
Chapter 7

USING BLOOM FILTERS TO
ENSURE ACCESS CONTROL AND
AUTHENTICATION REQUIREMENTS
FOR SCADA FIELD DEVICES

Jeffrey Hieb, Jacob Schreiver and James Graham

Abstract The critical infrastructure cannot operate without SCADA systems; this
has made the task of securing SCADA systems a national security prior-
ity. While progress has been made in securing control networks, security
at the field device level is still lacking. Field devices present unique secu-
rity challenges and these challenges are compounded by the presence of
legacy devices. This paper describes a technique that uses Bloom filters
to implement challenge-response authentication and role-based access
control in field devices. The approach, which is implemented in an in-
line security pre-processor, provides for rapid and constant access check
times. Experiments involving a prototype device demonstrate that the
false positive rate can be kept arbitrarily low and that the real-time
performance is acceptable for many SCADA applications.

Keywords: SCADA systems, field devices, security, Bloom filter

1. Introduction

Supervisory control and data acquisition (SCADA) systems and distributed
control systems (DCS) are networks of computer systems that provide remote
telemetry and control of physical systems and processes. Collectively they are
referred to as industrial control systems (ICSs). ICSs play a central role in
the operation of many critical infrastructures such as electric power, drinking
water, waste water treatment, oil and gas distribution, and industrial manu-
facturing. A typical ICS comprises a master, one or more field devices and a
communications infrastructure. The master or master terminal unit (MTU)
processes information received from field devices, presents the information to
operators and engineers via a human machine interface (HMI), and sends con-
trol directives to field devices. The master and field devices are connected via

86 CRITICAL INFRASTRUCTURE PROTECTION VI

a communications network, which may include leased serial lines, telephone
circuits, cellular networks and UHF/VHF radio. The communication protocols
used by the master and field devices are referred to as SCADA protocols.

When these systems were originally deployed, little attention was paid to se-
curing them because the systems were physically isolated and used proprietary
hardware, software and communication protocols [2–4, 7, 9]. However, due
to network connectivity and convergence, these systems have become highly
vulnerable to cyber attacks [7, 9]. Many of the initial efforts to secure these
systems use traditional approaches such as firewalls and network intrusion de-
tection systems. While this has been an appropriate first response, Stuxnet and
other recent threats underscore the importance of also securing field devices.

We have worked on the task of securing field devices for several years. Our
initial effort involved the development of a security-hardened architecture for
field devices. Our recent work has focused on developing an in-line security
solution for legacy devices using a microkernel based security-hardened archi-
tecture. This device, which we call a field device security pre-processor (FD-
SPP), provides authentication and role-based access control (RBAC) for legacy
field devices. Enforcing RBAC requires checking whether or not a message or
operation is allowed, but this involves multiple set membership checks that can
have a negative impact on performance.

This paper presents a novel approach using Bloom filters that speeds up field-
device-level access control checks to prevent interference with process control
operations. In particular, a dual Bloom filter structure is used to minimize
security processing while reducing and quantifying the risk of potential attacks.
The resulting FD-SPP provides two key security features: authentication using
challenge-response authentication and role-based access control enforcement.

2. Background

The field device security pre-processor (FD-SPP) is an in-line device for
securing field devices. The FD-SPP uses a security-hardened field device ar-
chitecture proposed by Hieb, et al. [6]. A key advantage of this architecture is
that it supports formal verification techniques. The FD-SPP is placed in front
of a legacy field device by connecting the communication network interface to
the FD-SPP and then connecting the FD-SPP to the field device. A software
component running on the MTU/HMI or an external hardware device similar
to the FD-SPP works with the FD-SPP to implement security functionality.
Figure 1 shows the placement of a FD-SPP in a simple SCADA environment.

To be effective, the FD-SPP needs to implement its security features so that
performance is maximized. In addition, the implementation needs to support
formal verification techniques. Bloom filters provide a means to achieve both
goals. A brief description of the challenge-response authentication scheme is
described in Section 2.1 and an overview of the role-based access control tech-
nique is presented in Section 2.2. To provide maximum performance, Bloom
filters are used to determine if a message is to be challenged and if a received

Hieb, Schreiver & Graham 87

MasterOperator

Field Device
RTU, PLC, IED

Communications
Network

Process
Equipment

Hardware or
Software support
for FD-SPP

Field Device
Security
Pre-Processor

!
Figure 1. Placement of the FD-SPP in a simple industrial control system.

operation is allowed for the associated user. Section 2.3 provides a brief intro-
duction to Bloom filters.

2.1 FD-SPP Challenge Response Authentication

The incorporation of challenge-response authentication in SCADA protocols
is described in detail by Patel [11]. In challenge-response authentication, com-
municating parties, in this case, an operator or engineer using an MTU/HMI
or engineering workstation, and the FD-SPP share a secret (one shared secret
for each operator or engineer). When the FD-SPP receives a message from
the MTU or workstation, it issues a challenge message in response. The chal-
lenge message incorporates a nonce to prevent replay attacks. The MTU/HMI
or workstation then builds a challenge-response message, which includes the
previous message sent, user identity information, and a hash-based message
authentication code (HMAC) that is computed for the message. The HMAC
is generated using SHA-256. The HMAC incorporates the shared secret, so
only the operator/engineer using the MTU/HMI or workstation can correctly
generate the HMAC. The FD-SPP checks the HMAC against the HMAC it
calculates. If the two HMACs match, then the message is authenticated and
forwarded to the field device.

Due to the nature of ICSs and SCADA protocols, not every message needs
to be challenged. For example, reading a coil or analog input has no effect on
the field device state, so it is reasonable to have a policy that does not require
all messages to be challenged. At runtime, the task of determining whether or
not a received SCADA message must be challenged is the responsibility of the
access control system discussed in the next section.

2.2 FD-SPP Access Control

In addition to authentication, the FD-SPP provides a simple role-based ac-
cess control system. In role-based access control (RBAC), users are assigned
roles and privileges or capabilities are assigned to the roles. A user may only
perform operations assigned to the role possessed by the user. In an ICS set-
ting, there may be different roles for operators, engineers, security administra-
tors and vendors. Grouping privileges or operations by role makes it easier to
manage them. For the FD-SPP, each user is assigned a single role, e.g., “op-

88 CRITICAL INFRASTRUCTURE PROTECTION VI

erator.” When the access control system receives a SCADA message, it must
make two decisions: (i) whether or not the message needs to be challenged; and
(ii) whether or not the requested operation is to be allowed. Making this deci-
sion involves consulting the FD-SPP security policy, which must be developed
for each installation by operators, engineers and security administrators. The
policy must define roles, assign allowed operations to roles and assign users to
roles. If a user attempts to perform an operation that is not associated with
the role to which the user is assigned, then the access control system should
deny the operation.

2.3 Bloom Filters

A Bloom filter is a probabilistic data structure for determining set member-
ship [1]. Bloom filters have space and time advantages that render them an
attractive approach for controlling access to SCADA field devices. The space
advantage comes from the fact that a Bloom filter maintains its size no matter
how many elements are added to the set. The time advantage arises because
there are no loop structures that depend on n (number of elements in the set)
to determine if a given element is a member of the set. However, the space and
time advantages yield a major disadvantage, false positive errors.

A Bloom filter begins as an empty array of m bits. This empty Bloom filter
returns false when any element is checked for membership in the filter. To
add an element to the Bloom filter, an element is first passed through k hash
functions. The result of each of these hash functions is used to create a position
in the Bloom filter array; the bit at each of these positions is set to one. In
order to check if an element is in the Bloom filter, the same hash functions are
used to create k positions in the Bloom filter. If all the positions in the array
have a one, the object is said to be in the Bloom filter. Because of the use
of hash functions to add and check entries in the array, collisions in the hash
function outputs cause false positive errors. For large values of m, the false
positive rate p of a Bloom filter is given by:

p =
(
1 − e−kn/m

)k
. (1)

Given n elements in a Bloom filter, the values of k and m can be chosen
to achieve any desired false positive rate. In many implementations, m is the
nearest power of 2 and k is rounded to the nearest integer m [12].

3. Using a Dual Bloom Filter

In the FD-SPP, Bloom filters are used in two ways: (i) to determine if a
requested operation is to be challenged; and (ii) if a requested operation is al-
lowed for the user (assigned to a role) making the request. Initial requests from
a source are always challenged by the FD-SPP. After the initial challenge has
been met, subsequent operations that are requested are checked to determine
if: (i) the user is allowed to request the operation; and (ii) if the operation is

Hieb, Schreiver & Graham 89

!

Figure 2. Inserting a Modbus packet in a Bloom filter.

critical and needs to be challenged. The need for quick and efficient processing
of SCADA messages by the FD-SPP leads to the possibility of using a Bloom
filter to implement the access control checks. The popular Modbus protocol
[10] is used for development and testing purposes.

The first step is to create a Bloom filter that implements a given RBAC
policy for Modbus operations. We begin by selecting a target false positive
rate; in our case, a target false positive rate of 0.01 was used. Next, the bit
field size (m) is chosen given the number of entries to be added to the filter.
For the given policy, there is an entry for every <role, Modbus Operation>
tuple explicit in the policy. For example, if n = 100, then m = 1024 (nearest
power of 2 to 958.5) and k = 7 ∼= 7.0979.

To add an element to the Bloom filter, the packet and the role ID are com-
bined and hashed using SHA-256. The resulting hash is broken up in order to
serve as seven hash functions for the Bloom filter (k=7). The first two bytes
of the hash serve as the first hash function, the second two bytes serve as the
second hash function, and so on until the seventh hash. Since two bytes are
more than necessary to generate a number from 0 to 1023, the lower ten bits of
each set of two bytes are used to create the position in the Bloom filter. This
scheme has been used by Tripunitara and Carbunar [13]. Using this scheme,
role Modbus messages in the policy are added to the Bloom filter one by one
as shown in Figure 2.

When a message is received by the FD-SPP, it looks up the user role and
hashes the entire message and role to check if the operation is allowed. The sizes
and number of hash functions can be varied based on the number of packets
and roles desired for the RBAC policy.

90 CRITICAL INFRASTRUCTURE PROTECTION VI

Set ret to allow passthrough

Create Byte Array containing Packet Add Role ID to Byte Array

Hash Array with SHA-256

Bloom Filter Check Loop

Get Bit Position from Hash

Check Access Bloom Filter

Check Challenge Bloom Filter

Increment index

Return ret

Return Packet Not Valid

Set ret to Challenge

[index less than k]

[no]

[no]

[yes]

!

Figure 3. Flow diagram of the access control logic.

A second Bloom filter is used to determine whether or not a message must
be challenged. The second Bloom filter can be implemented in two different
ways: as a filter containing packets to challenge or as filter containing packets
not to challenge. Our rationale for choosing the second approach is provided
in Section 4. The second filter has the same number of bits and uses the
same hashes as the first filter. However, entries are added to the second filter
only if they are not to be challenged. When a requested operation is checked
against this Bloom filter, it is hashed in the same way as when adding a new
element. The positions are checked in the RBAC Bloom filter first. If all
the bits are not equal to one, then the packet is rejected by the RBAC filter.
This filter contains all the allowed operations of the field device, which is why
it is checked first. If the packet is not rejected, then the same positions are
checked in the second Bloom filter. If all the bits in this filter are equal to one,
then the packet is allowed to pass on to the field device; if not, a challenge is
issued, which authenticates the user requesting the operation. Pass through is
allowed in cases where the message is not critical and the sender of the message
has recently responded to a challenge. The diagram in Figure 3 presents the
procedure for checking entries in the Bloom filter.

The advantage of this approach is that constant time is required for the
FD-SPP to check if a given role is allowed to carry out a specific operation
and if a message is a critical operation. This is important because it leads
to improved processing time for the FD-SPP. However, as described above, a

Hieb, Schreiver & Graham 91

disadvantage is the false positive rate of Bloom filters. The evaluation in the
following section considers performance and the false positive rate.

4. Evaluation

The evaluation was conducted using an FD-SPP prototype for which the
Bloom filter approach was implemented on a Gumstix Verdex Pro PXA 270
XScale processor with 64 MB RAM. A simple HMI/MTU was implemented on
a separate personal computer using LabView. A virtual serial device was used
to place a software component between the MTU/HMI and the serial network
interface to provide the complementary FD-SPP support on the MTU/HMI for
challenge-response authentication. Modbus messages were collected by sniffing
Modbus traffic between the test MTU/HMI and an actual field device before
security was added.

Two roles, operator and engineer, were used in the evaluation. Combining
the collected Modbus operations with roles resulted in eighteen <role, Modbus
Operation> pairs that had to be added to the Bloom filter. Two of the <role,
Modbus Operation> message pairs were considered non-critical and were added
to the second Bloom filter to indicate that they did not have to be challenged.

4.1 Performance

Bloom filter access checks take a very small amount of time, even when
running on minimal hardware. In the case of the Gumstix Verdex Pro XM4
COM, the time required to perform the hash calculation for an element and
compare the value with the Bloom filter was about 18µs. On the same device,
it took about 15µs to perform a SHA-256 hash; this time includes only the
internal Bloom filter look-up time, not the round trip time from the HMI to the
field device. Real-world SCADA installations may require more elements to be
added to the Bloom filter, since their policies are likely to be more complicated.
However, due to the time-invariant scalability of the Bloom filter, it should be
possible to increase the size of the Bloom filter by several orders of magnitude
without effecting the access check time. The round trip time was approximately
300ms, which is acceptable in many SCADA applications.

4.2 False Positives

A key issue to be considered when using Bloom filters is the presence of false
positives. In this application, a false positive could correspond to a situation
where a forged Modbus message inserted by an attacker is accepted unchal-
lenged by the FD-SPP. The false positive rate of the Bloom filter structure
indicates the difficulty (or likelihood) that such a message could be found by
an attacker. A false positive rate of zero is ideal, but this is not possible with
Bloom filters. Instead, the false positive rate must be kept as low as possible
while maintaining the speed at which an access check can be performed.

92 CRITICAL INFRASTRUCTURE PROTECTION VI

Recall that there are two possibilities in the case of the second Bloom filter:
challenged packets are in the Bloom filter or non-challenged packets are in the
filter. When the packets are not to be challenged, the false positive rate of
the system for non-challenged false positives (successful attacks) is equal to the
false positive rate of the second filter. To define this rate, let c represent the
number of packets to be challenged, n be the number of packets added to the
system, m the length in bits of the filter, k the number of hash functions used,
p the false positive rate used to create the first Bloom filter, and r the ratio
of packets to be challenged over the total number of packets (c/n). Then, the
false positive rate for a Bloom filter containing non-challenged packets is given
by:

pnon−challenge =
(
1 − e(−k(n−c)

m
)
)k

=
(
1 − 2(c−n

n
)
) ln(2)m

n

=
(
1 − 2r−1

)− ln(p)
ln(2)

Alternatively, for the Bloom filter containing entries to be challenged, a non-
challenged false positive can occur when the packet is accepted by the first filter
but rejected by the second. This means that it must have at least one bit that
is in the first Bloom filter but not in the second. The maximum odds of this
occurring can be calculated as the probability of all but one bit being any of
the ones in the first filter multiplied by the ratio of the difference of the number
of ones between the filters over the length in bits of the filters. This is given
by:

pchallenge = (1 − e
−kn

m)k−1 ∗
(m(1 − e

−kn
m) − m(1 − e

−kc
m))

m

=
(1

2

) ((mln(2))
(n−1)

∗
(
−

1

2
+ 2(−c

n
)
)

= p(−1 + 2(n−c
n

)) = p(−1 + 21−r).

This equation shows that the Bloom filter with non-challenged entries has a
lower false positive rate because it scales exponentially with the false positive
rate of the first Bloom filter while the challenge Bloom filter scales linearly.

After adding 18 entries to the first Bloom filter and two entries to the second
Bloom filter (non-challenged operations), it is possible to accurately determine
the false positive rate for the specific Bloom filter structure used in this eval-
uation. Using n = 18 in Equation (1), the estimate for the false positive rate
is 8.5172 ∗ 10−14. This is merely the theoretical false positive rate of the ap-
proximation of the Bloom filter after 18 entries. The number of ones in the
Bloom filter can be used to calculate the actual false positive rate of the Bloom
filter. The access control Bloom filter, with m = 1024 bits, has 14 bits set to
one. Therefore, the probability of any single bit being one is simply 14/1024,

Hieb, Schreiver & Graham 93

making the actual probability of a false positive in the access control Bloom
filter equal to:

(
14

1024
)
7

= 8.9289 ∗ 10−14.

The existence of false positives, no matter how small the rate, may appear
to indicate that the approach is inappropriate for the FD-SPP access control
check. However, we argue that a sufficiently low false positive rate can provide
a level of security similar to other techniques. For example, consider the use of
symmetric encryption with a key length of n. Brute force attempts to find the
key work for sufficiently small n. Similarly, the use of a Bloom filter has a false
positive rate relative to k, m and n.

Fortunately, there are several approaches for reducing the false positive rate
of the Bloom filter used in this application. The approaches include increasing
the size of the Bloom filter and changing the number of hash functions. We
assume that the numbers of roles and messages are known before the system is
implemented; therefore, the number of bits in the Bloom filter and the number
of hash functions can be selected to achieve any desired false positive rate
greater than zero. There is also a way to reduce the false positive rate without
changing the number of bits or the number of hash functions; this approach is
discussed in Section 4.3.

While the false positive rate is central to a security analysis of our approach,
there is an important difference between the false positive rate of the Bloom
filter structure and the effort required to brute-force a cryptographic secret. If
an attacker finds a Modbus message that makes it through the Bloom filter,
only this message can be used in an attack (a successful attack would most
likely require multiple messages). Additionally, there are only so many Modbus
messages that could actually damage a system. For example, only a limited
number of messages can write to a particular critical coil. Since the Bloom
filter can be checked in advance, analysis can be performed to verify that no
messages that can damage the system are non-challenged false positives.

Also, since the attacker would not have access to the Bloom filter, he/she
would have to attack the system directly. In the case of the prototype, it takes
approximately 200ms to receive a challenge from the security pre-processor.
This means that the attacker would have to wait at least 200ms between at-
tempts. If the attacker were to attack the system for an entire day, he/she
would be able to perform 432,000 attacks. In Section 4.3, we will show that the
actual false positive rate for the implementation can be reduced to 1.65∗10−14.
Using this final false positive rate, the probability of a successful brute force
attack that identifies a single message that could bypass the Bloom filter after
one day is just 7.13 ∗ 10−9.

4.3 Reducing the False Positive Rate

In order to reduce the false positive rate, it is important to first identify the
variables that are related to the false positive rate of the Bloom filter. Simply
put, if two Bloom filters have the same number of hash functions k and the

94 CRITICAL INFRASTRUCTURE PROTECTION VI

same number of bits m, then the only thing that can make the false positive
rate any different is the number of ones in the filter. The number of entries in
a Bloom filter is based on the number of elements added to the filter multiplied
by the number of hash functions minus the number of collisions. Therefore,
increasing the number of collisions results in a Bloom filter with a lower false
positive rate. Note that this does not imply the use of hash functions that
create more collisions; instead, it means using hash functions that collide for
the specific values that are added to the Bloom filter. The hash functions must
still have uniform results for arbitrary input data, otherwise the bias would
yield more false positives, not less. This approach was first described by Hao
and colleagues [5].

For example, suppose that two entries A and B are placed in a Bloom filter
that uses seven hash functions. Each entry adds seven bits to the Bloom filter,
for a total of 14 bits set. Assume that a list of hash functions exists from which
the seven hash functions with the most collisions can be selected. In the case
of a single collision, 13 bits are added to the Bloom filter instead of 14. Since
this value is raised to the power k, the number of collisions can have a large
effect on the false positive rate:

137

147
= 0.59526.

In this case, adding a single collision reduces the false positive rate to nearly
60% of its previous value.

In the more general case, let x be the number of entries in the filter and c
the collision percentage that can be invoked. Then,

(
x

m
)k

can be reduced to:

(
x(1 − c)

m
)k.

This means that the false positive rate can be reduced by:

1 − (1 − c)k.

For example, a collision rate of 10% for the known entries of the Bloom filter
reduces the false positive rate by more than 50%.

The prototype evaluation system described at the beginning of this section
uses seven hash functions, the Bloom filter has 1,024 bits and 14 bits were set
to one when the 18 elements were added. This yields the following false positive
rate for non-challenged entries:

p = (
14

1024
)7 = 8.9289 ∗ 10−14.

Hieb, Schreiver & Graham 95

Upon searching for collisions between two entries in the second Bloom fil-
ter, seven new hash functions with uniform distributions were found. These
hash functions had three collisions for the two entries in the challenge-response
Bloom filter. This reduces the number of ones from 14 to 11. This yields a
collision rate of 0.81514 and more than 80% reduction in the false positive rate
using the same number of hash functions and entries, and the same bit length.
The new false positive rate for non-challenged false positives is given by:

p = (
11

1024
)7 = 1.65 ∗ 10−14.

The new hash functions used are based on the SHA-256 algorithm as in the
previous case, so no additional cost for using these hash partitions is imposed.

Since the original Bloom filter was designed for 100 packets whereas only 18
were actually used, the Bloom filter can be further optimized in theory. Using
the function above for calculating the number of hash functions shows that 39
hash functions is the optimal number. This number of hash functions produces
a false positive rate of 2.4547 ∗ 10−44. Assuming the worst case situation of no
internal collisions, this Bloom filter provides stronger security than a 144-bit
cryptographic secret.

Table 1 presents the m and k values that can be used to achieve the targeted
false positive rates for different numbers of system messages that would need to
be added to an access control Bloom filter structure as described in Section 3.
The table entries demonstrate that the approach is viable for SCADA systems
with larger numbers of message-role pairs and that acceptable false positive
rates can be achieved for these systems.

5. Conclusions

Securing legacy field devices is a challenging task because they have long de-
ployment lifetimes and lack the processing power and memory required to im-
plement security solutions. The field device security pre-processor (FD-SPP),
which provides authentication and role-based access control for legacy devices,
is a promising in-line security solution for legacy field devices.

The dual Bloom filter approach presented in this paper speeds up access
control checks by the FD-SPP to prevent interference with process control
operations. In particular, the structure is able to make two access control deci-
sions: (i) whether a message (requested by a user) is allowed or denied; and (ii)
whether or not the message is critical and should be challenged. Another ad-
vantage of the Bloom filter implementation is that it facilitates the verification
of the operation of the entire device. However, a key drawback with the use of
a Bloom filter is that it introduces false positive errors. While the errors cannot
be eliminated, the analysis indicates that the false positive rate can be made
arbitrarily low and that, for sufficiently low false positive rates, the approach
is as secure as an n-bit key shared between two parties.

Our future research will focus on the formal verification of access checks
and the security code used by the FD-SPP. If formal verification is possible,

96 CRITICAL INFRASTRUCTURE PROTECTION VI

Table 1. Parameter values for achieving various false positive rates.

Desired Messages Percent m k p
FP Rate Challenged

1.00E-13 100 0.50 3,516 24 1.17E-13
1.00E-13 200 0.50 7,033 24 1.16E-13
1.00E-13 300 0.50 10,550 24 1.16E-13
1.00E-13 400 0.50 14,067 24 1.16E-13
1.00E-13 500 0.50 17,584 24 1.16E-13
1.00E-13 100 0.75 2,349 16 1.30E-13
1.00E-13 200 0.75 4,698 16 1.30E-13
1.00E-13 300 0.75 7,047 16 1.30E-13
1.00E-13 400 0.75 9,397 16 1.30E-13
1.00E-13 500 0.75 11,746 16 1.30E-13
1.00E-13 100 0.90 1,597 11 1.14E-13
1.00E-13 200 0.90 3,194 11 1.14E-13
1.00E-13 300 0.90 4,792 11 1.13E-13
1.00E-13 400 0.90 6,389 11 1.13E-13
1.00E-13 500 0.90 7,986 11 1.13E-13
1.00E-20 100 0.50 5,410 37 1.22E-20
1.00E-20 200 0.50 10,821 37 1.22E-20
1.00E-20 300 0.50 16,231 37 1.22E-20
1.00E-20 400 0.50 21,642 37 1.22E-20
1.00E-20 500 0.50 27,052 37 1.22E-20
1.00E-20 100 0.75 3,614 25 1.05E-20
1.00E-20 200 0.75 7,228 25 1.05E-20
1.00E-20 300 0.75 10,842 25 1.05E-20
1.00E-20 400 0.75 14,457 25 1.05E-20
1.00E-20 500 0.75 18,071 25 1.05E-20
1.00E-20 100 0.90 2,457 17 1.06E-20
1.00E-20 200 0.90 4,914 17 1.06E-20
1.00E-20 300 0.90 7,372 17 1.06E-20
1.00E-20 400 0.90 9,829 17 1.06E-20
1.00E-20 500 0.90 12,287 17 1.06E-20

then the resulting quantified false positive rates for FD-SPPs could provide
valuable input to risk assessment and risk management efforts for industrial
control systems and the critical infrastructure assets in which they are used.

References

[1] B. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, vol. 13(7), pp. 422–426, 1970.

[2] T. Brown, Security in SCADA systems: How to handle the growing menace
to process automation, Computing and Control Engineering Journal, vol.
16(3), pp. 42–47, 2005.

Hieb, Schreiver & Graham 97

[3] M. Brundle and M. Naedele, Security for process control systems: An
overview, IEEE Security and Privacy, vol. 6(6), pp. 24–29, 2008.

[4] D. Geer, Security of critical control systems sparks concern, IEEE Com-
puter, vol. 39(1), pp. 20–23, 2006.

[5] F. Hao, M. Kodialam and T. Lakshman, Building high accuracy Bloom
filters using partitioned hashing, Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Sys-
tems, pp. 277–288, 2007.

[6] J. Hieb, S. Patel and J. Graham, Security enhancements for distributed
control systems, in Critical Infrastructure Protection, E. Goetz and S.
Shenoi (Eds.), Boston, Massachusetts, pp. 133–146, 2007.

[7] V. Igure, S. Laughter and R. Williams, Security issues in SCADA networks,
Computers and Security, vol. 25(7), pp. 498–506, 2006.

[8] R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Security
and Privacy, vol. 9(3), pp. 49–51, 2011.

[9] A. Miller, Trends in process control systems security, IEEE Security and
Privacy, vol. 3(5), pp. 57–60, 2005.

[10] Modbus Organization, Modbus Specification and Implementation Guides,
Hopkinton, Massachusetts (www.modbus.org/specs.php), 2012.

[11] S. Patel, Secure Internet-Based Communication Protocol for SCADA Net-
works, Ph.D. Dissertation, Department of Computer Science and Engi-
neering, University of Louisville, Louisville, Kentucky, 2006.

[12] Y. Qiao, T. Li and S. Chen, One memory access Bloom filters and their
generalization, Proceedings of the IEEE International Conference on Com-
puter Communications, pp. 1745–1753, 2011.

[13] M. Tripunitara and B. Carbunar, Efficient access enforcement in dis-
tributed role-based access control (RBAC) deployments, Proceedings of the
Fourteenth ACM Symposium on Access Control Models and Technologies,
pp. 155–164, 2009.

