Chapter 4

ANALYSIS OF FIELD DEVICES USED
IN INDUSTRIAL CONTROL SYSTEMS

John Mulder, Moses Schwartz, Michael Berg, Jonathan Van Houten,
Jorge Mario Urrea and Alex Pease

Abstract A significant portion of the critical infrastructure relies on the proper op-
eration of industrial control system (ICS) field devices. Unfortunately,
security solutions for ICS field devices have not progressed sufficiently
to address emerging threats. A primary shortfall is the ability to iden-
tify device components and analyze their lower level functionality. This
paper describes the results obtained from hardware tear-downs of ICS
field devices. The results demonstrate the ability to identify key com-
ponents, analyze device firmware and examine backplane protocols — all
necessary steps for the dynamic analysis and development of automated
security solutions.

Keywords: Industrial control systems, device analysis, firmware analysis

1. Introduction

Industrial control system (ICS) field devices monitor and control physical
processes in the critical infrastructure. Prior to Stuxnet [2], ICS security ef-
forts focused primarily on human-machine interfaces (HMIs) and other super-
visory control and data acquisition (SCADA) software. The high-profile attack,
however, demonstrates the lack of security associated with ICS field devices.
Meanwhile, there has been relatively little research focused on analyzing vul-
nerabilities associated with these critical assets.

Although many security solutions exist for analyzing software on commodity
personal computers, limited tools are available and only a shallow understand-
ing exists of the vulnerabilities related to ICS field devices. The vulnerabilities,
however, do exist — initial research on ICS field devices has identified criti-
cal security flaws (e.g., hard-coded passwords extracted from firmware images,
unauthenticated firmware uploads, multiple unauthenticated interfaces, and
weak password hashing) [1, 3-6, 8]. As an example, in January 2012, a coali-

46 CRITICAL INFRASTRUCTURE PROTECTION VI

tion of security researchers released a set of zero-day vulnerabilities targeting
seven embedded ICS devices [7]. Therefore, it is imperative that future security
research focus on the analysis of the firmware and hardware implementations.

This paper describes a process for analyzing ICS field devices. Specifically,
the components of various programmable logic controllers (PLCs) are examined
to derive fundamental attributes that relate to common design characteristics.
Note that this analysis is not intended to identify specific vulnerabilities or de-
sign flaws. Rather, it seeks a deeper understanding of device design, which is a
prerequisite for identifying attack surfaces. The approach is consistent with an
adversarial viewpoint — no attempts were made to leverage inside knowledge or
obtain vendor cooperation. The analysis of a device was performed by disassem-
bling the device, cataloging its electronic components and creating a functional
diagram. The electrical connectivity between the pins was then examined to
verify device interconnections. After characterizing the hardware, several tech-
niques were used to extract the firmware, including locating firmware updates,
connecting via debug ports and reading the flash memory contents using a chip
programmer. Finally, methods were explored for examining the backplanes
used for communications between PLC subcomponents.

2. PLC Overview

This paper primarily focuses on PLCs; however, the methodology and re-
sults are applicable to a wide range of embedded devices. Indeed, many types
of automation equipment have similar control capabilities. For example, the
primary automation components used in electrical substations are remote ter-
minal units (RTUs). RTUs perform data aggregation and protocol conversion
for the other devices in a substation. Many RTUs, sometimes called real-time
automation controllers or substation controllers, execute the same control logic
as a PLC. Note that PLC logic is usually written in a language defined in IEC
61131-3 such as Ladder Logic or Instruction List. The primary differences be-
tween PLCs and RTUs are in their target markets and configuration details
(e.g., input and output specifications).

Modular PLCs, as demonstrated in Figure 1, comprise discrete modules
that are connected via a backplane. The processor module reads values from
the communications and input/output (I/O) modules, interprets and executes
the control logic, and writes values to the communications and I/O mod-
ules. The communications modules dissect complex communications-protocol-
specific code. Because some control system protocols are extremely complex,
communications modules may possess significant processing power and intelli-
gence. I/O modules convert signals between low voltage (3.3V DC or 5V DC),
low current (milliamps) control logic and high voltage (244V DC), high current
(amps) process control. Additionally, analog I/O modules contain analog-to-
digital converters and digital-to-analog converters.

Mulder, et al. 47

Operating System Operating System
Backplane Driver Backplane Driver

DG

Ladder Logic Protocol Driver
Processor Module Communications 1/0 Module
Module

Protocol Port
(Protocol Chip)

—- —
Crn ||)

)\ =

(PLC Chassis and Backplan)

Figure 1. Generic modular PLC.

Hardware

3. Hardware Analysis

PLC hardware is characterized by disassembling a device, photographing
and cataloging the components, researching the parts, and determining the
electrical connectivity between components. Although some embedded devices
have minimal components that are easy to identify, even a simple PLC has
many electronic parts. As such, a heuristic technique was used to discern the
components of interest (e.g., memory and processor). The heuristic includes
pin-count (higher is more interesting), type of chip package (ball grid array is
often used for high-end components), proximity to other interesting parts, and
chip markings. Although the heuristic technique approximates the significance
of each component, it is adequate for this research effort.

Internet search queries were used for component identification, in particu-
lar, to correlate model numbers, brand markings, chip packages and pin counts.
After identifying the components, a logical view of the PL.C was derived. Com-
ponent functions and connectivity were discerned using technical data sheets
and tracings on the physical circuit card. Findings were verified using an ohm-
meter to determine the connections between pins on different chips.

3.1 Example Device Analysis

An Allen-Bradley ControlLogic (Logix) PLC manufactured around 2005 is
used to illustrate the methodology (Figure 2). It is one of the most popular

48 CRITICAL INFRASTRUCTURE PROTECTION VI

—dl B _u_

[—="1 —

Figure 2. Allen-Bradley Logix PLC.

lines of modular PLCs in North America. The PLC chassis is shown at the
top of the Figure 2; the Logix 5555 processor is at the bottom left and the
EtherNet/IP modules are at the bottom right. The PLC has a chassis with a
power supply and slots for a control module, network communication modules
and I/O modules. Figure 3 shows the logical diagram for the connections
between the modules and components. This representation clarifies the roles
of the various PLC components.

Annotated photographs help clarify the physical layout of the device com-
ponents — with sufficiently detailed photographs, it is possible to trace the
connections on the top and bottom layers of the printed circuit board. Fig-
ure 4 shows an annotated photograph of the Logix 5555 processor module and
Figure 5 shows an annotated photograph of the EtherNet/IP module. The
photographs are each linked to part lists in Tables 1 and 2, respectively. The
part name references the data sheet descriptor. The manufacturer part number
is a combination of the brand and part number based on the data sheet, when
available, or trademarks found on a chip. Note that the markings are the same
symbols that are found on the surfaces of the chips.

3.2 General Findings

The majority of field devices we analyzed used production chips from large
manufacturers; only a few of the chips were variants produced for a specific
vendor. Additionally, we discovered that configurations of flash memory and
RAM are consistent with other embedded systems and typically use fairly sim-

Mulder, et al. 49

Logix 5555 Processor EtherNet/IP Module
Memory Board
| Flash ” Flash | —
erne
RJ45
Transceiver
| Flash ” Flash |
| Flash ” Flash |
| Riser ” Flash |
CPLD % %
>
gl = [7] 2| 2
Riser =
=] =
3 g o |l e
g [T = (=]
s Philips ARM [2 || 5
Main Processor] a -
< Freescale =
© CPU32+ 25MHz =
1MB SRAM L Comm.
— Controller
1MB SRAM
Philips ARM o Philips ARM
Backplane g Backplane
Comm. S Comm.
o
Processor Processor
I |
Backplane Backplane
Connector Connector
Backplane
Allen-Bradley 1756-A7 B Chasis

Figure 3. Logical component diagram of the Allen-Bradley Logix PLC.

ple two- to four-layer boards, whereas normal personal computer boards often
have seven layers. Despite this simplicity, the interconnections can be difficult
to discern primarily because the board layout is driven by efliciency.

The most common processor architectures identified for ICS field devices
were ARM, PowerPC and Motorola 68k. However, we also discovered that
many devices are based on x86 processors, sometimes using commodity PC/104
form factor embedded computers to provide processing power. Multiple proces-
sor architectures on a single board are also common. For example, one device
uses a Freescale PowerPC main processor and a separate ARM backplane com-
munication processor. This is not a surprising configuration; however, deep
analysis efforts require expertise in multiple architectures.

50 CRITICAL INFRASTRUCTURE PROTECTION VI

Figure 5. Allen-Bradley EtherNet/IP module (annotations in Table 2).

4. Firmware Analysis

The analysis of PLC device firmware differs from the typical analysis of
software (binaries). In general, the toolset for personal computers is not well
suited to firmware analysis. Additionally, it may require considerable effort to
merely identify the processor and architecture of an embedded device.

The main challenges in understanding embedded devices stem from the di-
versity of components. Each device uses a different combination of processor
architecture, embedded operating system, board design, backplane connector,
protocol and logic representation. Many vendors use custom-built components,
such as a system-on-a-chip (SOC) main processor, that do not have openly
available documentation. The analysis is more difficult because SOCs and cus-
tom components are potentially unique, poorly documented and few analysts
have experience with them. Unlike “normal” software analysis, the analysis of
firmware can depend on chip-specific features. In the case of firmware, vulner-

Mulder, et al. 51

Table 1. Allen-Bradley Logix 5555 processor module part list (see Figure 4).

Part Name Manufacturer Markings
Part Number

. Backplane NXP (Philips PHILIPS ARM
Communications Semiconductors) VY21422E
Processor VY21422E2 Y43729Y1 03

(Customer-specific KP0250 E
product; Discontinued MIDRANGE P3E
31 Dec 2005) 943631-64

9 Main Processor NXP (Philips PHILIPS ARM
Semiconductors) VY21754A
VY21754A2 Y35737Y1 08
(Customer-specific KPr0224 A
product; Discontinued ARGUS-R2.1
31 Dec 2005) 943881-71

Backplane Connector

® ©

1M High Speed Hitachi HM621864HB JAPAN 0133
SRAM HM621864HBLJP-20
00007NNO
@ 4 Mb Single Supply ~ STmicroelectronics M29F040B
Flash Memory M29F040B 45K1
585200210
SINGAPORE
@ Y2K-Compliant Dallas Semiconductor DALLAS
Watchdog DS1501 (May also be DS1501YEN
Real-Time Clock branded MAXIM) 0247A6
045AM
@ 32 MB CMOS 5.0V AMD AM29F032B AM29F032B
only, Uniform (Made by Spansion) -90EIL
Sector Flash 0113DPB H
Memory ©1998 AMD

Riser to Memory Board

Additional Flash Memory

abilities in startup and interrupts are just as interesting as vulnerabilities in
network code and application logic.

52 CRITICAL INFRASTRUCTURE PROTECTION VI

Table 2. Allen-Bradley Logix 5555 EtherNet/IP module part list (see Figure 5).

Part Name Manufacturer Markings
Part Number
. Backplane NXP (Philips PHILIPS ARM
Communications Semiconductors) 0102 y21230Y1
Processor VY21086-2 VY21086-
(Customer-specific Mid_range 2.1
product; Discontinued 943361-62
31 Dec 2005)
9 MC68360 QUad Freescale Semiconductor MCG68EN360CEM25L
Integrated MC68360 (CPU32+ OK36E IQAC0049
Communication architecture, 25 MHz) KOREA

Controller (QUICC)

Backplane Connector

Enhanced Ethernet

Freescale Semiconductor

MC68160 AFB

Transceiver MC68160A HGRO0045

5V Byte Alterable Xicor X28HC64 XICOR

EEPROM X28HC64J1-90
Cy0047

1M x 4-bit CMOS Hyundai HY514400A HY514400A

DRAM (Eight total) LJ-60

9751C KOREA

Q © 6 © e

5V FlashFile Intel 28F008SA (Sticker ~ PA28F008SA
Memory covering this chip shows 85
Ethernet MAC address) U0200321W
(M)(C) "92 ‘96
Flash
High-Density EE Lattice Semiconductor Lattice

CMOS MACH210A MACH210A-

Programmable 10JE -12J1

Logic B023PE2

Analysis can proceed quite rapidly when the processor architecture is easy
to determine. However, when the processor/operating system combinations
are difficult to discern, the initial identification step in device analysis can take
a significant amount of effort. To simplify the task, we developed a process
for analyzing PLC device firmware that focuses on obtaining firmware images

Mulder, et al. 53

[Locate firmware on device] [Download firmware]

Upload firmware to
device
Read with chip Unpack Capture n'etwork
programmer traffic

Reassemble from
captures

Desolder flash

Identify a debug
interface

\ 4
Extract firmware Determlne memory
with programmer

layout

N

Initial firmware analysis

— /

. - Instruction Pre/post Hardware
(Slgnatures) (Strings) (Data stores) frequency function) (data sheets)

Identify processor

Identify interrupts,
loops, boot loader,
reset vector

Analyze
disassembly

Figure 6. Process for analyzing embedded device firmware.

and identifying the processor architecture. The firmware analysis process is
outlined in Figure 6.

4.1 Acquiring Firmware
We investigated four methods for acquiring firmware:
m Read directly from the device using a debug port.
m Read directly from flash memory using a chip programmer.
m Unpack firmware update files.

m Capture network traffic during a firmware update.

Each method for obtaining firmware has inherent difficulties. Connecting via
debug ports (e.g., JTAG) works for some devices; however, it is often the case
that the interfaces are disabled or non-standard protocols are used. Reading
firmware from flash memory consistently worked to obtain the firmware, but
unusual memory layouts can make reassembling the entire firmware extremely
difficult.

Vendor firmware updates were often not available for the devices of inter-
est to allow the unpacking of update files. In situations where the updates

54 CRITICAL INFRASTRUCTURE PROTECTION VI

were available, the firmware contents had to be extracted and reconstructed.
Additionally, firmware obtained by capturing network traffic from an update
or backup mechanism had to be extracted from the data sections of multiple
network packets. Whether they are captured on disk or reconstructed from
network captures, the firmware updates obtained from vendor websites often
did not represent the actual layout and configuration of the firmware on the
devices.

4.2 Identifying the Device Architecture

Identifying the processor and memory architecture of a device was one of
the more challenging tasks. In some cases, processors can be identified by their
chip markings. However, even when a processor is identified, the memory archi-
tectures can vary considerably, especially the flash memory located on the mi-
crocontroller, the separate flash and memory boards with a field-programmable
gate array (FPGA) interface, and the traceable direct connections between mi-
croprocessor and memory. Depending on the design or manufacturing date of
a device, it may be possible to guess the likely processors based on their pop-
ularity at the time, the relationships between companies, and the processors
used in similar devices.

In some cases, we identified the processor type by comparing byte patterns
to function calls, register usage and instruction frequency for a likely processor.
For example, at the beginning of a function call there is often a store instruction
to preserve non-volatile registers and a load instruction is often present at the
end of a function. After a processor is tentatively identified, the result can be
verified by comparing the firmware code with other code for the processor. The
start of function calls, register usage and instruction frequency often facilitate
this verification.

5. Communication Backplane Analysis

Analyzing the firmware for every PLC or field device would be extremely
time-consuming due to the wide range of hardware and firmware used even
within a single product line. However, network protocols are common to a wide
range of PLCs. In fact, we discovered that modular PLCs appear to use variants
of common network protocols for backplane communications between modules.
This means that the backplane presents an avenue for analyzing a wide range of
PLCs. Note, however, that backplane analysis is not a replacement for firmware
analysis; rather, the two approaches are complementary.

5.1 Identifying Physical Properties

Identifying the pin spacing and layout provides the initial structure of the
backplane and allows an analyst to create custom connectors for data collection.
A continuity tester and voltmeter can be used to identify various signals on the
PLC backplane, which provides insight into the likely locations of ground pins

Mulder, et al. 59

and some power pins. It is necessary to identify the voltage on each pin to
avoid damaging the logic analyzer and to further narrow the pins of interest.
Additionally, a voltmeter can be used to identify the operating voltage of each
pin on the backplane through startup and normal operation of the PLC.

5.2 Analyzing Pin Logic

After identifying the backplane pins and physical properties, a logic ana-
lyzer may be used for deeper analysis. The logic threshold and sampling rate
are required to obtain clean captures of normal backplane traffic. These are
determined through trial and error. Captures from the logic analyzer may be
reviewed to form hypotheses about the use of each pin. Some possible signals
of interest include clock-enable, end-of-frame, frame-header, clock and data.
The packet timing is first determined by measuring the length of packets and
gaps between packets. The backplane traffic is then monitored under several
different hardware configurations by removing and reordering modules in the
PLC. From these captures, it is possible to identify the modules that created
the various packets.

5.3 Translating Backplane Traffic into Bytes

After the data signals have been identified, the analysis of the transmitted
data can begin. Logic analyzer software can be used to export the backplane
traffic captures to the comma-separated value (CSV) format. The presence
of a signal (i.e., voltage above the determined threshold) is represented as a
binary one and the absence (i.e., voltage below the threshold) is represented
as a binary zero. A simple script can be used to parse the CSV file, translate
the binary signals into bytes and identify the header and data sections. If the
backplane sends bytes in parallel, it is necessary to identify the order of data
pins. This is accomplished by testing different combinations and searching
for data bytes that match known patterns (e.g., ASCII, low digits or network
protocol headers).

5.4 Analyzing the Backplane Protocol

In order to understand the parser byte output, it is necessary to analyze
the backplane protocol. The first step is to determine if the protocol is openly
documented. The protocol specification identifies the required fields and unique
field values, which can help categorize packets. If software implementations
of the protocol are available, they can be used to determine the structure of
conversations and packets. Additionally, a comparison between network packet
captures and backplane traffic captures can provide insight into the use of some
fields; this is especially useful when the captures were taken during the same
time period. In our experience, PLC backplanes are often based on network
protocols used by PLCs to communicate with external entities.

56 CRITICAL INFRASTRUCTURE PROTECTION VI

5.5 Dissecting Backplane Traffic

The final step in backplane analysis is to dissect the backplane traffic. A pro-
tocol traffic dissector (e.g., Wireshark) can automatically identify some fields
in request and response packets. However, most traffic dissectors do not han-
dle backplane protocols. Therefore, it may be necessary to develop a custom
dissector program for analysis.

We have developed a dissector program that consists of a pre-processing
script and a protocol field identifier. The pre-processing script reads in binary
dumps, identifies packet boundaries, removes collection timestamps and writes
ASClII-encoded hex values. The protocol field identifier reads in ASCII-encoded
hex values, removes stray line noise, identifies known headers and payloads, and
prints a human-readable summary of the packets.

6. Conclusions

Attack techniques that target PLCs will continue to grow in sophistication.
As security mechanisms are developed to protect the application layer, attack-
ers will begin to exploit lower levels of abstraction. It is imperative that the
security community prepare for this threat and develop automated tools and
techniques. The techniques described in this paper can be leveraged to develop
automated tools for performing dynamic analyses of PLCs used in the critical
infrastructure.

Acknowledgements

This research was supported by the Laboratory Directed Research and Devel-
opment (LDRD) Program at Sandia National Laboratories, Albuquerque, New
Mexico. Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy National Nuclear Se-
curity Administration under Contract No. DE-AC04-94AL85000.

References

[1] D. Beresford, Exploiting Siemens Simatic S7 PLCs, presented at Black Hat
USA, 2011.

[2] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier, Symantec,
Mountain View, California, 2011.

[3] Industrial Control System Cyber Emergency Response Team (ICS-CERT),
Schneider Electric Quantum Ethernet Module Multiple Vulnerabilities,
ICS-CERT Alert 11-346-01, Department of Homeland Security, Washing-
ton, DC, 2011.

[4] H. Moore, Shiny old VxWorks vulnerabilities, Metasploit (community.
rapid7.com/community/solutions/metasploit/blog/2010/08/p2/shi
ny-old-vxworks-vulnerabilities), August 2, 2010.

Mulder, et al. 57

[5]

D. Peck, Security testing, vulnerabilities and exploits in operating systems
used in control system field devices, Proceedings of the SCADA Security
Scientific Symposium, 2010.

D. Peck and D. Peterson, Leveraging Ethernet card vulnerabilities in field
devices, Proceedings of the SCADA Security Scientific Symposium, 2009.

D. Peterson, Project Basecamp at S4, Digital Bond Blog, Digital Bond,
Sunrise, Florida (www.digitalbond.com/2012/01/19/project-baseca
mp-at-s4), January 19, 2012.

R. Santamarta, Reversing industrial firmware for fun and backdoors, Re-

versemode (reversemode.com/index.php?option=com_content&task=
view&id=80&Itemid=1), December 12, 2011.

