and resulting in a cleartext password disclosure –
is represented by:

((ftp, A),(debug, A),(open localhost, A), ("user name root", A),

("password xxx", A), (quote user root, A),(quote pass root, A))

Definition 6 A node v ∈ internal nodes is an AND-decomposition
if all the edges incident to the node are connected by the AND operation,
or there is exactly one edge incident to the node.

Definition 7 A node v ∈ internal nodes is an OR-decomposition if
all the edges incident to the node are connected by the OR operation.

For an AND-decomposition node v, every subgoal of v represented
by a child of v must be reached in order to reach v. For an OR-
decomposition, the goal v is reached if any one of the subgoals is reached.
Note that reaching a child goal is a necessary, but not sufficient, condi-
tion for reaching the parent goal.

4. Conducting a Forensic Investigation

Figure 4 shows how an augmented attack tree may be used to sup-
port a forensic investigation. First, the augmented attack tree is used



338 ADVANCES IN DIGITAL FORENSICS III

to prepare the set of incidents for all the attack signatures. Next, the
attack tree is used to filter suspicious activities (operations) from non-
suspicious ones. Finally, the suspicious activities are written to a rela-
tional database for further investigation.

A database structure with seven fields is used to store the filtered log
file: id, time stamp, source, source-group, operation, target and dura-
tion. The source field stores the IP address of the connection originator.
The source-group field contains the network address of the originator, if
available. The target field similarly stores the destination address of the
network connection. If investigative policies dictate, additional informa-
tion from the log file may be included in the database.

4.1 Filtering Log Files

The augmented attack tree is first used to generate the set of incidents
corresponding to all the attack signatures for the system. Each edge in
the attack tree specifies an attack signature. Each attack signature is
a collection of several incidents. The union of these incidents covers all
the activities that can result in system compromise. The attack being
investigated must have resulted from some incidents from this set of
incidents. The set of incidents is then used to filter suspicious activities
from normal activities.

The log file filtering algorithm (Algorithm 1) sequentially executes
SQL queries to extract suspicious activities from the original log file. The
results are written to a separate table called the Suspicious-Activities-
Table for further investigation. This table has the same schema as the
log file, but is significantly smaller.

The algorithm starts at the root node of the attack tree. It traverses
every edge incident to the root node. For each edge, the algorithm
extracts the attack signature SIGu,v given by the label of the edge. As
mentioned earlier, the attack signature is the sequence of steps where
an attacker may or may not have a choice of incidents (operation on
a particular machine/target) to execute. For each step in the attack
signature, the algorithm searches the log file for matching operations. An
incident in the table matches the signature if the operation is executed on
the particular machine or against the particular target as indicated in the
attack signature. Note that only matched incidents that were executed
prior to the time that the root node was compromised are suspected.
Next, the suspected incidents are recorded into the Suspicious-Activities-
Table by the selection procedure.

After the algorithm finishes exploring a particular edge e[u,v], it sets a
time threshold for node v by selecting from the earliest incidents in e[u,v].



Poolsapassit & Ray 339

Algorithm 1 (Log File Filtering)
{Description: This algorithm traverses an augmented attack tree in a depth-first
manner starting at the root. It examines all the edges under the current node u
for suspicious incidents. If any suspicious activity is seen in the log file, it extracts
the activity record and stores it in a separate file. When all the nodes have been
visited, the algorithm returns the suspicious activity records as potential evidence.}
{Input: node u (initial from root), database table System-Log-File-Table}
{Output: database table Suspicious-Activities-Table}
BEGIN
if u is a leaf node then

return
else

for all v ∈ Adj[u] do
SIGu,v ← get SIGNATURE(e[u, v])
for all {incidents}i ∈ SIGu,v do

Recordi ← SQL{SELECT id, timestamp, source, source-group,
operation, target, duration FROM System-Log-File-Table

WHERE operation, target Like {incidents}i

AND timestamp < u.timestamp;}
if Recordi ̸= { } then

Insert Recordi into Suspicious-Activities-Table
end if

end for
Set v.timestamp = earliest timestamp of all Recordi from the previous loop
Recursively call Investigate(v, System-Log-File-Table)
Mark e[u,v] if all Recordi are not empty AND node v is previously compro-
mised in Investigate(v)

end for
if node u has an AND-Decomposition AND all edges e[u,v] incident to u are
fully marked then

Mark node u as “Compromised”
end if
if node u has an OR-Decomposition AND there exists an e[u,v] incident to u
already marked then

Mark node u as “Compromised”
end if

end if
END

This threshold is assumed to be the time when node v was compromised.
Therefore, there is no need to suspect any incident in the subtree(s)
under v that executed after this time. Next, the algorithm recursively
calls itself to investigate the subtree under v from which the edge e[u,v]
emerged. All the subtrees under the node are explored recursively. After
all the subtrees under the root node or any intermediate node u have
been explored, the algorithm marks an edge e[u,v] if it finds evidence
that shows that all the steps in the attack signature SIGu,v have been



340 ADVANCES IN DIGITAL FORENSICS III

executed. If node u has an AND-decomposition, node u is considered
compromised when all exploits (represented by edge e[u,v]) incident to u
together with the state v from where the exploit emerged are marked. If
node u has an OR-decomposition, node u is compromised when any one
of its branches together with the state v are marked. Upon completion,
the algorithm returns the augmented attack tree (with certain nodes
marked as compromised) and the Suspicious-Activities-Table.

4.2 Identifying Likely Attack Sources

The next step is to process the Suspicious-Activities-Table produced
by the log file filtering algorithm for candidate sources of the attack.
This is accomplished by sorting the table entries by source aggregated
by source-group to produce the list of candidate sources. Further in-
vestigation of this list can be performed on a per source basis either to
reinforce or discard specific sources.

Algorithm 2 implements this task. The output of the algorithm is a
table named Evidence-Log(source) where “source” is the identity of the
source being investigated. This table has almost the same schema as the
Suspicious-Activities-Table; the only difference is that it has an extra
column called exploit. This field holds the exploit label corresponding to
a relevant edge of the attack tree. If the algorithm returns a non-empty
table, it supports the suspicion of the suspected source. On the other
hand, if the algorithm returns an empty table, no decision can be made
about the involvement of the suspected source. This is because of the
possibility of zero-day attacks. Therefore, the algorithm should be used
very carefully – it only provides evidence of activities that were possibly
involved in an attack.

Algorithm 2 is similar to the log file filtering algorithm. The difference
is that SQL queries are executed on a per source basis for sources in the
Suspicious-Activities-Table. The algorithm marks the suspected records
with the corresponding exploit labels. An investigator may use these
labels to map the evidence back to exploits in the attack tree.

The Evidence-Log(source) Table holds the activities that are believed
to be responsible for an attack on the system. The records are stored
in chronological order. Typically, if an internal node is marked by the
algorithm, it is almost certain that the suspected activity is responsible
for the attack.

5. Conclusions

This paper has two main contributions. The first is an attack-tree-
based filtering algorithm that eliminates information from a log file that



Poolsapassit & Ray 341

Algorithm 2 (Likely Attack Source Identification)
{Description: This algorithm takes an augmented attack tree and the Suspicious-
Activities-Table generated by Algorithm 1 and filters the table based on a suspected
source of attack. The algorithm traverses the augmented attack tree in a depth-first
manner starting at the root. It examines all the edges under the current node u for
suspicious incidents corresponding to the specific source. If any suspicious activity
is seen in the log file, it extracts the activity record and stores it in a separate file.
When all the nodes have been visited, the algorithm returns the set of suspicious
activities for a specific source.}
{Input: node u (initial from root), specific-source, database table Suspicious-
Activities-Table}
{Output: database table Evidence-Log(specific-source)}
BEGIN
if u is a leaf node then

return
else

for all v ∈ Adj[u] do
Sequence SIGu,v ← get SIGNATURE(e[u, v])
for all {incidents}i ∈ SIGu,v do

Recordi ← SQL{SELECT id, timestamp, source, source-group,
operation, target, duration FROM Suspicious-Activities-Table

WHERE source = specific− source AND
operation, target Like {incidents}i

AND timestamp < u.timestamp; }
if Recordi ̸= { } then

Insert Recordi in Evidence-Log(specific-source)
Mark Recordi in Evidence-Log(specific-source) with the exploit label
from the edge e[u,v]

end if
end for
Set v.timestamp = the earliest timestamp of all Recordi from the previous
loop
Recursively call Investigate(v, specific-source, Suspicious-Activities-Table)
Mark e[u,v] if all Recordi are not empty AND node v is previously compro-
mised in Investigate(v)

end for
if node u has an AND-Decomposition AND all edges e[u,v] incident to u are
fully marked then

Mark node u as “Compromised”
end if
if node u has an OR-Decomposition AND there exists edge e[u,v] incident to u
already marked then

Mark node u as ”Compromised”
end if

end if
END



342 ADVANCES IN DIGITAL FORENSICS III

is not related to the attack being investigated. The second is an ad-
ditional filtering algorithm that extracts evidence corresponding to a
particular source’s role in an attack. Both the algorithms produce rela-
tional tables that are significantly smaller than the original log file and
are, therefore, more manageable from an investigator’s point of view.
Furthermore, since the tables are relational in nature, they can be used
as input to a database engine for rapid processing of evidence.

The approach is limited by its inability to handle unknown or zero-
day attacks. This is because it assumes that knowledge exists about how
system vulnerabilities can be exploited; this knowledge is, of course, not
available for unknown or zero-day attacks. If such attacks are suspected,
it is important not to discard the original log file as it may be needed for
a future investigation. Another limitation arises from the assumption
that the log file records all network events, whereas in reality individual
machines maintain their own logs. The approach also assumes that the
log file contains accurate information, i.e., the attacker has not tampered
with the entries. Our research is currently investigating these issues with
the goal of improving the attack-tree-based log file filtering algorithms.

References

[1] P. Ammann, D. Wijesekera and S. Kaushik, Scalable, graph-based
network vulnerability analysis, Proceedings of the Ninth ACM Con-
ference on Computer and Communications Security, pp. 217–224,
2002.

[2] J. Dawkins, C. Campbell and J. Hale, Modeling network attacks:
Extending the attack tree paradigm, Proceedings of the Workshop
on Statistical Machine Learning Techniques in Computer Intrusion
Detection, 2002.

[3] S. Jha, O. Sheyner and J. Wing, Minimization and reliability anal-
ysis of attack graphs, Technical Report CMU-CS-02-109, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Penn-
sylvania, 2002.

[4] S. Jha, O. Sheyner and J. Wing, Two formal analyses of attack
graphs, Proceedings of the Computer Security Foundations Work-
shop, pp. 45–59, 2002.

[5] A. Moore, R. Ellison and R. Linger, Attack modeling for infor-
mation survivability, Technical Note CMU/SEI-2001-TN-001, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2001.



Poolsapassit & Ray 343

[6] C. Phillips and L. Swiler, A graph-based system for network vulner-
ability analysis, Proceedings of the New Security Paradigms Work-
shop, pp. 71–79, 1998.

[7] R. Ritchey and P. Ammann, Using model checking to analyze net-
work vulnerabilities, Proceedings of the IEEE Symposium on Secu-
rity and Privacy, pp. 156–165, 2000.

[8] B. Schneier, Attack trees: Modeling security threats, Dr. Dobb’s
Journal, December 1999.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. Wing, Auto-
mated generation and analysis of attack graphs, Proceedings of the
IEEE Symposium on Security and Privacy, pp. 273–284, 2002.

[10] L. Swiler, C. Phillips, D. Ellis and S. Chakerian, Computer-attack
graph generation tool, Proceedings of the DARPA Information Sur-
vivability Conference and Exposition, vol. 2, pp. 307–321, 2001.


