Chapter 13

USING AN EMULATION TESTBED FOR

OPERATIONAL CYBER SECURITY
EXERCISES

Christos Siaterlis, Andres Perez-Garcia and Marcelo Masera

Abstract  The detection, coordination and response capabilities of critical infras-
tructure operators ultimately determine the economic and societal im-
pact of infrastructure disruptions. Operational cyber security exer-
cises are an important element of preparedness activities. Emulation
testbeds are a promising approach for conducting multi-party opera-
tional cyber exercises. This paper demonstrates how an Emulab-based
testbed can be adapted to meet the requirements of operational exer-
cises and human-in-the-loop testing. Three key aspects are considered:
(i) enabling secure and remote access by multiple participants; (ii) sup-
porting voice communications during exercises by simulating a pub-
lic switched telephone network; and (iii) providing exercise moderators
with a feature-rich monitoring interface. An exercise scenario involving
a man-in-the-middle attack on the Border Gateway Protocol (BGP) is
presented to demonstrate the utility of the emulation testbed.

Keywords: Cyber security exercises, network security, emulation testbed

1. Introduction

The increasing dependence of critical infrastructures on information and
communications technologies is a growing area of concern. Contingencies that
involve abnormal events and disruptions — deliberate (e.g., cyber attacks) or
unintentional (e.g., fiber cable cuts) — can result in dire consequences if critical
infrastructure operators fail to react promptly, appropriately and effectively.
Therefore, in the context of incident preparedness, it is important that the
procedures performed during contingencies are carefully planned and tested
in advance at the conceptual and technical levels. These activities can reveal
vital details that could negatively affect incident detection, coordination and
response capabilities.



186 CRITICAL INFRASTRUCTURE PROTECTION V

The execution of cyber security exercises has been identified as a priority
at the national [18] and international levels [2]. The U.S. Homeland Security
Exercise and Evaluation Program (HSEEP) [3] identifies two main types of ex-
ercises: discussion-based exercises and operations-based exercises. Operations-
based exercises provide valuable information about the behavior of operators
during security incidents, including response times and levels of coordination.
These exercises often engage the red team/blue team paradigm (i.e., the use of
an attacking team and a defending team) to ascertain the security of a system
or network [1, 12, 15]. Our approach diverges from this paradigm in that it fo-
cuses on cyber security exercises involving multiple stakeholders from different
administrative domains with the primary objective of examining their coordina-
tion capabilities. Such exercises are of particular interest due to the distributed,
global and privately-owned characteristics of the Internet infrastructure. In the
case of multinational exercises, private infrastructure owners (e.g., network ser-
vice providers (NSPs)) are the principal actors, but are typically competitors;
moreover, the notion of a governing entity (e.g., public sector) is hard to define.

Conducting exercises using production systems raises concerns about the
potential side-effects to mission-critical systems and services. Software-based
simulation has been proposed as a solution [9, 10], but it is limited by the
fact that operator behavior can be altered significantly if the exercise platform
lacks realism. The third option, hardware-based emulation, is a good candidate
because it combines realism and flexibility.

This paper discusses how an emulation testbed, specifically one based on the
Emulab software [5], can serve as a platform for executing multi-party, opera-
tional cyber security exercises. An Emulab testbed can recreate a wide range of
experimentation environments that support the development, debugging and
evaluation of complex systems [4, 11]. In the context of cyber security exer-
cises, the DETER testbed [13] has been used in the well-known Cyber Storm
exercise to provide visual inputs to participants and help them understand the
effects of attacks. We adopt a similar approach and investigate how an Emulab
testbed can be adapted for multi-party cyber security exercises. In particular,
we identify the missing elements and functionality needed to conduct robust
cyber security exercises. The effectiveness of the approach is demonstrated us-
ing an exercise with multiple network operators involving a man-in-the-middle
attack on the Border Gateway Protocol (BGP).

2. Operational Exercise Components

Cyber security exercises seek to raise the level of preparedness by confronting
participants with artificial events and studying their reactions. Six main ele-
ments must be considered when designing an exercise:

m Participants (Who): Participants come from the government, private
sector, media, etc. They have diverse roles such as players, observers, etc.

m Location (Where): Participants may be in the same physical location
or may participate remotely.



Siaterlis, Perez-Garcia € Masera 187

Operational

Duration

| With | | Single Meeting | ..
Communications: Place (Constraint 'Y H

Phone / Mail / | | onMaximum | [
Dedicated System Actors)

—_——— —_——— Dedi

I -—— —_— P VY —_ N\ =

1 y 1 Combination is not meaningful or Adhoc Testbed : X 4 Dedicated | Experiments on |

i .. _idesirable | for Each Exercise te.od Resources and |Top of Production

_——_——— Maintainer Systems
_—e—— e A e e

Figure 1. Design options for cyber security exercises.

# Time and Duration (When): Exercises may last from a few hours to
several days or weeks.

m Objectives (Why): Exercise objectives can vary widely, e.g., testing
recovery procedures and coordination capabilities.

s Type (How): Exercises can be grouped into two main categories: discus-
sion-based exercises and operations-based exercises.

m Scenario (What): A scenario typically consists of a storyline of events,
master event list and contextual information. A scenario usually incorpo-
rates the assets, vulnerabilities and asset topologies, hazards and poten-
tial adversaries, threats leading to attacks, attacks and their consequences
(physical, psychological, etc.), and countermeasures and response actions.

Figure 1 presents the various exercise design options. Note that our focus
is on operational exercises with remote participants. The exercise elements are
not independent of each other. In Figure 1, local operational exercises, both
long and short on production systems, are marked as not meaningful. The first
option would require participants to be away from their offices for long periods
of time. The second option is not feasible in most cases because production
systems are located in specific facilities and are not easily accessible.

As mentioned above, this paper focuses on operational exercises that involve
multiple remote participants. The objective is to involve key critical infrastruc-
ture stakeholders (mainly owners and operators of private infrastructures) at
the operational and practical levels in order to assess the communication and
coordination of operators during contingencies.

Four roughly sequential phases are involved in an exercise: design, setup,
execution and analysis. Each phase presents its own challenges, which will
be discussed individually after introducing the main concepts underlying an
emulation testbed.



188 CRITICAL INFRASTRUCTURE PROTECTION V

1. User provides 2. Emulab reserves needed 3. The desired virtual
experiment resources and configures topology is recreated
description physical topology including monitoring nodes
4 ‘
ns )
|:> i Virtual
\ ,
Servers Running Emulab )
Software
Pool of Available
Resources S 7> NI OSEEEE—e
--------- Routers
E R R
Generic PCs @
Figure 2. Recreating a virtual network configuration.
3. Emulab Overview

Using an emulation testbed is one of the most promising approaches for ex-
perimenting with large and complex systems. Pure software simulation is often
too simplistic to recreate complex environments. Using an ad hoc testbed is
not recommended because it can be time-consuming and error-prone to setup,
maintain and modify. Consequently, emulation testbeds like Emulab [20] are
becoming more popular. They are an attractive option for conducting cyber se-
curity exercises because they can support human-in-the-loop experimentation.

An Emulab testbed typically consists of two servers that run the Emulab
software (named boss and ops) and a pool of physical resources (e.g., generic
personal computers and network devices) used as experimental nodes. The
Emulab software permits the automatic and dynamic mapping of physical com-
ponents (e.g., servers and switches) to a virtual topology. In other words, it
configures the physical components so that they emulate the virtual topology
as transparently as possible. Thus, significant advantages are provided in terms
of the repeatability, scalability and controllability of experiments.

Figure 2 shows the main steps involved in recreating a virtual network con-
figuration in an Emulab testbed. The following steps are involved:

m A detailed description of the virtual network configuration is created using
Emulab’s experiment script, which is based on the TCL language with
ns-2 and testbed-specific extensions.

m In the description, similar components are designated as different in-
stances of the same component type. Consequently, templates of common
components (e.g., Linux DNS server) can be easily reused and automati-
cally deployed and configured.



Siaterlis, Perez-Garcia € Masera 189

m  An experiment is instantiated using the Emulab software. The Emulab
server automatically reserves and allocates the required physical resources
from the pool of available components. This procedure is called “swap-

in,” in contrast with the termination of the experiment, which is called
“swap-out.”

m  The software configures the network switches to recreate the virtual topol-
ogy by connecting experimental nodes using multiple VLANS.

m In the final step before experimentation, the software configures packet
captures at predefined links for monitoring purposes.

4. Configuring Emulab

An Emulab testbed is easily configured to support operational exercises.
This section describes the steps involved in the design, setup, execution and
analysis phases.

4.1 Design Phase

After determining the participants and developing a detailed scenario, the
following tasks are performed:

m  The network topology is described using an experiment script. The com-
ponents (e.g., servers and routers) to be controlled by the participants
are differentiated from the components that simulate the rest of the world
(i.e., the context). For example, participants would not have direct access
to nodes that generate background traffic (e.g., by replaying real traffic
dumps [19]). All the components should be based on reusable templates,
which reduces the costs involved in organizing exercises.

m  The exercise scenario is described using the experiment script (e.g., sce-
nario injects are represented as scheduled or dynamic events). For exam-
ple, a fiber cable cut could be scheduled by introducing a “link-down”
event. Emulab’s event scheduling mechanism supports the execution of
the scenario in real time instead of simulated time. However, it is impor-
tant to consider the need to pause exercise execution because swapping-
out the experiment can cause scheduled events to be replayed.

m  The exercise monitoring infrastructure is described and the data collection
mechanisms are configured.

4.2 Setup Phase

In the setup phase, the predefined systems are instantiated and configured as
in any Emulab experiment. Exercise participants are given access to individual
experimental nodes. Access control mechanisms are used to ensure that partic-
ipants may only access the nodes “owned” by them in the scenario. However,
exercise moderators are permitted to access all resources.



190 CRITICAL INFRASTRUCTURE PROTECTION V

As an example, consider the case of a participant representing a network
service provider. This participant would be given access to two logical nodes.
The first is a router that implements the service provider’s routing policy. The
second node is a companion management host, on which the participant can
install custom tools and scripts used in daily operations. Obviously, preparing
the exercise platform in such a manner is important to conducting realistic
operational exercises.

4.3 Execution Phase

During the exercise execution phase, the participants interact with the sys-
tems and among themselves. Their actions are monitored for further analysis
after the end of the exercise (analysis phase). It is important that exercise
moderators know how the exercise is evolving so that they can intervene (e.g.,
by injecting dynamic events) if necessary.

4.4 Analysis Phase

In the analysis phase, the emulation testbed is used to gather recorded data.
The data is used to evaluate the response times, durations of actions, levels of
coordination, etc. The data collected depends on the scope of the exercise.

5. Challenges

Based on the analysis above, three principal challenges must be addressed
in order to use an Emulab testbed for operational exercises:

m  Multiple Remote Users: The Emulab architecture supports multiple
remote users, but does not provide secure access. To address this chal-
lenge, we propose the use of VPN connections for secure remote access.

m Realistic Environment: Using an emulation testbed addresses the need
to recreate IP networks. However, it is necessary to integrate a simulated
and monitored public switched telephone network (PSTN) that could be
used by participants to communicate and coordinate their activities. This
means that telephone calls must be supported as in the real world.

m Flexible and Automated Monitoring: Emulab offers limited func-
tionality beyond link-tracing (i.e., packet capture of network traffic).
Also, it lacks support for measuring individual node metrics (e.g., CPU
utilization) and does not provide a user-friendly monitoring GUI. There-
fore, we have integrated Zabbix, a powerful open-source network moni-
toring application, with the Emulab architecture, enabling the automated
monitoring of experimental nodes.

These challenges are discussed in more detail in the following sections.



Siaterlis, Perez-Garcia € Masera 191

......................................

: ;
E H Legend

i :

Stateful | @} @ @} i (L2 Device@0210) [ ] server
(VPN Only) :
:
. H
‘ H

Q Firewall @ L3 Device

........................

Measurement Plane H

ervers Running

S
Emulab Software
H

1Control Network . : 1 Experimental Network

Figure 3. Emulab testbed with secure remote access.

5.1 Secure Remote Access Architecture

The organization of multi-party exercises is simplified by allowing geograph-
ically distributed participants to remotely access the exercise platform. Our
secure remote access architecture essentially isolates the testbed by allowing
remote access only through VPN connections (Figure 3). An OpenVPN server
enables remote users to connect securely through a public network such as
the Internet. The confidentiality and integrity of transmitted information is
ensured by tunneling protocols and encryption algorithms. Non-interference
between participants is implemented via the “no client-to-client” configuration
of the OpenVPN server.

All remote users authenticate themselves with the VPN server, which is
protected by a firewall. Once a user is connected to the “users network,” an in-
ternal firewall guarantees that access is available only to the required resources
(typically www to boss and ssh to nodes). Also, a user cannot reuse a new
connection (IP within the remote users network) to reach the Internet. This
architecture provides remote users with access to the platform, but not to the
Internet. The only access to the Internet from the testbed is via an authenti-
cated proxy (GW in Figure 3), which is restricted to platform administrators.

Having two layers of firewalls provides a high level of security and facilitates
the specification of access policies from the remote user network to internal
resources. Of course, this architecture is by no means optimal or unique, but
it is presented as a reference implementation for secure remote access to the
testbed. Of course, the architecture complements any security enhancements
provided by the Emulab architecture [8].



192 CRITICAL INFRASTRUCTURE PROTECTION V

5.2 Support for Voice and Data Networks

An operational exercise platform should provide a realistic environment
without any artificial features that could alter participant behavior. Unlike
a network simulator [10], an emulation testbed addresses this issue because
participants can interact with a realistic IP network that could be based on
real routers or on software routers like Quagga. Although software routers are
not a replacement for real routers, they permit the testbed to scale to much
larger topologies while maintaining a certain degree of fidelity. An important
detail is that by having the exercise platform isolated from the Internet, real-
world IP addresses, autonomous systems (ASs), etc. can be safely reused in
the experimental network, which increases the realism perceived by the partic-
ipants.

The exercise platform is extended to simulate a public switched telephone
network as in the real world [17]. The extension uses a separate logical net-
work consisting of a central VoIP server and several clients (e.g., soft phones),
which are handed to the participants. Our testbed uses an Asterisk server with
FreeBSD 8, which is automatically configured by launching scripts from Emu-
lab. However, for the purposes of an exercise, this functionality is augmented
with call recording so that communications between participants can be logged
for subsequent analysis. A VoIP server like Asterisk also facilitates monitor-
ing, because it supports the capture of two-party calls in separate files (after
multiplexing both voice streams).

5.3 Improving Network Monitoring Support

Permitting exercise moderators to monitor the execution of a complex cyber
security exercise in real time enables them to intervene when needed and to
properly simulate non-participating entities. Although some work on extending
Emulab’s monitoring capabilities has been performed (e.g., SEER [16]), the
integration of Emulab with general purpose network monitoring software can
guarantee more frequent updates, more functionality and support by a wider
community.

For these reasons, we have integrated Zabbix, which offers advanced moni-
toring, alerting and visualization features in a scalable and automated manner.
First, we created a template operating system image of a Zabbix server. The
experimental nodes can either have a pre-installed Zabbix agent or have the
agent installed at runtime, e.g., using the tb-set-node-tarfiles command.
The Zabbix server runs on a separate node and communicates with the agents
using the control network to avoid interference with the experiment and to
ensure communications with agents despite potential disruptions in the exper-
imental plane (part of the exercise scenario).

The challenge is to automatically configure the server to monitor all the
agents. This is because the IP addresses of the nodes allocated to an ex-
periment are not known a priori. We address this issue by including custom
emulab_mon code in Emulab’s experimental script, which specifies the nodes



Siaterlis, Perez-Garcia € Masera 193

Shell - S
config. §
. file
= Zabbix Agent
Program "
Shell RS
Program config. §
file
Zabbix Agent
emulabmon.tcl
Program Python N
XML N

Zabbix Server

Figure 4. Zabbix auto-configuration processes.

that are to be monitored and the Zabbix templates to which they should be
attached (Figure 4). At swapping-in time, the code calls shell scripts on all
the monitored nodes to configure the agents, and invokes a Python script that
configures the Zabbix server using its built-in XML-RPC API. This API is in
its infancy and, therefore, Zabbix server version 1.8 is the minimum version
that can be used.

pe20: Traffc mo (1h)

’HW /,-I;yfn‘-:mﬂr

i

pead: Trafic em1 (1h)

| B

ast
Ty

min aw
Bincoming rafic on nterface el 2y} ps Oops 7379
0 Arertace Obps EsseM

bps 48150 bps.
Waltgoing e on M awl 239 Nops bps 277 Mops

pe28: Trafic em2 (1h)
00 ki

R

st mn " aw max
] 26071 Kops Obps 22033%ps 79310K
i obps 22

Bincoming traffc on intertace am2
WOt AR on itertice am2 (4] 225,32 Kips

26,58 ks 74119 K¢

Figure 5. Zabbix web interface for experiment monitoring.

This process automatically configures the powerful, user-friendly web in-
terface presented in Figure 5. The interface can be used for general purpose



194 CRITICAL INFRASTRUCTURE PROTECTION V

0

VolIP Server

T
i

W1

(a

&

Voice Communications /
PSTN

Figure 6. Exercise topology.

experiment monitoring such as presenting graphs of traffic loads, CPU and
memory usage of individual nodes, as well as a network weathermap [7]. Ex-
ercise moderators can also use the interface as a central exercise monitoring
screen.

6. BGP Attack Response Scenario

This section describes an operational exercise intended to assess the commu-
nications and coordination of network service providers during a BGP man-in-
the middle attack as used in the infamous YouTube hijacking incident [14]. The
use case demonstrates how participants could use an emulation testbed, how a
scenario could be played and how information for studying response strategies
and communication patterns can be captured.

The exercise involved 21 participants: eighteen national network service
providers and three global network service providers (R1, R10 and R11) that
simulate the Internet core (Figure 6). In this simplified Internet model, each
network service provider communicated directly with its neighbors (if they
shared a link); otherwise they communicated through the Internet core. An



Siaterlis, Perez-Garcia € Masera 195

eBGP session between network service providers that shared a link was used
to exchange their prefixes.

The exercise scenario assumed that a network service provider was compro-
mised by an internal attack that hijacked the IP address spaces of two network
service providers, NSP12 and NSP16. In addition to hijacking the IP address
space, the attack also performed a man-in-the-middle exploit by forwarding
traffic to the destination. This was accomplished by announcing more specific
prefixes of the victims and applying “AS-path prepend” of the intended net-
work service providers in the path [6]. Thus, the attack was able to copy and
manipulate traffic between NSP12 and NSP16, thereby compromising the in-
tegrity and confidentiality of communications. The scenario assumed that the
operators of the compromised network service providers were not reachable and
were unable to mitigate the internal attacks promptly.

This scenario was recreated in our Emulab-based testbed using 21 router-
nodes running Quagga software with the appropriate BGP configuration. Links
between network service providers had 10 Mbps of bandwidth and 10 ms of
delay, while links in the core had 100 Mbps of bandwidth and 0 ms of delay.
Each network service provider announced a /16 prefix that was configured
on a loopback interface. An isolated node with Zabbix software connected
to the routers via the control network was used to collect traffic statistics.
Another experiment with Asterisk software was used to simulate the public
switched telephone network and support voice communications between the
exercise participants.

Every process was automated during experiment start-up using a different
script. The scripts enabled Quagga to load the right configuration file on each
router. Also, they enabled the Zabbix server to configure the agents and itself
with the required hosts and graphs, and the network weathermap to visualize
traffic load. Such automation is very important from the point of view of
scalability.

After the experiments were instantiated, the events corresponding to the
attack were launched. Initially, sensitive traffic between NSP12 and NSP16
followed the path NSP12-R10-R1-R11-NSP16 and vice versa (left-hand side of
Figure 7). However, after the attack changed the BGP configuration to hijack
the IP address spaces of NSP12 and NSP16 by announcing more specific pre-
fixes, sensitive traffic followed the path NSP12-R10-NSP1-R11-NSP16 and vice
versa (right-hand side of Figure 7). Note that Figure 7 presents the visualiza-
tion of sensitive traffic as seen from the monitoring server.

Since the attack forwarded traffic to the intended destination, the source and
destination network service providers were unaware of the route modification
and the adversary was able to capture and eventually modify the packets. Al-
though the attack was transparent from the point of view of communications,
the users experienced higher delays and the operators could see that traffic was
diverted to other interfaces in the routers.

Additional details can be obtained by examining the BGP tables before and
after the attack. Before the attack, the path between NSP12 and NSP16 (in



196 CRITICAL INFRASTRUCTURE PROTECTION V

R10-AS110

R1-AS101

R11-AS111

Figure 7. Sensitive traffic between NSP12 and NSP16.

terms of ASs) was: 12 — 110 — 101 — 111 — 16, corresponding to the ASs of
NSP12, R10, R1, R11 and NSP16, respectively:

NSP12# show ip bgp
Network Next Hop Metric LocPrf Weight Path
x> 10.16.0.0/16 10.1.20.2 0 110 101 111 16 i

NSP16# show ip bgp
Network Next Hop Metric LocPrf Weight Path
*> 10.12.0.0/16 10.1.25.2 0 111 101 110 12 1

After the attack, the BGP tables were manipulated and included more spe-
cific prefixes that followed a different path through NSP1 (AS1). The use of
“AS-path prepend” by the attack made the new entries seem legitimate, just
as if they were announced by the destination network service provider:

NSP12# show ip bgp

Network Next Hop Metric LocPrf Weight Path
x> 10.16.0.0/16 10.1.20.2 0 110 101 111 16 i
x> 10.16.0.0/24 10.1.20.11 0 110 1 111 16 i

NSP16# show ip bgp

Network Next Hop Metric LocPrf Weight Path
*> 10.12.0.0/16 10.1.25.2 0 111 101 110 12 1
*> 10.12.0.0/24 10.1.25.11 0111 1 110 12 i

During the exercise, the participants could react to and choose one or a
combination of two response strategies:



Siaterlis, Perez-Garcia € Masera 197

m Filtering Strategy: The victims of the attack contact the peering net-
work service providers and ask them to take action. In the exercise, the
core routers R10 and R11 receive harmful announcements from NSP1 and
filtering must be applied to block the announcements.

m More Specific Prefix Strategy: The victims combat the attack by
announcing even more specific prefixes. The victims act and coordinate
their activities as in the filtering strategy, but they do not need to contact
other network service providers.

Although the strategy of announcing more specific prefixes seems less com-
plex and requires less coordination with other network service providers, it may
not be the best technical and long-term strategy for several reasons. For exam-
ple, providers that are upstream of the victims might deploy prefix filters that
do not allow the use of more specific prefixes, or the victims could compete
with the attacker in announcing prefixes of increasing specificity. A detailed
discussion of these issues is outside the scope of this paper.

In the case of the hijacking attack and assuming that the filtering strategy
is applied by the network service providers that are directly connected to the
attacker, then the total time T} that the victims would spend on the telephone
to ask all the network service providers to filter the attack is given by:

Ti < (N, x Ny) x T,

where NN, is the number of victims, N, is the number of network service
providers that peer with the attacker and T, is the time required for two
participants to coordinate their actions. This represents the “cost” of mesh
communications between uncoordinated victims and network service providers
that are directly connected to the single man-in-the-middle attacker. This time
is different from the actual time required to mitigate the attack because the
latter depends on factors such as the availability of concurrent communications,
the time needed to apply filtering by network service providers due to internal
procedures, and even BGP convergence times. Furthermore, the formula as-
sumes a constant time 7T, for each communication but, in reality, 7, depends
on operator experience, contact networks, operators language skills, etc.

The value of a real operational exercise based on this use case goes be-
yond theoretic constructs to a deeper understanding of the operational reality
where decisions and reaction measures follow administrative procedures. This
often translates to a series of communications, possibly involving third par-
ties (e.g., a regional Internet registry (RIR)) to confirm information related to
the announced routes. Therefore, in the context of preparedness, the execu-
tion of an operational exercise on top of an emulation testbed (enhanced with
voice communications) with multiple participants from different network service
providers would not only support training, but also provide input to researchers
about network service provider coordination in terms of procedures followed,
typical values of T, and the need to automate administrative procedures. Given



198 CRITICAL INFRASTRUCTURE PROTECTION V

the complexity of the Internet, coordination between organizations, institutions
and stakeholders is a key factor in any response to a contingency.

7. Conclusions

Organizing multi-party operational cyber security exercises using an emu-
lation testbed offers several advantages. Exercises can be conducted without
interfering with production networks while offering a realistic environment that
supports voice and data. Remote access to the testbed supports real-time ex-
ercises of long duration that actively involve large numbers of participants.
Exercises can include architectures, technologies and policies that are not yet
deployed; and monitoring and data collection can be very detailed with limited
privacy concerns. Finally, investing in reusable components simplifies the task
of organizing future cyber exercises while reducing costs.

Our future work will analyze the effectiveness of the paradigm in real exer-
cises. Other areas of focus include enhancing the fidelity of the platform, and
developing and conducting exercises that cover multiple critical infrastructure
sectors.

References

[1] W. Adams, E. Gavas, T. Lacey and S. Leblanc, Collective views of the
NSA/CSS cyber defense exercise on curricula and learning objectives, Pro-
ceedings of the Second Conference on Cyber Security Experimentation and
Test, p. 2, 2009.

[2] European Commission, Protecting Europe from Large Scale Cyber-Attacks
and Disruptions: Enhancing Preparedness, Security and Resilience,
COM(2009) 149, Brussels, Belgium (ec.europa.eu/information society /poli
cy/nis/docs/comm _ciip/comm_en.pdf), 2009.

[3] Federal Emergency Management Agency, Homeland Security Exercise and
Evaluation Program (HSEEP), Washington, DC (hseep.dhs.gov).

[4] Flux Research Group, Emulab bibliography, School of Computing, Uni-
versity of Utah, Salt Lake City, Utah (www.emulab.net/expubs.php).

[5] Flux Research Group, Emulab — Network Emulation Testbed, School of
Computing, University of Utah, Salt Lake City, Utah (www.emulab.net).

[6] C. Hepner and E. Zmijewski, Defending against BGP man-in-the-middle
attacks, presented at the Black Hat DC Conference, 2009.

[7] H. Jones, Network Weathermap (www.network-weathermap.com).

[8] K. Lahey, R. Braden and K. Sklower, Experiment isolation in a secure
cluster testbed, Proceedings of the Conference on Cyber Security Experi-
mentation and Test, 2008.

[9] Y. Li, M. Liljenstam and J. Liu, Real-time security exercises on a realistic
interdomain routing experiment platform, Proceedings of the Twenty-Third
Workshop on Principles of Advanced and Distributed Simulation, pp. 54—
63, 2009.



Siaterlis, Perez-Garcia € Masera 199

[10] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan and C. Grier, RINSE: The
real-time immersive network simulation environment for network security
exercises (extended version), Simulation, vol. 82(1), pp. 43-59, 2006.

[11] J. Mirkovic, A. Hussain, S. Fahmy, P. Reiher and R. Thomas, Accurately
measuring denial of service in simulation and testbed experiments, IEEE
Transactions on Dependable and Secure Computing, vol. 6(2), pp. 81-95,
2009.

[12] J. Mirkovic, P. Reiher, C. Papadopoulos, A. Hussain, M. Shepard, M. Berg
and R. Jung, Testing a collaborative DDoS defense in a red team/blue
team exercise, IEEE Transactions on Computers, vol. 57(8), pp. 1098—
1112, 2008.

[13] R. Ostrenga and P. Walczak, Application of DETER in large-scale cyber
security exercises, Proceedings of the DETER Community Workshop, 2006.

[14] RIPE Network Coordination Center, YouTube hijacking: A RIPE NCC
RIS case study, Amsterdam, The Netherlands (www.ripe.net/news/study-
youtube-hijacking.html), 2008.

[15] B. Sangster, T. O’Connor, T. Cook, R. Fanelli, E. Dean, W. Adams, C.
Morrell and G. Conti, Toward instrumenting network warfare competi-
tions to generate labeled datasets, Proceedings of the Second Conference
on Cyber Security Fxperimentation and Test, p. 9, 2009.

[16] S. Schwab, B. Wilson, C. Ko and A. Hussain, SEER: A security experimen-
tation environment for DETER, Proceedings of the DETER Community
Workshop, p. 2, 2007.

[17] R. Stapleton-Gray, Inter-network operations center dial-by-ASN (INOC-
DBA), A resource for the network operator community, Proceedings of

the Cybersecurity Applications and Technology Conference for Homeland
Security, pp. 181-185, 2009.

[18] The White House, The National Strategy to Secure Cyberspace, Wash-
ington, DC (www.dhs.gov/xlibrary/assets/National Cyberspace_Strategy
.pdf) 2003.

[19] A. Turner, Tcpreplay (tcpreplay.synfin.net).

[20] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M.
Hibler, C. Barb and A. Joglekar, An integrated experimental environment
for distributed systems and networks, Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation, pp. 255-270, 2002.



