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A ONE-DIMENSIONAL SPARSE
SPACE-TIME SPECIFICATION OF THE
GENERALIZED RAILROAD CROSSING

Michael Gosnell and Bruce McMillin

Abstract Modeling and reasoning about critical infrastructure systems is a com-
plex endeavor. Various calculi and algebras have been crafted to help
specify physical properties such as time and space, but these do not al-
ways translate well between physical entities and their conceptual spec-
ifications. Although real-world critical infrastructure systems involve
components of both time and space, many existing specification meth-
ods focus most strongly on the temporal components, leaving spatial
details largely ignored or forcing then to fit within the confines of the
temporal specification. This paper presents a one-dimensional sparse
space-time specification created using a spatial-temporal logic in which
real-world constraints are incorporated in the logic using the next op-
erator. The simplicity and utility of the spatial-temporal formalism is
demonstrated by applying it to the generalized railroad crossing prob-
lem.
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1. Introduction

Real-world critical infrastructure systems are susceptible to errors, includ-
ing hardware malfunctions and failures, software malfunctions and corruption,
malicious attacks, and unknown and unseen failures. While many techniques
exist for helping mitigate errors, critical infrastructure protection is based on
the assumption that the correct operation of the systems of interest is known.
Expressing the correct operating behavior of a system can take on many forms,
depending on the types of error mitigating techniques and personal preferences.

System specifications can be formulated in a variety of ways, such as us-
ing calculi [10], temporal logic [9, 10], or automata or state transition systems
[5, 6] that can be automatically verified with model checking. Expressing the
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Table 1. RCC interval relationships.

Interval Definition

C(x, y) x connects with y
DC(x, y) x is disconnected from y

P (x, y) x is a part of y
PP (x, y) x is a proper part of y
EQ(x, y) x is equivalent to y

O(x, y) x overlaps y
DR(x, y) x is discrete from y
PO(x, y) x partially overlaps y

EC(x, y) x is externally connected with y
TPP (x, y) x is a tangential proper part of y
NTPP (x, y) x is a nontangential proper part of y

correctness of a critical infrastructure system is often challenging due to the
specification requirements. This paper presents a new “sparse space-time” ap-
proach, which is designed to better encapsulate physical characteristics within
the specification, allowing for more natural specifications of components in the
critical infrastructure protection domain.

2. Background

This section discusses the region connection calculus (RCC), which provides
qualitative spatial relationships that are used within the specification language.
Also, it discusses spatial-temporal logics that help capture temporal aspects.
Finally, the generalized railroad crossing (GRC) problem is presented along
with high-level definitions of safety and liveness.

2.1 Region Connection Calculus

The region connection calculus (RCC) [11] is an extension of the mereological-
and topological-based work of Clarke [2] to form an interval logic for dealing
with space. This interval spatial work incorporates qualitative relationships
similar to Allen’s interval temporal logic [1]. The RCC spatial interval re-
lationships are summarized in Table 1, where EQ(x, y) replaces the original
x = y notation. Note that P , PP , TPP and NTPP are not symmetric and,
therefore, support inverses, which are denoted by appending −1 as in NTPP−1.

In addition to the general RCC, a smaller set of jointly exhaustive pairwise
disjoint relations are provided. Figure 1 shows these base relations along with
the potential transitions between relations. These eight relationships form the
basis of the region connection calculus known as RCC-8.
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Figure 1. RCC-8 base relations and potential transitions.

2.2 Spatial-Temporal Logics

A spatial-temporal logic (STL) is the combination of a spatial logic with a
temporal logic [7]. More specifically, an STL incorporates the expressiveness of
the spatial and temporal logics, as well as the interactions between the spatial
and temporal components as allowed by the STL. There are some standard
characteristics of STLs, e.g., an STL should be able to specify spatial proposi-
tions in relation to time. However, the full specification of principles, which is
unique to each particular STL, dictates how the spatial-temporal predicates ex-
tend individual spatial and temporal propositions and how truth values change
over time. For example, the assertion:

NTPP (Computer Science, Campus) ⇒

⃝ NTPP (Computer Science, Campus)

states that if the Computer Science building is a (nontangential proper) part
of the campus, it will remain so “at the next state” (where “state” might be a
time, system state, world, etc.).

Multiple combinations of spatial and temporal logics are presented in [12],
where RCC-8 is used as the basis for spatial reasoning. In this paper, STL
specifications take the RCC-8 form with branching temporal logic as fits with
STL logic ST 2 in [12]. Because the focus is on aspects of specification languages
as they relate to runtime assertion checking (and not model checking where
issues such as decidability are of importance), additional technical aspects of
STL are not included.
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Figure 2. Generalized railroad crossing example.

2.3 Generalized Railroad Crossing

A generalized railroad crossing (GRC) problem is attractive as a basic sce-
nario in a multitude of application domains. A railway can be interpreted (with
some basic constraints) primarily as a one-dimensional domain, which reduces
the complexity of having to conduct a multidimensional analysis. The rail-
way is a component of the larger transportation infrastructure, and the model
can be extended to vehicular, airspace and littoral domains. The GRC prob-
lem introduces various spatial and temporal facets dealing with crossing gate
behavior and motor vehicle traffic through the crossing. Although many rail
crossing problems contain similar components [5, 6, 10], this paper uses the
basic syntax described in [6], which is summarized below.

Figure 2 shows a GRC example, where I is the crossing, P is a portion of
track before I and R is the region of interest for train r. Trains are denoted
r, r′, r′′, . . . as needed. To aid in the discussion of the shape calculus im-
plementation, a discrete numerical representation is added, where the region I
corresponds to the interval [0, 2) and P corresponds to the interval [2, 10). The
GRC problem provides the opportunity to investigate simple safety and live-
ness/utility functions that ensure that the gate is down when a train is in the
crossing and that the gate returns to the up position when no train is present.
These properties are expressed through the specification languages used for
model checking or runtime assertions as described in the following sections.

3. Sparse Space-Time

Specification languages come in many varieties (e.g., automata, state transi-
tion diagrams and logics) and can be used to model aspects of physical imple-
mentations. Often, the physical characteristics of an implementation can intro-
duce additional system constraints that are not traditionally present within cur-
rent reasoning. For example, vehicles are constrained to specific rates of change
(e.g., acceleration/deceleration) and system state sampling dictates what can be
observed and what might be missed. In order to incorporate physical property
constraints within the specification language, we couple these aspects within
the spatial-temporal next operator. This approach is inspired by Kopetz’s work
with dense and sparse time [8] and naturally fits with the system sampling fre-
quency in that each next state corresponds to a state capture of the physical
system. In Kopetz’s original work, real time (dense time) is constrained to
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sparse time intervals such that ordering properties can be maintained in a dis-
tributed system with respect to allowable global clock drift. In this approach,
events occurring in real time (but after a sparse time interval) are recorded in
the next sparse time interval. In our work, the true occurrence of events (in
real time) can only be observed at discrete system state capture intervals (the
equivalent of sparse time).

The goal of sparse space-time is twofold: (i) fit naturally with the sparse
temporal frequency of system state collection; and (ii) provide the capability
to reason in the sparse spatial domain (RCC) without risking the loss of dense
state transitions. For example, when disconnect holds at one system state
capture and the spatial relationship transitions to edge connect and then to
partially overlapping before the next system state capture, it is necessary to
account for the occurrence of both edge connect and partially overlapping re-
lationships. Without a proper mechanism, sparse space-time in our approach,
the system may not be able to recognize when a spatial relationship is satisfied.

This concept is not necessarily new. Gerevini and Nebel [3] refer to the
general notion as the “continuity constraint.” However, extending this baseline
concept with the wider breadth of available actions that occur between state
captures introduces an opportunity to include implementation constraints in
the logic that can abstract away some of the complexity and allow for the
more natural expression of assertions. In this way, physical properties can be
included within baseline specification pieces, and then separated from the other
dynamics of desired system operation. This intuitive mechanism abstracts the
physical system constraints in the specification language while maintaining the
specific restrictive details.

Definition. The next operator in sparse space-time is defined as:

σi |= P , σi+1 |= ⃝P (1)

where σ is the spatial-temporal domain T × S and i denotes the temporal
discretization.

In the sparse space-time approach, space is discretized among the included
dimensions and the resulting spatial regions can be reasoned about using the
discretization. The spatial discretization aspect becomes important with re-
spect to the relationship between the spatial regions of interest, but mostly in
the operational semantics regarding spatial-temporal transitions. The comple-
mentary aspect of our sparse space-time approach is the temporal discretiza-
tion. The temporal discretization itself is fairly straightforward and can be
coupled to the sparse space concept of sparse time intervals corresponding to
system state collections with a sampling speed (SamplingRate). The innova-
tive aspect incorporates the physical properties (e.g., sampling rate) with the
discretization knowledge through Equation (1) to provide additional system
constraints that include limiting the available spatial-temporal transitions that
occur during system state collection points.
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Wolter and Zakharyaschev [12] note that the “next time” operator makes no
sense in dense time flows such as {Q, <} or {R, <}. This follows because any
two real numbers will have some identifiable real number between them and,
therefore, no quantifiable “next” state. The sparse space-time approach follows
naturally and extends the notion of density and sparsity into the spatial realm.
Shifting from a dense space to a sparse space equivalently shifts the spatial ref-
erencing into a uniform metric space, which remains a topological space. Thus,
within sparse space-time, sparse space is handled as a metric space on some flow
such as {N, <} or {Z, <}. Remaining within a topological space, the funda-
mental spatial-temporal logic work of Wolter and Zakharyaschev [12] continues
to hold, and each of the fundamental RCC-8 relationships can be represented
in sparse space-time. However, it still remains to be shown whether or not a
sparse space-time representation can represent the physical characteristics of a
modeled system. In other words, is sparse space-time sound and complete with
respect to expressing sparse truths of a dense physical system?

3.1 Sparse Space-Time Soundness

As with any new approach, it is important to understand the benefits and
limitations. Logic systems often provide measures of the soundness and com-
pleteness as a fundamental baseline. Logical soundness expresses the property
that the logic only proves formulas that are valid. The logical soundness of the
spatial-temporal logic was addressed by Wolter and Zakharyaschev [12]. Since
sparse space-time retains a spatial-temporal logic base and changes only the
semantics of the next operator, the notion of sparse space-time soundness is
taken to mean the ability to express every RCC-8 relationship as specified in
Theorem 1 below.

Lemma 1 (Metric Space Uniqueness). When implemented as a met-
ric space with a simple temporal distance metric, each sparse space-time capture
is unique.
Proof: A simple metric space distance can be defined as:

d(p1, p2) =
√

(t2 − t1)2

where distance d is calculated as the temporal difference between two points
p1 = (x1, y1, z1, t1) and p2 = (x2, y2, z2, t2). Since the sparse space-time next
operator is defined in Equation (1) with respect to the temporal discretization
i, if p1 ̸= p2, then t1 ̸= t2. With all points unique, t1 ̸= t2 holds for all pairwise
comparisons, leading to a strict total ordering under < of all sparse space-time
events. !

Theorem 1 (Sparse Space-Time Soundness). Every one-dimen-
sional spatial-temporal relationship is expressible in one-dimensional sparse
space-time.
Proof: By definition, RCC-8 is jointly exhaustive and pairwise disjoint; this
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(a) Disconnected. (b) Edge connected.

(c) Partially overlapping. (d) Equal.

(e) Tangential proper part. (f) Inverse tangential proper part.

(g) Nontangential proper part. (h) Inverse nontangential proper part.

Figure 3. Expressing spatial RCC-8 representations in sparse space-time.

means that all spatial situations can be expressed as one of these relation-
ships. Lemma 1 provides the complementing temporal expression through a
total temporal ordering of sparse space-time. This result, coupled with show-
ing that sparse space-time can express all the RCC-8 relationships, demonstrate
the soundness of the expression in sparse space-time. Figure 3 expresses all the
RCC-8 relationships in sparse space-time; this demonstrates soundness. !

Interval temporal logic (ITL) is a temporal logic designed around intervals
of time and relationships between the intervals [1]. ITL expresses qualitative
relationships between two intervals of time through seven relations and thir-
teen interval relationships. The equality (equal) relationship is reflexive, which
eliminates its dual, yielding thirteen relationships from seven temporal interval
relations. Figure 3 shows how one-dimensional RCC-8 representations naturally
map to ITL relations: X before Y (Figure 3(a)), X meets Y (Figure 3(b)), X
overlaps Y (Figure 3(c)), X equals Y (Figure 3(d)), X starts Y (Figure 3(e)),
Y starts X (Figure 3(f)), X during Y (Figure 3(g)), and Y during X (Figure
3(h)).

In general, multiple ITL relations can map to a single RCC-8 relationship,
e.g., X before Y and Y before X both represent DC(X,Y). Reducing the
set of ITL expressions to a subset that represents RCC relationships yields:
BEFORE, MEETS, OVERLAPS, EQUAL, STARTS/FINISHES, STARTS−1/
FINISHES−1, DURING and DURING−1. Syntactically, DURING indicates X
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(a) Equal objects. (b) Nontangential proper part.

Figure 4. Dense EQ and NTPP mappings to sparse EQUALS.

during Y and DURING−1 indicates Y during X for DURING, STARTS and
FINISHES in the discussion of dense and sparse mappings.

3.2 Sparse Space-Time Completeness

Logical completeness expresses the property that any stated proposition can
be proven true or false. For sparse space-time to be complete, any statement
expressible in sparse space-time would have to be provable in dense space.
Stated another way, the completeness of sparse space-time refers to the ability
to map between dense and sparse space. A simple example shows that a 1 : 1
mapping is not possible.

Consider a one-dimensional sparse space representation where a sparse spa-
tial discretization is flagged if any part of the dense spatial object occupies a
portion of the sparse space. Two dense spatial conditions can result in the
same sparse spatial representation as shown in Figure 4. Thus, the sparse spa-
tial representation is insufficient to show a unique dense spatial configuration.

Table 2. Mappings from dense RCC relationships to intervals.

RCC Relationship Possible Interval Relationships

DC BEFORE, MEETS
EC MEETS
PO STARTS−1/FINISHES−1, OVERLAPS
EQ EQUAL
TPP STARTS/FINISHES, EQUAL
NTPP STARTS/FINISHES, EQUAL, DURING
TPP−1 STARTS−1/FINISHES−1

NTPP−1 DURING−1

It is assumed that a region of interest must be at least as large as a single
spatial discretization. If this were not the case, any RCC-8 relationship could
occur within a spatial discretization, allowing no knowledge of the dense spatial
relationship. Working in the single spatial dimension, the sparse space represen-
tations map naturally to Allen’s temporal interval relationships [1]. Interested
readers are referred to [4] for a complete analysis of the mapping along with all
the full proofs. Table 2 summarizes all the possible mappings between dense
RCC-8 relationships and one-dimensional sparse space-time representations.



Gosnell & McMillin 195

Theorem 2 (Sparse Space-Time Completeness). All dense one-
dimensional space-time can be represented in one-dimensional sparse space-
time.
Proof: The proof follows directly from Table 2. !

Lemma 2. The one-dimensional sparse space-time relationships DURING,
DURING−1, BEFORE and OVERLAPS uniquely map back to dense space.
Proof: The proof follows directly from Table 2. !

Theorem 3 (Transitions). If it can be shown that the EQ RCC relation-
ship will never hold (e.g., by assuring that spatial objects will never be the exact
same size), then the remaining one-dimensional dense space transitions can be
captured in sparse space-time.

Proof: Eliminating the RCC-8 transitions through EQ yields three possible
transition paths stemming from PO: (i) between PO and DC; (ii) between PO
and NTPP; and (iii) between PO and NTPP−1. From Lemma 2 and Table
2, OVERLAPS uniquely maps back to PO, meaning that OVERLAPS can
uniquely identify a one-dimensional dense space PO relationship. Likewise,
BEFORE maps to DC, DURING maps to NTPP and DURING−1 maps to
NTPP−1. Therefore, due to Theorem 2, transitions between any two sparse
space-time observations of OVERLAPS, BEFORE, DURING and DURING−1

lead to a path that guarantees a dense RCC-8 relationship held between obser-
vations. !

From Theorem 3, four sparse space-time states can account for dense states
and transitions of seven of the eight RCC-8 relations. While it is not possible
to completely map from the sparse space-time domain into dense space, these
properties allow for RCC reasoning within one-dimensional sparse space-time.

4. Sparse Space-Time GRC Specification

Having defined sparse space-time, we can now attempt to specify the gen-
eralized railroad crossing within the framework. The specification begins by
capturing the dynamics of gate operation, because the position of the gate
determines if the overall system is safe.

Gate operation can be specified in a number of ways. We treat the gate
almost as a separate entity because it has a spatial relationship between its
opening and closed positions, which could be thought of as separate from the
one-dimension of the rail crossing. Using the notation that gate indicates the
gate position in radians, where gate = 0 indicates that the gate is down and
gate = π

2 indicates the gate is up, a minimum gate speed GSmin and maximum
gate speed GSmax in rev/s can be incorporated to express gate opening and
closing. These measurements could be transformed back into the straight line
one-dimensional characteristics. However, the circular nature of gate operation
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fits more naturally with circular parameters that are perfectly acceptable in
the sparse space-time approach.

Given the proper part (PP ) specified as:

PP (α, β) = TPP (α, β) ∨ NTPP (α, β).

and constraining the gate to only operate between gate = 0 (satisfying the
Boolean DOWN) and gate = π

2 (satisfying UP), the minimum and maximum
distances of gate travel are defined using the spatial region extending from:

γ = gate +
GSmin × 2π

SamplingRate
to gate +

GSmax × 2π

SamplingRate
.

The following specification captures the opening gate operations, beginning
with the initial transition:

DOWN ∧⃝¬DOWN ⇒ PP (⃝gate, γ) ∧ GoingUp.

This equation states that if the gate is changing from the down position, then
it must travel at least the distance traveled at the minimum gate speed during
the system state capture and no more than the maximum distance.

Additional variables are introduced to ensure that the gate condition is “go-
ing up” or “going down” to ensure continuation of motion. The specification
to capture the gate movement from DOWN to UP is quite similar:

GoingUp ∧ ¬UP ⇒ ⃝(UP ∧ ¬GoingUp) ∨ PP (⃝gate, γ).

Expressing the gate closing operation follows similarly using:

δ = gate −
GSmin × 2π

SamplingRate
to gate −

GSmax × 2π

SamplingRate

as the spatial region that the gate will maintain during the following state
capture given the speed bounds.

The initial transition is captured as:

UP ∧⃝¬UP ⇒ PP (⃝gate, δ) ∧ GoingDown

with the subsequent motion confined by:

GoingDown ∧ ¬DOWN ⇒ ⃝(DOWN ∧ ¬GoingDown) ∨ PP (⃝gate, δ).

A final safety bound constrains the gate to be between the UP and DOWN
positions as constant PP (gate, [DOWN, UP ]), meaning that the gate must
always remain somewhere between (but inclusive of) the range [0, π

2 ]. This
somewhat tedious specification of gate operation now makes it possible to cap-
ture much more powerful aspects of the GRC safety and liveness than with
more concise equations.
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4.1 GRC Safety

As shown in Figure 2, r, P , I and R represent the spatial entities train,
pre-crossing, in-crossing and region of interest (where R = P + I). The initial
safety specification is expressed in spatial-temporal logic as:

¬DC(r, I) ⇒ DOWN

which requires that the gate be down whenever a train is present in the crossing
area I. To obtain this safety property, the entry of the train into region P can
trigger the lowering of the gate as in:

DC(r, P ) ∧⃝¬DC(r, P ) ⇒ GoingDown.

This assertion in combination with:

GoingDown ∧ ¬DOWN ⇒ ⃝(DOWN ∧ ¬GoingDown) ∨ PP (⃝gate, δ)

preserves GRC safety in sparse space-time.
All the typical non-Byzantine assumptions are carried over as well – trains

are not spaced so close that the gate has to be raised and lowered before a car
can proceed through the crossing, cars obey the gate signals, etc. Furthermore,
the distance P could be checked against the gate and train speeds to ensure
appropriate safety in that the gate must go from UP to DOWN in no more time
than it takes for a train to travel distance P . The minimum and maximum
values of train speed are denoted by TSmin and TSmax, respectively. To verify
that the gate has enough time to be lowered between the detection of entry into
P , the shortest time for the train to traverse the distance P must be greater
than the longest time it takes the gate to be completely raised. In other words:

P

TSmax
>

1

4 × GSmin

where TSmax is in m/s, P is in m, and GSmin is in rev/s.

4.2 GRC Liveness

The liveness restriction prevents the gate from being down when no trains
are present. This is expressed in spatial-temporal logic as:

DC(r, R) ⇒ ¬DOWN.

Satisfying liveness requires the gate and train dynamics as presented above in
the discussion of safety:

GoingUp ∧ ¬UP ⇒ ⃝(UP ∧ ¬GoingUp) ∨ PP (⃝gate, γ)
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with the initiating condition:

¬DC(r, R) ∧⃝DC(r, R) ⇒ ⃝GoingUp.

These fulfill the liveness property with the condition that one additional
system state capture may be required when disconnect is detected but the gate
has not begun ascending. In other words, detection (or prediction) of DC(r, R)
is a prerequisite to beginning the GoingUp sequence of events. Thus, at the
system state capture where DC(r, R) is first satisfied, DOWN may also hold.
However, at the next system state capture (per GoingUp), ¬DOWN will hold.
This nuance in the system dynamics is one area where specifications can become
bogged down in the details of the language instead of the “big picture” aspects
of the specification. However, the combination of such nuances (e.g., sampling
frequency, sampling errors and measurement variations) combine to produce
formidable challenges to understanding the limits and capabilities of real-world
implementations of runtime assertion checking.

5. Comparison of Specifications

Given the GRC example described above, the correct system operation can
be discussed in two main ways: (i) an axiomatic specification that prescribes
the allowed behavior; and (ii) an operational specification that describes system
operation conforming to the allowable behavior. The axiomatic specification
comprises invariants that hold over correct system performance. The oper-
ational specification provides the mechanistic requirements that produce the
desired behavior. Our analysis focuses on the operational specifications of gen-
eralized safety and liveness properties, including factors that may impact the
human understanding of assertions in each specification instance. The specifi-
cations are compared based on the number of required initial and supporting
definitions, number of equations and depth of expressions enumerated as a sin-
gle count of tokens (e.g., comparisons and calculations). These metrics were
selected to represent the amount of estimated effort to understand and generate
subsequent assertions within the languages.

5.1 Original GRC Specification

The original GRC paper by Heitmeyer and Lynch [6] examined variations
of a railroad crossing example and rebuilt the problem from the ground up.
Their approach focuses on an axiomatic specification of the safety and liveness
properties along with operational specifications of the trains and gates, incor-
porating timed automata, invariants and simulation mappings to model and
verify correct system behavior. Reproducing even a portion of their work here
for illustrative purposes is unreasonable due to the iterative nature of their
formal methods and the amount of material that is required to show correct-
ness. However, a hint of their process is included to illustrate the comparative
metrics.
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Table 3. Automaton excerpt.

State Transitions

now enterR(r)
for each train r: Precondition:

r.status s.r.status = not here
first(enterI(r)) Effect:
last(enterI(r)) s′.r.status = P

s′.first(enterI(r)) = now + ϵ1
s′.last(enterI(r)) = now + ϵ2

The Heitmeyer-Lynch axiomatic specification, represented as timed auto-
mata, is an initial step in formal verification and helps provide comparative
metrics. In the specification, system variables include the upper and lower
timing bounds (e.g., time to raise the gate); definitions include listed restrictions
such as a lower bound system variable is less than or equal to the corresponding
upper bound; and equations, which are transition preconditions or effects in the
automaton and safety and liveness specifications. Tokens do not have an exact
counterpart in the other GRC specifications, but are obtained from the states
and transitions where each comparison or calculation is a token.

As an example, consider the automaton excerpt in Table 3. The excerpt has
the system variables ϵ1 and ϵ2 (defined previously), four equations (all under
transitions) and fourteen tokens. Note that each state, equation operation
and reference is considered to be a token. Thus, now and r.status are both
calculated as a single token whereas first(enterI(r)) and last(enterI(r)) are
both counted as two tokens because they reference enterI(r).

Table 4. Heitmeyer-Lynch GRC specification.

System Variables 8
Definitions 4
Equations 30
Tokens 89

For the purpose of counting tokens, it is assumed that there is only one
train r under the “for each train” in state. In the case of the token counts
corresponding to the remaining transitions, the precondition is a single token,
the first effect is a single token and the final two effects are each three to-
kens (containing two equation operations and one reference). Performing these
computations over their entire specification yields the results shown in Table 4.
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5.2 Shape Calculus GRC Specification

The second model used for comparison is Quesel and Schafer’s shape calculus
[10]. This specification incorporates discrete time and space, allowing for finite
space and infinite time (these choices are due to decidability issues that allow
model checking). The discretization corresponds to the numeric discretization
of the railroad shown in Figure 2. Key aspects of the shape calculus are included
here to assist in understanding the notation and how comparative metrics relate
to the GRC specifications.

An observation of a train at a specific point in time and space is train; if
this holds at all points in time and space (in the interval of interest), then it
is expressed as ⌈train⌉. The “chop” operator, where F⟨ed⟩G reads F chop G,
specifies that there is a chop point in dimension d (time and/or space) at which
F holds up to and including the chop point, and G holds at and after the chop
point. The diameter of the spatial or temporal dimension d is ℓed

and an empty
observation interval ⌈⌉ed

has a diameter of zero. The “somewhere” operator
♦ed

F is defined if and only if F is true in some subinterval:

♦ed
F ≡ true⟨ed⟩F⟨ed⟩true.

The globally operator must hold in all subintervals, expressed as the dual:

"ed
F ≡ ¬♦ed

¬F .

This basic syntax can be used to express the shape calculus propositions cor-
responding to the GRC.

The most basic proposition determines if there is a train within an interval.
Using the definitions in [10], this is defined as trainPartWeak:

trainPartWeak ≡ ¬(⌈¬train⌉⟨ex⟩true).

However, this must be strengthened to exclude the empty observation interval,
so:

trainPart ≡ trainPartWeak∧ ℓex
> 0.

Or,
trainPart = ¬(⌈¬train⌉⟨ex⟩true) ∧ ℓex

> 0.

A distance operator dist(δ) is defined in [10] as:

dist(δ) ≡ ((⌈¬train⌉ ∨ ⌈⌉ex
) ∧ ℓex

= δ) ⟨ex⟩trainPart.

This divides the track so that the rightmost part contains no train and the
leftmost part contains the train, providing a measure of distance δ from the
train to the end of the observation interval. Expanding this based on first
principles yields:

dist(δ) ≡ ((⌈¬train⌉ ∨ ⌈⌉ex
) ∧ ℓex

= δ)⟨ex⟩(¬(⌈¬train⌉⟨ex⟩true) ∧ ℓex
> 0).
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A careful observation of the propositions shows that F holds ⌈¬ train⌉ and
G holds ¬⌈¬ train⌉ (or ¬F). However, at the chop point, both F and G must
hold, which requires F = ¬F . Ignoring this technicality and assuming that the
shape calculus distance operator holds, the regions of the track can be specified
as empty ≡ ⌈¬ train⌉, appr ≡ dist(δ) ∧ 10 > δ ≥ 2, and cross ≡ distδ ∧ 2 > δ.
Thus, relating these back to the regions in Figure 2, “empty” indicates that
no train is present in the region of interest R, “appr” indicates that there is a
train in P (approaching) and “cross” indicates that a train is in the crossing
region I.

To maintain the physical properties of the system such as restricting the train
speed to under the maximum limit and preventing the train from stopping in the
crossing indefinitely, Quesel and Schafer introduce a runProgress specification
defined as:

runProgress ≡ !et
!ex

(((lex
= MAXSPEED⟨ex⟩trainPart) ∧ let

= 1)

⟨et⟩let
= 1) ⇒ (let

= 1⟨et⟩trainPart).

Expanding according to the first principles, yields:

runProgress ≡ ¬(true⟨et⟩(true⟨ex⟩¬(((lex
= MAXSPEED⟨ex⟩

¬(⌈¬train⌉⟨ex⟩true) ∧ ℓex
> 0) ∧ let

= 1)⟨et⟩let
= 1)⟨ex⟩true)⟨et⟩true)

⇒ (let
= 1⟨et⟩¬(⌈¬train⌉⟨ex⟩true) ∧ ℓex

> 0).

Additional specifications are necessary to complete the shape calculus speci-
fication of safety and liveness. However, these initial specifications suffice to il-
lustrate the format of GRC specifications and how they are incorporated within
the comparisons.

The definitions in the specification include the chop operator F⟨ed⟩G, diame-
ter ⌈ ⌉ed

and negation ¬F . Each usage constitutes a token along with standard
binary operators (∧, ∨, >, <, =, ⇒). Thus, the Equation trainPartWeak given
by:

¬(⌈¬train⌉⟨ex⟩true)

contains four tokens: the encompassing negation, chop operator, diameter and
final negation. Note that train and true are base expressions and not evaluated
as tokens. Any equation incorporating other expressions automatically brings
in the accompanying tokens (as would be the case when expanded according to
first principles). Thus, the specification of trainPart:

trainPart ≡ trainPartWeak∧ ℓex
> 0

contains six tokens: four from trainPartWeak, and one each from the and
operator and greater-than comparison. It is interesting to note that, in this
specification, the two system variables are MaxSpeed and ReactTime, which
are both translated back to the GRC example to relate them to the quantitative,
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Table 5. Quesel-Schafer GRC specification.

System Variables 2
Definitions 5
Equations 11
Tokens 129

physical spatial distance that the train can travel during a temporal interval.
Table 5 shows the results for the Quesel-Schafer GRC specification.

5.3 Sparse Space-Time GRC Specification

Summarizing the discussion above, the sparse space-time GRC specification
holds when the following assertions are satisfied:

PP (gate, [DOWN, UP ]) (2)

DC(r, P ) ∧⃝¬DC(r, P ) ⇒ ⃝GoingDown (3)

GoingDown ∧ ¬DOWN ⇒

⃝ (DOWN ∧ ¬GoingDown) ∨ PP (⃝gate, δ) (4)

¬DC(r, R) ∧⃝DC(r, R) ⇒ ⃝GoingUp (5)

GoingUp ∧ ¬UP ⇒ ⃝(UP ∧ ¬GoingUp) ∨ PP (⃝gate, γ) (6)

Equation (2) is a safety constraint that binds the gate between the down and
up positions. Equations (3) and (4) initiate and facilitate the lowering of the
gate upon train entry. Equations (5) and (6) initiate and facilitate the raising
of the gate upon train exit. The sparse space-time system variables include
gate and r, which denote the position of the gate and train, respectively, along
with GSmin, GSmax, SamplingRate, and the Boolean variables GoingUp and
GoingDown. The definitions include the spatial regions P , R, δ and γ. Finally,
each RCC relation or operator is counted as a token (e.g., PP (⃝gate, γ) is two
tokens, one for the Proper Part relation and one for the next operator).

5.4 Discussion

Table 6 presents a comparison of all the GRC specifications. The comparison
indicates that the sparse space-time approach is more terse than the other
specifications based on the system variables, definitions and equations, and
counting the number of tokens required to express safety and liveness.

Assertion checking is based on a logical specification of correct operating
behavior. It is anticipated that properties of critical infrastructure systems can
be incorporated within assertion checking as additional, inherent constraints,
which is how expressions can capture system dynamics natively within sparse
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Table 6. Comparison of GRC specifications.

GRC Specification Vars. Defns. Eqns. Tokens

Heitmeyer-Lynch 8 4 30 89
Quesel-Schafer 2 5 11 129
Sparse Space-Time 7 4 5 32

space-time. The result is that assertions can be much more honed to the desired
properties (e.g., safety and liveness) and do not have to be explicitly crafted to
capture or convert physical properties such as the speeds of gates and trains in
the GRC example.

6. Conclusions

The sparse space-time paradigm can be used to naturally express spatial-
temporal assertions pertaining to critical infrastructure systems. The utility of
the paradigm is demonstrated via a specification of a one-dimensional railway
crossing problem, which includes safety and liveness properties. The generalized
metrics indicate that, although they may be more terse, sparse space-time
assertions are actually simpler to understand and create.

Our future research will explore the application of the sparse space-time
paradigm in domains that span multiple dimensions and/or include the model-
ing of cyber-physical systems. Additionally, we will consider space-time trajec-
tories as fundamental components of the spatial-temporal next operator; this
will help reduce the dependence on external motion specifications, such as those
used for gate dynamics. Our future research will also examine the application of
the flow tree concept [13] in conjunction with the sparse space-time paradigm.
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