
Chapter 11

DISK DRIVE I/O COMMANDS
AND WRITE BLOCKING

James Lyle, Steven Mead and Kelsey Rider

Abstract A write blocker allows read-only access to digital data on a secondary
storage device by placing a hardware or software filter between the host
computer and the storage device. The filter monitors I/O commands
sent from the application on the host computer, only allowing commands
to the device that make no changes to its data. This paper examines the
I/O commands used to access secondary storage devices and discusses
their implications for BIOS-based and hardware-based write blockers.

Keywords: Data acquisition, forensic tool testing, write blockers

1. Introduction

A write blocker allows access to digital data on a secondary storage
device while not allowing any changes to be made to the data on the
device. This is implemented by placing a hardware or software filter
between the software executing on a host computer and the secondary
storage device that is to be protected. The filter monitors all the I/O
commands sent from the application on the host machine and only allows
commands to the device that make no changes to its data. This paper
examines the I/O commands used to access secondary storage devices
and discusses their implications for write blockers.

This research is part of the Computer Forensics Tool Testing (CFTT)
Project at the National Institute of Standards and Technology (NIST),
which is developing methodologies for testing forensic tools and devices.
CFTT is a joint project of the Department of Justice’s National In-
stitute of Justice (NIJ) and NIST’s Office of Law Enforcement Stan-
dards and the Information Technology Laboratory. CFTT is supported
by other organizations, including the Federal Bureau of Investigation,
Department of Defense Cyber Crime Center, Internal Revenue Service



164 ADVANCES IN DIGITAL FORENSICS III

Criminal Investigation Division, Bureau of Immigration and Customs
Enforcement and U.S. Secret Service. CFTT’s objective is to provide
measurable assurance to practitioners, researchers and other users that
digital forensic tools provide accurate results. Accomplishing this re-
quires the development of specifications and test methods for forensic
tools, and the subsequent testing of tools against the specifications.

Test results provide the information necessary for developers to im-
prove forensic tools, for users to make informed choices, and for the
legal community and others to understand the tools’ capabilities. Our
approach to testing forensic tools is based on well-recognized method-
ologies for conformance and quality testing. The specifications and test
methods are posted on the CFTT website [4] for review and comment
by the digital forensics community.

The next section presents a simplified description of command inter-
faces to hard drives. Section 3 discusses BIOS access to hard drives,
BIOS commands used for hard drive access, and the behavior of several
BIOS-based write blockers. Section 4 focuses on hardware-based write
blockers and the commands used to access hard drives via the ATA
interface. The final section, Section 5, summarizes our observations.

2. Background

A hard drive is usually attached to a computer by a cable to an inter-
face controller located either on the system motherboard or on a separate
adapter card. The most common physical interfaces are the ATA (AT
Attachment) and IDE (Integrated Drive Electronics) interfaces, includ-
ing variants such as ATA-2, ATA-3 and EIDE (Enhanced IDE). Other
physical interfaces include SATA (Serial ATA), SCSI (Small Computer
System Interface), IEEE 1394 (also known as FireWire or i-Link) and
USB (Universal Serial Bus).

All access to a drive is accomplished by commands sent from the
computer to the drive via the interface controller. However, since the
low-level programming required for direct access through the interface
controller is difficult and tedious, each operating system usually provides
other access interfaces. For example, programs running in a DOS en-
vironment can use two additional interfaces: the DOS service interface
(interrupt 0x21) and the BIOS service interface (interrupt 0x13). The
DOS service operates at the logical level of files and records while the
BIOS service operates at the physical drive sector level. More complex
operating systems such as Windows XP and UNIX variants (e.g., Linux
and FreeBSD) may disallow any low level interface (through the BIOS



Lyle, Mead & Rider 165

or the controller) and only permit user programs to access a hard drive
via a device driver that manages all access to a device.

There are five basic strategies for ensuring that digital data on a
secondary storage device is not modified during a forensic acquisition:

No Protection: If it is not desirable to disrupt an active system,
relevant data could be acquired without any explicit protection
of the source. For example, if a web server cannot be shut down
for business reasons, digital data of interest could be copied to
removable media.

Trusted OS with Trusted Tools: These include operating sys-
tems designed to meet forensic requirements that are used in con-
junction with tools that do not modify secondary storage.

Trusted OS with Trusted Tools (Variation): These include
BIOS-based software write blockers running on DOS. Examples
are HDL from the Royal Canadian Mounted Police (RCMP) and
PDBLOCK (Physical Drive BLOCKer) from Digital Intelligence.

Driver-Based Software Write Blockers: These blockers are
designed for operating systems such as Microsoft Windows that
use a driver stack model (a stack of driver filters). A write block
filter inserted into the driver stack examines all the commands sent
to a device through the stack. A command that could modify a
protected drive is blocked, i.e., it is not passed on to lower layers
of the stack.

Hardware-Based Write Blockers: These devices break the
usual one-segment bus between the host and the storage device
into two segments with the blocker acting as a bridge between the
two bus segments. The blocker intercepts all traffic from the host
to the storage device and only issues safe commands to the storage
device.

This paper focuses on BIOS-based write blockers and hardware-based
write blockers that use the ATA interface.

3. BIOS-Based Write Blockers

A BIOS-based write blocker is intended for use only with a trusted
operating system such as DOS. Such a write blocker is usually designed
as a Terminate and Stay Resident (TSR) program that, once initiated,
intercepts all attempts to access a hard drive through the interrupt 0x13
interface. Only a command that is considered to be “safe” is passed to



166 ADVANCES IN DIGITAL FORENSICS III

the hard drive; otherwise the blocker returns to the calling program
without passing the command to the hard drive.

While write commands to a device should always be blocked, it is not
clear how a write blocker should treat other commands. The 0x13 BIOS
interface uses an eight-bit function code (with 256 possible commands).
Beyond a core set of commands, most function codes are not used. How-
ever, as technology changes, new core commands are often introduced
and other commands are no longer implemented. BIOS vendors may
implement additional commands as desired. Vendors often introduce
system components that implement new commands; also, vendors may
enhance the functionality of existing commands. The most significant
change to the core command set was the introduction of extended com-
mands (0x41--0x49) for accessing hard drives larger than 8 GB.

Table 1. Phoenix BIOS 4.0 interrupt 0x13 command set.

Command Code Category

Reset 00 Control
Get Last Status 01 Information
Read Sectors 02 Read
Write Sectors 03 Write
Verify Sectors 04 Information
Format Cylinder 05 Configuration
Read Drive Parameters 08 Information
Initialize Drive Parameters 09 Configuration
Read Long Sector 0A Read
Write Long Sector 0B Write
Seek Drive 0C Control
Alternate Drive Reset 0D Control
Test Drive Ready 10 Information
Recalibrate Drive 11 Configuration
Controller Diagnostic 14 Configuration
Read Drive Type 15 Information
Check Extensions Present 41 Information
Extended Read 42 Read
Extended Write 43 Write
Verify Sectors 44 Information
Extended Seek 47 Control
Get Drive Parameters 48 Information

The command set for a typical BIOS [7] is presented in Table 1. Note
that only 22 of the possible 256 command codes are defined. Each
command belongs to one of the following six categories:



Lyle, Mead & Rider 167

Read: These commands read from a drive, and should never be
blocked.

Write: These commands write to a drive, and should always be
blocked.

Information: These commands help obtain information about a
drive. They should be allowed or be accurately simulated by the
write blocker so that applications can obtain information about
the drive (e.g., size and drive capabilities).

Control: These commands request a drive to execute an operation
that does not change the drive configuration or contents. It should
be safe to allow these commands, but a tool may block some of
these commands with no ill effects.

Configuration: These commands change the way a drive appears
to the host. They include format and diagnostic commands. For-
mat commands should always be blocked. Diagnostic commands
are questionable: it is safer to block them as they are often vendor-
specific and undocumented, but in practice they may not make any
changes to the drive.

Miscellaneous: These commands, e.g., undefined and discontin-
ued commands, are not included in the other five categories, Since
undefined and discontinued commands should not be issued, it
usually does not matter if the commands are allowed or blocked as
long the write blocker does not encounter these commands. How-
ever, if the BIOS command set were to be extended with a new
write command, this command should, of course, be blocked.

An experiment was conducted to determine the commands that a
write blocker might encounter during a forensic examination (drive pre-
view and acquisition). A monitor was installed to track the interrupt
0x13 commands issued by several common programs doing the routine
tasks specified in Table 2. Several different hosts were used to obtain
a satisfactory coverage of BIOS implementations, including a host with
a legacy BIOS (without the extended read and write commands). The
results of the experiment are presented in Table 3.

The experimental results give rise to the following observations:

Only a few (10) of the 22 possible Phoenix BIOS commands were
observed.

All the defined read commands were observed.



168 ADVANCES IN DIGITAL FORENSICS III

Table 2. Experimental tasks.

Task

Copy/Edit Tools:Copy *.* to image disk, DOS
Copy/Edit Tools:Edit High Sector, Norton Disk Editor
Copy/Edit Tools:Edit Low Sector, Norton Disk Editor
Imaging Tools:Drive(Entire), EnCase 3.22
Imaging Tools:Drive(Entire), EnCase 4.14
Imaging Tools:Drive(Entire), SafeBack 3.0
Imaging Tools:Partition-High, EnCase 3.22
Imaging Tools:Partition-High, EnCase 4.14
Imaging Tools:Partition-High, SafeBack 3.0
Imaging Tools:Partition-Low, EnCase 3.22
Imaging Tools:Partition-Low, EnCase 4.14
Imaging Tools:Partition-Low, SafeBack 3.0
Induced Drive Read Error:Drive(Entire), SafeBack 3.0

One command (Read Long) only appeared when a read command
failed. This was accomplished by simulating a single bad sector on
the drive. A TSR program intercepted each disk read command
and, when the designated sector was requested, returned a read
error to the application. The application encountering the bad
sector then tried the Read Long command to read the simulated
bad sector.

Both the regular write commands were observed, but the Write
Long command was not observed. It is unlikely that the Write
Long command would be issued by a forensic tool as it should
only be used on rare occasions.

Other commands, e.g., Format Cylinder, that could write to a hard
drive should not be issued by forensic tools and were not observed.

The fact that certain commands were not seen in the experiment
does not mean that are never encountered. The missing commands
likely manifest themselves with other programs and/or hardware.

Six software write blockers were tested against the NIST CFTT soft-
ware write blocker specifications [1, 6]. The observation from testing
interrupt 0x13 write blockers is that, although there is agreement on
the treatment of common commands used by write blockers, there are
minor differences in the treatment of the less frequently used commands.
The results are presented in Table 4. The “Spec” column has an “A” for
commands that should be allowed and a “B” for commands that should



Lyle, Mead & Rider 169

Table 3. Observed Interrupt 0x13 commands observed.

Code Command Program Sum

42 Ext Read DOS Copy 36
43 Ext Write DOS Copy 223
41 Check for Extensions EnCase 3.22 14
42 Ext Read EnCase 3.22 657722
43 Ext Write EnCase 3.22 1280151
48 Get Drive Parms EnCase 3.22 14
08 Read Drive Parms EnCase 3.22 23
02 Read Sectors EnCase 3.22 2148
00 Reset EnCase 3.22 6
41 Check for Extensions EnCase 4.14 14
42 Ext Read EnCase 4.14 654989
43 Ext Write EnCase 4.14 1274995
48 Get Drive Parms EnCase 4.14 14
08 Read Drive Parms EnCase 4.14 23
02 Read Sectors EnCase 4.14 2020
00 Reset EnCase 4.14 6
42 Ext Read Norton Disk Editor 2
08 Read Drive Parms Norton Disk Editor 5
02 Read Sectors Norton Disk Editor 6
03 Write Sectors Norton Disk Editor 6
41 Check for Extensions SafeBack 3.0 16
42 Ext Read SafeBack 3.0 939146
43 Ext Write SafeBack 3.0 812666
48 Get Drive Parms SafeBack 3.0 14
08 Read Drive Parms SafeBack 3.0 34
0A Read Long SafeBack 3.0 1
02 Read Sectors SafeBack 3.0 85368
00 Reset SafeBack 3.0 21
04 Verify Sectors SafeBack 3.0 14
03 Write Sectors SafeBack 3.0 62416

be blocked according to the NIST specifications. The columns labeled
“0.4” through “0.8” present the results obtained for different versions
of the RCMP’s HDL write blocker; the columns labeled PDB and PDL
present the results for PDBLOCK and PDLITE. An “A” in a column
indicates that the corresponding tool allowed the command, while a “B”
indicates that it blocked the command. For the miscellaneous commands
in the last row of Table 4: “A” means all commands were allowed, “A3”
that all but three commands were allowed, and “A4” that all but four
were allowed.

For the critical commands, all the tools (except for HDL 0.4) are
in agreement with the NIST specifications. This is because the HDL



170 ADVANCES IN DIGITAL FORENSICS III

Table 4. HDL and PDBLOCK commands (blocked and allowed).

Command Code Category Spec 0.4 0.5 0.7 0.8 PDB PDL

Format Track 05 Config. B B B B B B B
Format Track 06 Config. B B B B B B B
(with Bad Sectors)
Format Cylinder 07 Config. B B B B B B B
Init. Drive Parms. 09 Config. B A A A B A A
ESDI Diag. (PS/2) 0E Config. B A A A B A A
ESDI Diag. (PS/2) 0F Config. B B B B B B B
Cntrlr. RAM Diag. 12 Config. B A A B B A A
Drive Diag. 13 Config. B B B B B A A
Cntrlr. Diag. 14 Config. B A A B B A A
Reset 00 Control A A A A A A A
Seek Drive 0C Control A A A A A A A
Alt. Drive Reset 0D Control A A A A A A A
Recalib. Drive 11 Control A A A A B A A
Extended Seek 47 Control A A A B B A A
Get Last Status 01 Info. A A A A A A A
Verify Sectors 04 Info. A A A A A A A
Read Drive Parms. 08 Info. A A A A A A A
Test Drive Ready 10 Info. A A A A A A A
Read Drive Type 15 Info. A A A B A A A
Chck. Extns. Prsnt. 41 Info. A A A A A A A
Verify Sectors 44 Info. A A A A A A A
Get Drive Parms. 48 Info. A A A A A A A
Read Sectors 02 Read A A A A A A A
Read Long Sector 0A Read A A A A A A A
Extended Read 42 Read A A A A A A A
Write Sectors 03 Write B B B B B B B
Write Long Sector 0B Write B B B B B B B
Extended Write 43 Write B A B B B B B
Undefined Other Misc. B A A4 B B A3 A3

0.4 tool was created before the extended BIOS commands were intro-
duced. Table 4 also documents a change in the design criteria used by the
RCMP. Versions 0.4 and 0.5 were designed to block known write com-
mands and allow everything else. However, starting with version 0.7,
the criteria changed to allow known safe commands and block every-
thing else; this change occurred because of the uncertainty surrounding
the actions of some of the more esoteric commands. As shown in Table
3, several commands were never issued by programs that would be com-
monly used during an acquisition or initial examination of a hard drive.
Although the unused commands may not change data on the hard drive,



Lyle, Mead & Rider 171

without adequate documentation about the behavior of these commands,
it is safer to simply block them.

4. Hardware-Based Write Blockers

Hardware-based write blockers use a two-segment bus to connect a
host computer and a hard drive, one segment between the host and the
write blocker and the other between the blocker and the drive. The two
bus segments do not necessarily use the same protocol; one of the first
hardware blockers used a SCSI connection to the host computer and
an ATA connection to the hard drive. A hardware-based write blocker
intercepts each command from the host and selects a desired course of
action. The most common actions are:

The blocker forwards the command to the hard drive.

The blocker substitutes a different command, which is sent to the
hard drive. This is the case when the blocker uses different bus
protocols to communicate with the host and the hard drive.

The blocker simulates the command without actually forwarding
the command to the hard drive. For example, the device may
already know the size of the drive; upon receiving a request from
the host, instead of re-querying the drive, it may return the answer
directly to the host.

If a command is blocked, the blocker may return either success or
failure for the blocked operation. However, returning failure for
certain commands may cause the host computer to lock up.

The remainder of this section focuses on write blockers that use the
ATA protocol for communicating with the host and the hard drive. Ta-
ble 5 lists the seven releases of the ATA standard [8]; an eighth standard
is currently under development.

The ATA protocol has 256 possible command codes. In the ATA-7
standard, approximately 70 codes are defined as general use commands
(commands that are not reserved, retired, obsolete or vendor-specific).
In addition, there are more than 30 retired or obsolete codes that were
defined in the earlier standards.

Table 6 lists the write commands specified in the seven ATA stan-
dards. An “S” indicates that the listed command (row) is supported for
the given ATA standard (column). Note that only four commands are
defined in all seven standards. Also note that three standards introduced
new write commands beyond the original commands and three standards



172 ADVANCES IN DIGITAL FORENSICS III

Table 5. ATA standards.

Last Draft Standard Publication Date

ATA-1 X3T10/791D Revision 4c 1994
ATA-2 X3T10/0948D Revision 4c March 18, 1996
ATA-3 X3T13 2008D Revision 7b January 27, 1997
ATA/ATAPI-4 T13/1153D Revision 18 August 19, 1998
ATA/ATAPI-5 T13/1321D Revision 3 February 29, 2000
ATA/ATAPI-6 T13/1410D Revision 3 October 30, 2001
ATA/ATAPI-7 V1 T13/1532D Revision 4b April 21, 2004

Table 6. History of ATA write commands.

1 2 3 4 5 6 7 Code Name

N N N N N N S 3A Write Stream DMA Ext
N N N N N N S CE Write Multiple FUA Ext
N N N N N N S 3E Write DMA Queued FUA Ext
N N N N N N S 3D Write DMA FUA Ext
N N N N N N S 3B Write Stream Ext
N N N N N S S 34 Write Sector(s) Ext
N N N N N S S 3F Write Log Ext
N N N N N S S 39 Write Multiple Ext
N N N N N S S 36 Write DMA Queued Ext
N N N N N S S 35 Write DMA Ext
N N N S S S S CC Write DMA Queued
S S N N N N N E9 Write Same
S S S N N N N 33 Write Long (w/o Retry)
S S S N N N N 32 Write Long (w/ Retry)
S S S N N N N 3C Write Verify
S S S S N N N 31 Write Sector(s)
S S S S N N N CB Write DMA (w/o Retry)
S S S S S S S E8 Write Buffer
S S S S S S S 30 Write Sector(s)
S S S S S S S C5 Write Multiple
S S S S S S S CA Write DMA (w/ Retry)

discontinued six other write commands. The critical observation is that
the command set changes quite significantly every few years.

We conducted an experiment to observe the commands issued during
startup by three different computers. A protocol analyzer (Data Transit
Corporation Bus Doctor Protocol Analyzer) was used to capture ATA
bus activity during the startup and shutdown of various computer-BIOS
combinations. The commands listed in Table 7 were issued from the



Lyle, Mead & Rider 173

Table 7. Commands issued from BIOS during startup.

Host and BIOS Command

Dell Phoenix 4.0 Rel 6.0 10=Recalibrate
Dell Phoenix 4.0 Rel 6.0 90=Exec Drive Diag
Micron Phoenix 4.0 Rel 6.0 90=Exec Drive Diag
Nexar Award V4.51PG 90=Exec Drive Diag
Dell Phoenix 4.0 Rel 6.0 91=Init Drv Params
Micron Phoenix 4.0 Rel 6.0 91=Init Drv Params
Nexar Award V4.51PG 91=Init Drv Params
Dell Phoenix 4.0 Rel 6.0 C6=Set Multiple Mod
Micron Phoenix 4.0 Rel 6.0 C6=Set Multiple Mod
Nexar Award V4.51PG C6=Set Multiple Mod
Dell Phoenix 4.0 Rel 6.0 E3=Idle
Micron Phoenix 4.0 Rel 6.0 E3=Idle
Nexar Award V4.51PG E3=Idle
Dell Phoenix 4.0 Rel 6.0 EC=Identify Drive
Micron Phoenix 4.0 Rel 6.0 EC=Identify Drive
Nexar Award V4.51PG EC=Identify Drive
Dell Phoenix 4.0 Rel 6.0 EF=Set Features 03=Set Transfer Mode
Micron Phoenix 4.0 Rel 6.0 EF=Set Features 03=Set Transfer Mode
Nexar Award V4.51PG EF=Set Features 03=Set Transfer Mode

BIOS to drive 0 of the primary ATA channel. Note that the BIOS
did not issue any write commands to the hard drive for all the systems
examined.

We also used the protocol analyzer to observe commands issued by
several operating systems (DOS 6.22, PCDOS 6.3, FreeBSD 5.21, Red-
Hat Linux 7.1, Red Hat Personal Desktop Linux 9.1, Windows 98, Win-
dows NT 4.0, Windows 2000 and Windows XP Pro) during boot and
shutdown. The results of our investigation are presented in Table 8.
Neither PCDOS 6.3 nor DOS 6.22 issued any write commands during
startup and shutdown. Also, note that the newer operating systems
use the faster Write DMA (0xCA) command instead of the slower Write
(0x30) command.

Several test reports for hardware-based write block devices have been
published by NIJ [1]. These blockers were tested against a specifica-
tion [5] developed by the CFTT Project. Some interesting results are:

One write blocker substitutes the Read DMA (0xC8) command for
the Read Multiple (0xC4) command [3].

One write blocker disallows certain read commands [3] (see Table
9).



174 ADVANCES IN DIGITAL FORENSICS III

Table 8. Write commands issued during startup and shutdown

Host/OS Source Count Command

FreeBSD5.2.1 Boot 196 CA=Write DMA
FreeBSD5.2.1 Boot 1 30=Write (w/ Retry)
FreeBSD5.2.1 Shutdown 104 CA=Write DMA
RH7.1 Boot 759 CA=Write DMA
RH7.1 Login 166 CA=Write DMA
RH7.1 Shutdown 297 CA=Write DMA
RH9PD.1 Boot 763 CA=Write DMA
RH9PD.1 Login 186 CA=Write DMA
RH9PD.1 Shutdown 402 CA=Write DMA
W98DS3 Boot 55 CA=Write DMA
W98DS3 Boot 58 30=Write (w/ Retry)
W98DS3 Login 22 30=Write (w/ Retry)
W98DS3 Shutdown 76 30=Write (w/ Retry)
W98dsbd Boot 10 30=Write (w/ Retry)
W98dsbd Boot 48 CA=Write DMA
Win2KPro Boot 424 CA=Write DMA
Win2KPro Login 277 CA=Write DMA
Win2KPro Shutdown 269 CA=Write DMA
Win98SE Boot 65 30=Write (w/ Retry)
Win98SE Shutdown 90 30=Write (w/ Retry)
WinNT4.0 Boot 452 C5=Write Multiple
WinNT4.0 Login 520 C5=Write Multiple
WinNT4.0 Shutdown 102 C5=Write Multiple
WinXPPro Boot 967 CA=Write DMA
WinXPPro Shutdown 272 CA=Write DMA

Another blocker allowed some commands that could modify a hard
drive. However, these commands are not typically used without
special software [2]:

– Download Microcode (0x92): This command enables hard
drive firmware to be reprogrammed. While the command
could change drive behavior, information about the command
is drive-model-specific and is generally not available.

– Format Track (0x50): This command is not defined in the
current ATA specifications; however, it was defined in the
older specifications (ATA-1 through ATA-3). The command
can be used to erase information on an older drive that sup-
ports the instruction, but it cannot be used to change any
user or operating system data stored on the drive.



Lyle, Mead & Rider 175

Table 9. Blocker commands.

Commands Sent to Blocker Commands Allowed by Blocker

20=Read (w/ Retry) 20=Read (w/ Retry)
21=Read (w/o Retry) 24=Read Sector Ext
22=Read/L (w/ Retry) 25=Read DMA Ext
23=Read/L (w/o Retry) 27=Read Max Addr Ext
24=Read Sector Ext 25=Read DMA Ext
25=Read DMA Ext C8=Read DMA
26=Read DMA Queue Ext C8=Read DMA
27=Read Max Addr Ext F8=Read Natv Max Addr
29=Read Multiple Ext
2A=Read Stream DMA
2B=Read Stream PIO
2F=Read Log Ext
40=Read/V (w/ Retry)
41=Read/V (w/o Retry)
42=Read/V (w/ Ext)
B0=Smart D0=Smart Read Data
B0=Smart D5=Smart Read Log
C4=Read Multiple
C7=Read DMA Queued
C8=Read DMA
C9=Read DMA (w/o Retry)
E4=Read Buffer
F8=Read Natv Max Addr

– Smart Write (0xB0, 0xD6): This command records informa-
tion in a device maintenance log, which is stored in a different
data area from the data files and operating system data.

– Vendor-Specific Commands: These commands, which are of-
ten undocumented, are specific to hard drive models.

– CFA Erase (0xC0): This command applies to compact flash
devices, not hard drives.

– SATA Write FPDMA (0x61): This command was noted by
the protocol analyzer in a parallel ATA test, but the command
is only valid for Serial ATA (SATA) devices.

5. Conclusions

Our work has focused on BIOS-based and hardware-based write block-
ers. We have used monitoring software to record BIOS command usage
by BIOS-based write blockers in a DOS environment, and a protocol



176 ADVANCES IN DIGITAL FORENSICS III

analyzer to record direct ATA command usage by hardware-based write
blockers in a variety of environments.

Our experiments indicate that, in the DOS environment, only a small
subset of possible BIOS commands are used for system startup, shut-
down and routine forensic tool operations.

A similar situation is encountered in the case of ATA commands.
While some I/O commands are present in all versions of the ATA speci-
fications, the changes made to the specifications on a fairly regular basis
lead to new commands being implemented and several old commands
being dropped. For direct access to ATA drives during system startup
and shutdown, only a small subset of possible commands are used for a
given operating system and the command sets vary for different operat-
ing systems. For example, Windows 98 uses the Write (0x30) command,
Windows NT uses the Write Multiple (0xC5) command, and Windows
XP and Linux versions use the Write DMA (0xCA) command.

Other interesting observations are that write blockers also block cer-
tain read commands; some (software and hardware) write blockers disal-
low known write commands and allow everything else; others allow only
known safe commands and block everything else. Furthermore, some
write blockers filter commands that may write arbitrary user or oper-
ating system data, but they allow some unsupported or atypical com-
mands that have the potential to hide or destroy data (e.g., Download
Microcode and Format Track).

Future work related to write blockers will focus on other interfaces,
including SATA, SCSI, USB and IEEE 1394.

Finally, although certain company names and products are mentioned
in this work, in no case does the identification of these companies and/or
products imply any recommendation or endorsement by NIST or the
U.S. Government.

References

[1] National Institute of Justice (NIJ), Computer Forensic Tool Testing
Project (www.ojp.usdoj.gov/nij/topics/ecrime/cftt.htm).

[2] National Institute of Justice (NIJ), Test Results for Hardware Write
Block Device: FastBloc IDE (Firmware Version 16), NIJ Report
NCJ 212956, Washington, DC (www.ncjrs.gov/pdffiles1/nij/212956
.pdf), 2006.

[3] National Institute of Justice (NIJ), Test Results for Hardware Write
Block Device: MyKey NoWrite (Firmware Version 1.05), NIJ Re-
port NCJ 212958, Washington, DC (www.ncjrs.gov/pdffiles1/nij
/212958.pdf), 2006.



Lyle, Mead & Rider 177

[4] National Institute of Standards and Technology (NIST), Computer
Forensic Tool Testing Project (www.cftt.nist.gov).

[5] National Institute of Standards and Technology (NIST), Hardware
Write Block, (www.cftt.nist.gov/hardware write block.htm).

[6] National Institute of Standards and Technology (NIST), Software
Write Block (www.cftt.nist.gov/software write block.htm).

[7] Phoenix Technologies, PhoenixBIOS 4.0 Revision 6 User’s Manual,
Phoenix Technologies, San Jose, California, 2000.

[8] Technical Committee T13 – International Committee on Informa-
tion Technology Standards (T13–INCITS), AT Attachment (ATA)
Storage (www.t13.org).


