
Chapter 5

IDENTIFYING VULNERABILITIES IN
SCADA SYSTEMS VIA FUZZ-TESTING

Rebecca Shapiro, Sergey Bratus, Edmond Rogers and Sean Smith

Abstract Security vulnerabilities typically arise from bugs in input validation and
in the application logic. Fuzz-testing is a popular security evaluation
technique in which hostile inputs are crafted and passed to the target
software in order to reveal bugs. However, in the case of SCADA sys-
tems, the use of proprietary protocols makes it difficult to apply existing
fuzz-testing techniques as they work best when the protocol semantics
are known, targets can be instrumented and large network traces are
available. This paper describes a fuzz-testing solution involving LZ-
Fuzz, an inline tool that provides a domain expert with the ability to
effectively fuzz SCADA devices.

Keywords: Vulnerability assessment, SCADA systems, fuzz-testing

1. Introduction

Critical infrastructure assets such as the power grid are monitored and con-
trolled by supervisory control and data acquisition (SCADA) systems. The
proper functioning of these systems is necessary to ensure the safe and reliable
operation of the critical infrastructure – something as simple as an input vali-
dation bug in SCADA software can leave an infrastructure asset vulnerable to
attack. While large software development companies may have the resources to
thoroughly test their software, our experience has shown that the same cannot
be said for SCADA equipment manufacturers. Proell from Siemens [19] notes
that random streams of bytes are often enough to crash SCADA devices.

Securing SCADA devices requires extensive testing for vulnerabilities. How-
ever, software vulnerabilities are often not well understood by SCADA devel-
opers and infrastructure experts, who may themselves not have the complete
protocol documentation. Meanwhile, external security experts lack the SCADA
knowledge, resources and access to run thorough tests. This is a Catch-22 sit-
uation.

58 CRITICAL INFRASTRUCTURE PROTECTION V

Fuzz-testing is a form of security testing in which bad inputs are chosen in
attempt to crash the software. As such, it is widely used to test for security
bugs in input validation as well as in application logic. However, applying fuzz-
testing methodologies to secure SCADA devices is difficult. SCADA systems
often rely on poorly understood proprietary protocols, which complicates test
development. The time-sensitive, session-oriented nature of many SCADA en-
vironments makes it impossible to prime a fuzzer with a large capture. (Session
data is only valid for a short time and is often rejected out of hand by the tar-
get thereafter.) Furthermore, many modern fuzzers require users to attach a
debugger to the target, which is not always possible in a SCADA environment.
What is needed is a fuzzer than works inline.

This paper describes LZFuzz, an inline fuzzing tool that enables infrastruc-
ture asset owners and operators to effectively fuzz their own equipment without
needing to modify the target system being tested, and without having to expose
their assets or pass proprietary information to external security evaluators.

2. Fuzzing Overview

Barton Miller, the father of fuzz-testing, observed during a thunderstorm
that the lightning-induced noise on his network connection caused programs
to crash [15]. The addition of randomness to inputs triggered bugs that were
not identified during software testing. Upon further investigation, Miller dis-
covered that the types of bugs triggered by fuzzing included race conditions,
buffer overflows, failures to check return code and printf/format string prob-
lems. These bugs are often sources of software security vulnerabilities [14].
Most modern software undergoes aggressive input checking and should handle
random streams of bytes without crashing. Consequently, modern fuzz-testing
tools have become more selective in how they fuzz inputs.

Whether or not data has been fuzzed, there usually are multiple layers of
processing that the data has to undergo before it reaches the target software’s
application logic. Application logic is the soft underbelly of software – pene-
trating it greatly increases the likelihood of compromising the software. Fuzzed
inputs trigger bugs only if they are not rejected by one of the processing layers
before they get to the application logic. Therefore, a fuzzer must generate in-
puts that are clean enough to pass all the processing layer checks, but that are
sufficiently malformed to trigger bugs in the application logic.

The most successful fuzzers create fuzzed inputs based on complete knowl-
edge of the layout and contents of the inputs. If a fuzzer is given information
on how a specific byte will be interpreted, it can manipulate the byte in ways
that are more likely to compromise the target. For example, if a particular
sequence of bytes has information about the length of a string that is contained
in the next sequence of bytes, a fuzzer can try to increase, decrease or set the
length value to a negative number. The target software may not check one of
these cases and pass the malformed input to the application logic, resulting in
a potentially exploitable memory corruption [14].

Shapiro, Bratus, Rogers & Smith 59

2.1 Fuzzing Techniques

There are two methods for creating fuzzed inputs: generation-based fuzzing
and mutation fuzzing. To simplify the presentation, we focus on fuzzing packets
sent to networked software. The techniques, however, apply generally to fuzz-
testing (e.g., of files and file systems).

Generation-Based Fuzzing: This method constructs fuzzed inputs
based on generation rules related to valid input structures and proto-
col states. The simplest generation-based fuzzers generate fuzzed inputs
corresponding to random-length strings containing random bytes [15].
State-of-the-art generation-based fuzzers such as Sulley [3] and Peach [11]
are typically block-based fuzzers. Block-based fuzzers require a complete
description of the input structure in order to generate inputs, and often
accept a protocol description as well. SPIKE [1] was the first block-based
fuzzer to be distributed. Newer generation-based fuzzers such as EXE
[7] instrument code to automatically generate test cases that have a high
probability of success.

Mutation Fuzzing: This method modifies good inputs by inserting
bad bytes and/or swapping bytes to create fuzzed inputs. Some mod-
ern mutation fuzzers base their fuzzing decisions on a description of the
input layout (e.g., the mutation aspect of Peach [11]). Other mutation
fuzzers such as the General Purpose Fuzzer (GPF) [22] do not require
any knowledge of the input layout or protocol; they use simple heuristics
to guess field boundaries and accordingly mutate the input. Kaminsky’s
experimental CFG9000 fuzzer [13] occupies the middle ground by using
an adaptation of the Sequitur algorithm [18] to derive an approximation
(context-free grammar) of the generative model of a protocol from a suffi-
ciently large traffic capture, and then uses the model to generate mutated
inputs. Most mutation fuzzers use previously-recorded network traffic as
the basis for mutation, although there are some inline fuzzers that read
live traffic. One of the most influential academic works on fuzzing is
PROTOS [21], which analyzes a protocol, creates a model and generates
fuzzing tests based on the model.

A fuzzing test is typically deemed to be successful when it reveals a bug that
harbors a vulnerability. However, in the case of critical infrastructure assets, a
broader definition of success is appropriate – discovering a bug that creates any
sort of disruption. This is important because any disruption – whether or not
it is a security vulnerability – can severely impact the critical infrastructure.

2.2 Inline Fuzzing

In general, most block-based and mutation packet fuzzers work on servers,
not clients. This is because these fuzzers are designed to generate packets and
send them to a particular IP address and port. Since clients do not accept

60 CRITICAL INFRASTRUCTURE PROTECTION V

traffic that they are not expecting, only fuzzers that operate on live traffic are
capable of fuzzing clients. Similarly, protocols that operate in short or time-
sensitive sessions are relatively immune to fuzzing that requires a large sample
packet dump. For these reasons, inline fuzzing is typically required to fuzz
clients.

Fuzzers that are capable of inline fuzzing (e.g., QueMod [12]) either transmit
random data or make random mutations. To our knowledge, LZFuzz, which
is described in this paper, is the first inline fuzzer that goes beyond random
strings and mutations.

2.3 Network-Based Fuzzing

Most modern fuzzers integrate with debuggers to instrument and monitor
their targets for crashes. However, using a debugger requires intimate access to
the target. Such access is unlikely to be available in the case of most SCADA
systems used in the critical infrastructure.

Inline fuzzers like LZFuzz must recognize when the target crashes or becomes
unresponsive without direct instrumentation. With some targets, this recog-
nition must trigger a way to (externally) reset the target; other targets may
be restarted by hardware or software watchdogs. Note that generation-based
fuzzers, which for various reasons cannot leverage target instrumentation, en-
counter similar challenges. For example, 802.11 Link Layer fuzzers that target
kernel drivers [6] have had to work around their successes that caused kernel
panics on targets.

In either case, stopping and then restarting the fuzzing iteration over the
input space is necessary so that fuzzing payloads are not wasted on an unre-
sponsive target. It is also important for a fuzzer to adapt to its target, especially
when dealing with proprietary protocols.

2.4 Fuzzing Proprietary Protocols

It is generally believed that if a fuzzer can understand and adapt to its target,
it will be more successful than a fuzzer that does not. Therefore, it is important
for a fuzzer to leverage all the available knowledge about the target. When
no protocol specifications are available, an attempt can be made to reverse
engineer the protocol manually or with the help of debuggers. In practice, this
can be extremely time-consuming. Furthermore, it is not always possible to
install debuggers on some equipment, which makes reverse engineering even
more difficult.

Consequently, it is important to build a fuzzing tool that can work efficiently
on proprietary devices and software without any knowledge of the protocol it
is fuzzing. Although a mutation fuzzer does not require knowledge of the
protocol, it is useful to build a more efficient mutation fuzzer by incorporating
field parsing (and other) heuristics that would enable it to respond to protocol
state changes on the fly without protocol knowledge. Because instrumenting
a target is difficult or impossible in a SCADA environment, the only option is

Shapiro, Bratus, Rogers & Smith 61

to employ inline adaptive fuzzing. We refer to this approach as live adaptive
mutation fuzzing.

2.5 Fuzzing in Industrial Settings

Proprietary protocols used by SCADA equipment, such as Harris-5000 and
Conitel-2020, are often not well-understood. Understandably, domain experts
neither have the time nor the skills to reverse engineer the protocols. Fuzzing
experts can perform this task, but infrastructure asset owners and operators
may be reluctant to grant access to outsiders. In our own experience with
power industry partners, it was extremely difficult to gain approval to work
with their equipment. Moreover, asset owners and operators are understand-
ably disinclined to share information about proprietary protocols and equip-
ment, making it difficult for outside security experts to perform tests. Clearly,
critical infrastructure asset owners and operators would benefit from an effec-
tive fuzzing tool that they could use on their own equipment. Our work with
LZFuzz seeks to make this possible.

2.6 Modern Fuzzers

This section briefly describes examples of advanced fuzzers that are popular
in the fuzz-testing community. Also, it highlights some tools that are available
for fuzzing SCADA protocols.

General Network-Based Fuzzing Tools: Sulley [3] is a block-based
generation fuzzing tool for network protocols. It provides mechanisms
for tracking the fuzzing process and performing post mortem analysis. It
does so by running code that monitors network traffic and the status of
the target (via a debugger). Sulley requires a description of the block
layout of a packet in order to generate fuzzed inputs. It also requires a
protocol description, which it uses to iterate through different protocol
states during the fuzzing process.

The General Purpose Fuzzer (GPF) [22] is a popular network protocol
mutation fuzzer that requires little to no knowledge of a protocol. Al-
though GPF is no longer being maintained, it is one of the few open source
modern mutation fuzzers that is commonly available. GPF reads network
captures and heuristically parses packets into tokens. Its heuristics can
be extended to improve the accuracy with which it handles a protocol,
but, by default, GPF attempts to tokenize packets using common string
delimiters such as “ ” and “\n.” GPF also provides an interface to load
user defined functions that perform operations on packets post-fuzzing.

Peach is a general fuzzing platform that performs mutation and block-
based generation fuzzing [11]. Like Sulley, it requires a description of
the fields and protocol. When performing mutation fuzzing, Peach reads
in network captures and uses the field descriptions to parse and analyze
packets for fuzzing as well as to adjust packet checksums before trans-

62 CRITICAL INFRASTRUCTURE PROTECTION V

mitting the fuzzed packets. Like Sulley, Peach also uses debuggers and
monitors to determine success and facilitate post mortem analysis.

SCADA Fuzzing Tools: Some tools are available for fuzzing non-
proprietary SCADA protocols. In 2007, ICCP, Modbus and DNP3 fuzzing
modules were released for Sulley by Devarajan [9]. SecuriTeam includes
DNP3 support with its beSTORM fuzzer [4]. Digital Bond created IC-
CPSic [10], a commercial suite of ICCP testing tools (unfortunately, this
suite is no longer publicly available). Also Mu Dynamics offers Mu Test
Suite [17], which supports modules for fuzzing SCADA protocols such as
IEC61850, Modbus and DNP3.

3. LZFuzz Tool

LZFuzz employs a simple tokenizing technique adapted from the Lempel-
Ziv compression algorithm [23] to estimate the recurring structural units of
packets; interested readers are referred to [5] for an analysis of the accuracy
of the tokenizing method. Effective inputs for fuzzing can be generated by
combining this simple tokenizing technique with a mutation fuzzer. The need
to understand and model protocol behavior can be avoided by adapting to and
mutating live traffic.

In our experience, SCADA protocols used in power control systems perform
elaborate initial handshakes and send continuous keep-alive messages. If a
target process is crashed, the process will often automatically restart itself and
initiate a new handshake.

This behavior is unusual for other non-SCADA classes of targets that need to
be specifically instrumented to ensure liveliness and be restarted remotely. Such
restarting/session renegotiation behavior assists the construction of successful
fuzz sessions. Based on this observation, we propose the novel approach of
“adaptive live mutation fuzzing.” The resulting fuzzer can adapt its fuzzing
method based on the traffic it receives, automatically backing off when it thinks
it is successful.

3.1 Design

The LZFuzz tool is inserted into a live stream of traffic, capturing packets
sent to and from a source and target. A packet read into LZFuzz gets processed
in several steps before it is sent to the target (Figure 1). When LZFuzz receives
traffic destined for the target, it first tags the traffic with its type. Then, it
applies a set of rules to see if it can declare success. Next, it looks up the LZ
string table for the traffic type it is processing, updates the table and parses
the packet accordingly. Next, it sends one or more tokens to a mutation fuzzer.
Finally, it reassembles the packet, fixing any fields as needed in the packet
finishing module. As LZFuzz receives traffic destined for the source, it checks
for success and fixes any fields as required before sending the packet to the
source.

Shapiro, Bratus, Rogers & Smith 63

Figure 1. LZFuzz packet processing.

Intercepting Packets. Although it may be possible to configure the
source and target to communicate directly with the machine running LZFuzz,
it may not always be practical to do so. Consequently, LZFuzz uses a tech-
nique known as ARP spoofing or ARP poisoning to transparently insert itself
between two communicating parties. This method works when the systems are
communicating over Ethernet and IP and at least one of them is on the same
LAN switch as the machine running LZFuzz. (In the case of only one target
host being local and the remote host located beyond the local LAN, the LAN’s
gateway must be “poisoned.”) The ability to perform ARP spoofing means
that fuzzing can be performed without the need to make any direct changes
to the source or target configurations. LZFuzz uses the arp-sk tool [20] to
perform ARP spoofing.

Note that, although various Link Layer security measures exist against ARP
poisoning and similar LAN-based attacks can be deployed either at the LAN
switches or on the respective hosts or gateways (see, e.g., [8]), such measures are
not typically used in control networks, because of the configuration overhead.
This overhead can be especially costly in emergency scenarios where faulty or
compromised equipment must be quickly replaced, because it is desirable in
such situations that the replacement work “out of the box.”

Estimating Packet Structure. As LZFuzz reads in valid packets, it
builds a string table as if it were performing LZ compression [23]. The LZ table
keeps track of the longest unique subsequences of bytes found in the stream of
packets. LZFuzz updates its LZ tables for each packet it reads. A packet is
then tokenized based on strings found in the LZ table, and each token is treated
as if it were a field in the packet. One or more tokens are then passed to GPF,
which guesses the token types and mutates the tokens. The number of tokens

64 CRITICAL INFRASTRUCTURE PROTECTION V

!"#$%&'"()*+,&-*"% ./)*0$1* 23+"+*&4",*%&/0
./)*0&5/0+*0+,

666&789897897897&9++:&7*+&:3+&";3$<*&<*,*+666&
789897&9++:&7*+&:3+&";3$<*&<*,*
666&78&&&9897897897&9++:&7*+&:3+&";3$<*&<*,*+
666&7898978&&97897&9++:&7*+&:3+&";3$<*&<*,*+
666&7&897&9++:&7*+&:3+&";3$<*&<*,*++&&&

=>?311& +<$07&."!#* 23+"+/<&"#'?$

Figure 2. Tokenizing and mutating packets (adapted from [5]).

passed to GPF is dependent on whether or not the windowing mode is enabled.
When the mode is enabled, LZFuzz fuzzes one token at a time, periodically
changing the token it fuzzes (LZFuzz may fuzz multiple tokens at a time in
the windowing mode to ensure that there are enough bytes available to mutate
effectively). When the windowing mode is disabled, all the tokens are passed
to GPF. Figure 2 provides a high-level view of the tokenizing process.

!"##$%&'()*$+

,$-./

!"##$%&'()*$+

,$-./

!0$12&'()*$+

,$-./

3$+450*
6(-+"0$
789&:;1*<

="+(+;59&!"##$0 >(0?$+

>(0?$+ !!"##&!0$12&="+(+;59&!"##$0"5"0)$

Figure 3. Comparison of live inline mutation with traditional mutation.

Responding to Protocol State Changes. Unlike traditional mu-
tation fuzzers, LZFuzz’s mutation fuzzer performs live mutation fuzzing. This
means that, instead of mutating previously recorded packets, packets are mu-
tated while they are in transit from the source to the target. Figure 3 shows
how live mutation differs from traditional mutation. In particular, live inline
mutation enables the fuzzing of short or time-sensitive sessions on real systems
in both directions. Traditional mutation fuzzers mutate uncorrupted input

Shapiro, Bratus, Rogers & Smith 65

from a network dump whereas LZFuzz mutates packets freshly from a source
as it communicates with the target.

Recognizing Target Crashes. Modern network protocol fuzzers tend
to require the attachment of a debugger to the target to determine when crashes
occur. However, such access is typically not available in SCADA environments.
Since live communications are captured as they enter and leave the fuzzing
target, our novel approach can make fuzzing decisions based on the types of
messages (or lack thereof) sent by the target or source.

SCADA protocols tend to have continuous liveliness checks. If a piece of
equipment revives itself after being perceived as dead, an elaborate handshake
is typically performed as it reintroduces itself. LZFuzz possesses the ability to
recognize such behavior throughout a fuzzing session.

Even if a protocol does not have these keep-alive/handshake properties, other
methods can be used to deduce success from network traffic. If a protocol is
running over TCP, the occurrence of an RST flag may signify that the target
process has crashed. This flag is set when a host receives traffic when it has
no socket listening for the traffic. Our experience with LZFuzz has shown that
TCP RST flags are a reasonable success metric although they produce some
false positives.

Mutation. LZFuzz can work with a variety of fuzzers to mangle the
input it fetches. Also, LZFuzz can be easily modified to wrap itself around new
mutation fuzzers. Currently, LZFuzz passes packet tokens to the GPF mutation
fuzzer for fuzzing before it reassembles the packet and fixes any fields such as
checksums.

3.2 Extending LZFuzz

LZFuzz provides an API to allow users to encode knowledge of the protocol
being fuzzed. The API can be used to tag different types of packets using regu-
lar expressions. New LZ string tables are automatically generated for each type
of packet that it is passed. The API also allows users to provide information
on how to fix packets before they are sent so that the length and checksum
fields can be set appropriately. Finally, the API allows users to custom-define
success conditions. For example, if a user knows that the source will attempt a
handshake with the target when the target dies, then the user can use the API
to tag the handshake packets separately from the data and control packets and
to instruct LZFuzz to presume success upon receiving the handshake packets.

4. Experimental Results

An earlier version of LZFuzz was tested on several non-SCADA network
protocols, including the iTunes music sharing protocol (DAAP). LZFuzz was
able to consistently hang the iTunes version 2.6 client by fuzzing DAAP. It

66 CRITICAL INFRASTRUCTURE PROTECTION V

was also able to crash an older version of the Gaim client by intercepting and
fuzzing AOL Instant Messenger traffic.

We selected these protocols because we wanted to test the fuzzer on examples
of relatively complex (and popular) client-server protocols that are used for
frequent, recurring transactions with an authentication phase separate from the
normal data communication phase. Also, we sought protocols that supported
some notion of timed and timed-out sessions. Of course, it was desirable that
the target software be widely used so that most of the easy-to-find bugs would
have presumably been fixed. More importantly, however, LZFuzz was able to
consistently crash SCADA equipment used by an electric power company.

Beyond listing successes, it is not obvious how the effectiveness of a fuzzer
can be quantitatively evaluated or compared. In practice, a fuzzer is useful if
it can crash targets in a reasonable amount of time. But how does one encode
such a goal in a metric that can be evaluated?

The best method would be to test the ability of a fuzzer to trigger all the
bugs in a target. However, such a metric is flawed because it requires a priori
knowledge of all the bugs that exist in the target. A more reasonable metric
is code coverage – the portion of code in a target that is executed in response
to fuzzed inputs. This metric also has its flaws, but it is something that can
be measured (given access to the source code of the target), and still provides
insight on ability of the fuzzer to reach hidden vulnerabilities. Indeed, in 2007,
Miller and Peterson [16] used code coverage to compare generational fuzzing
against mutation fuzzing. Also, the usefulness of coverage instrumentation
has long been recognized by the reverse engineering and exploit development
communities. For example, Amini’s PaiMei fuzzing and reverse engineering
framework [2] provides the means to evaluate the code coverage of a process up
to the basic block granularity; the framework also includes tools for visualiz-
ing coverage. Unfortunately, the code coverage metric glosses over differences
between a fuzzer constrained to having canned packet traces and one that can
operate in a live inline mode. Nevertheless, to provide a means for comparing
LZFuzz with other methods of fuzzing proprietary protocols, we set up exper-
iments to compare the code coverage of LZFuzz, GPF and random mutation
fuzzing (with random strings of random lengths).

4.1 Experimental Setup

We tested GPF, LZFuzz, random mutation fuzzing and no fuzzing on two
targets: mt-daapd and the Net-SNMP snmpd server. We chose these two targets
because mt-daapd is an open source server that uses a (reverse engineered)
proprietary protocol and Net-SNMP uses the open SNMP protocol used in
SCADA systems.

The experiments were conducted on a machine with a 3.2 GHz i5 dual-core
processor and 8 GB RAM running Linux kernel 2.6.35-23. Each fuzzing ses-
sion was run separately and sequentially. The code coverage of the target was
measured using gcov. The targets were executed within a monitoring environ-

Shapiro, Bratus, Rogers & Smith 67

!"#$%%

&'($%%)*

+,#

-.'*/0

m
t-

d
a

a
p

d
,
C

o
d

e
 C

o
v

e
ra

g
e
 (

%
)

Run Length (min)
! " # $!% &" %# !"$

"%

!%

!$

"'

""

"#

Run Length (min)
! " # $!% &" %# !"$

O
p

e
n

-S
N

M
P
,
C

o
d

e
 C

o
v
e

ra
g

e
 (

%
)

!(

"'

"!

""

!"#$%%
+,#

&'($%%)*

-.'*/0

Figure 4. Code coverage for mt-daapd (left) and Open-SNMP (right).

ment that would immediately restart the target when a crash was detected (to
simulate the automatic reset of common power SCADA applications).

Eight separate tests were conducted on each target; specifically, the fuzzer
was run for 1, 2, 4, 8, 16, 32, 64 and 128 minutes. After each test run, the
code coverage was computed before resetting the code coverage count for the
subsequent run. No fuzzer was provided any protocol information beyond the
IP address of the target, the transport layer protocol and the port used by
the target. Because GPF uses a network capture as a mutation source, it
was supplied with a packet capture of about 1,600 packets as produced by the
source/target setup when no fuzzer was active.

4.2 Fuzzing mt-daapd

mt-daapd is an open source music server that uses the proprietary iTunes
DAA protocol to stream music. This protocol was reverse engineered by several
developers who intended to build open source daapd servers and clients. We
chose mt-daapd because we wanted to test a proprietary protocol but required
source code in order to calculate code coverage. The tests used mt-daapd ver-
sion 0.2.4.2. The mt-daapd daemon was run on the same machine as the client
and fuzzer. The server was configured to prevent stray users from connecting
to it. The Banshee media player was used as a client and traffic source. To
maintain consistency between tests, a set of xmacro scripts were used to control
Banshee and cause it to send requests to the daapd server.

In general, we discovered that, with respect to code coverage, LZFuzz does as
well or better than running the test environment without any fuzzer (left-hand
side of Figure 4). Furthermore, we found that LZFuzz triggered the largest
amount of code in the target compared with the other fuzzers we tested. This
means that LZFuzz was able to reach into branches of code that none of the

68 CRITICAL INFRASTRUCTURE PROTECTION V

other fuzzers reached. Interestingly, the random fuzzer consistently produced
the same low code coverage on every test run regardless of the length of the
run. Other than LZFuzz, no fuzzer achieved higher code coverage than that of
a non-fuzzed run of Banshee and mt-daapd.

4.3 Fuzzing snmpd

Net-SNMP is one of the few open source projects that use SCADA protocols.
Our experiments used snmpd, the daemon that responds to SNMP requests in
Net-SNMP version 5.6.1, as a fuzzing target. Like mt-daapd, the daemon was
run on the same system as the client. We scripted snmpwalk, provided by Net-
SNMP, to continuously send queries to the server. For the purpose of code
coverage testing, snmpwalk was used to query the status of several parameters,
including the system uptime and location, and information about open TCP
connections on the system. Because we were unable to make consistent code
coverage measurements between runs of the same fuzzer and run length, we ran
each fuzzer and run length combination five times. The averages are displayed
in Figure 4 (right-hand side) along with error bars for runs with noticeable
variation (standard deviation greater than 0.025%).

GPF outperformed LZFuzz when GPF was running at full strength. How-
ever, we were also interested in seeing the relative performance of LZFuzz and
GPF when GPF had a rate-adjusted flow so that GPF would send about the
same number of packets as LZFuzz for a given run length. This adjustment
provided insight into how much influence a GPF-mutated packet would have
on the target compared with a LZFuzz-mutated packet. We also observed that
LZFuzz induced a larger amount of code coverage in snmpd when the muta-
tion rate that controlled the mutation engine aggressiveness was set to medium
(instead of high or low). The mutation rate governs how much the GPF mu-
tation engine mutates a packet. Although this feature is not documented, the
mutation rate is required to be explicitly set during a fuzzing session. Line
143 of the GPF source file misc.c offers the options “high,” “med” or “low”
without any documentation; we chose the “med” option for snmpd and “high’
for mt-daapd. Because GPF uses the same mutation engine, we set GPF to
run with the medium mutation level as well. Note that, in the case of snmpd,
a 1% difference in code coverage corresponds to about 65 lines of code.

Figure 4 (right-hand side) shows the code coverage of GPF (with a rate-
adjusted flow and a medium mutation rate) compared with the code coverage
of LZFuzz (with medium mutation), random fuzzing and no fuzzing. With
rate-adjusted flow, LZFuzz induces a higher code coverage than GPF. LZFuzz
also clearly outperforms random fuzzing.

Although LZFuzz and GPF share a common heuristic mutation engine, they
belong to different classes of fuzzers and each has its own strengths and weak-
nesses. LZFuzz can fuzz both servers and clients; GPF can only fuzz targets
that are listening for incoming traffic on a port known to GPF before the fuzzing
session. LZFuzz is restricted to only fuzzing packets sent by the source; GPF
can send many packets in rapid succession; GPF requires the user to prepare a

Shapiro, Bratus, Rogers & Smith 69

O
p

e
n

-S
N

M
P
,
C

o
d

e
 C

o
v

e
ra

g
e

 (
%

)
!"#$

!"#%

!!#&

!!#!

Run Length (min)

! ' % "$ (! $' "!%"

!!#'
!"#$%%&'()*+',-./0)%)01

!"#$%%&'()*+-$*',-./0)%)01

Figure 5. Code coverage for the Net-SNMP server with and without tokenizing.

representative packet capture and, thus, implicitly assumes that representative
captures exist for the target scenario. Note that the time taken to prepare the
network capture was not considered in our results.

The packet capture given to GPF potentially provided it with a wealth of
information about the protocol from the very beginning. On the other hand,
LZFuzz had to develop most of its knowledge about the protocol on the fly.
Also, the mutation engine of GPF was built and tuned specifically for what
GPF does – fuzzing streams of packets. LZFuzz uses the same mutation engine,
but only had one packet in each stream. While the GPF mutation engine was
not designed to be used in this manner, we believe that the effectiveness of
LZFuzz can be improved if the mutation engine could be tuned.

When GPF and LZFuzz were used at full strength against mt-daap, LZFuzz
outperformed GPF in terms of code coverage. However, this was not the case
when both fuzzers were tested against snmpd – GPF achieved 1–2% more code
coverage than LZFuzz in comparable runs. It could be argued that GPF is
the more effective fuzzer for snmpd. However, the clear advantage of LZFuzz
over GPF and other similar fuzzers is that it can also fuzz SNMP clients (e.g.,
snmpwalk) whereas GPF cannot do this without session-tracking modifications.

4.4 LZFuzz Tokenizing

The final issue to examine is whether or not the LZFuzz tokenizing method
improves the overall effectiveness of the tool. If tokenizing is disabled in LZFuzz
during a run and the entire payload is passed directly to GPF, then GPF
attempts to apply its own heuristics to parse the packet. Figure 5 shows how
LZFuzz with tokenizing compares with LZFuzz without tokenizing when run
against snmpd in the same experimental environment as described above. These
results suggest that the LZ tokenizing does indeed improve the effectiveness of
inline fuzzing with the GPF mutation engine.

70 CRITICAL INFRASTRUCTURE PROTECTION V

5. Conclusions

The LZFuzz tool enables control systems personnel with limited fuzzing ex-
pertise to effectively fuzz proprietary protocol implementations, including the
SCADA protocols used in the electric power grid. LZFuzz’s adaptive live mu-
tation fuzzing approach can fuzz the proprietary DAA protocol more efficiently
than other methods. LZFuzz is also more effective than applying a random
fuzzer to an SNMP server. The GPF mutation fuzzer appears to be more ef-
fective at fuzzing an SNMP server than LZFuzz; however, unlike LZFuzz, GPF
is unable to fuzz SNMP clients.

Additional work remains to be done on LZFuzz to ensure its wider applica-
tion in the critical infrastructure. The user interface must be refined to change
the aggressiveness of fuzzing or temporarily disable fuzzing without having to
restart LZFuzz. Another refinement is to identify checksums by intercepting
traffic to the target and passively search for bytes that appear to have high
entropy. Also, the tool could be augmented to test for authentication and con-
nection setup traffic by inspecting traffic at the beginning of a run and traffic
from the target after blocking replies from the client, and vice versa. This
information can be used to specify traffic rules that would make LZFuzz more
effective.

Note that the views and opinions in this paper are those of the authors and
do not necessarily reflect those of the United States Government or any agency
thereof.

Acknowledgements

This research was supported by the Department of Energy under Award No.
DE-OE0000097. The authors wish to thank Axel Hansen and Anna Shubina
for their assistance in developing the initial prototype of LZFuzz. The authors
also wish to thank the power industry personnel who supported the testing of
LZFuzz in an isolated environment at their facility.

References

[1] D. Aitel, An introduction to SPIKE, The fuzzer creation kit, presented at
the BlackHat USA Conference (www.blackhat.com/presentations/bh-usa-
02/bh-us-02-aitel-spike.ppt), 2002.

[2] P. Amini, PaiMei and the five finger exploding palm RE techniques, pre-
sented at REcon (www.recon.cx/en/s/pamini.html), 2006.

[3] P. Amini, Sulley: Pure Python fully automated and unattended fuzzing
framework (code.google.com/p/sulley), 2010.

[4] Beyond Security, Black box software testing, McLean, Virginia (www.bey
ondsecurity.com/black-box-testing.html).

Shapiro, Bratus, Rogers & Smith 71

[5] S. Bratus, A. Hansen and A. Shubina, LZFuzz: A Fast Compression-
Based Fuzzer for Poorly Documented Protocols, Technical Report TR2008-
634, Department of Computer Science, Dartmouth College, Hanover, New
Hampshire (www.cs.dartmouth.edu/reports/TR2008-634.pdf), 2008.

[6] J. Cache, H. Moore and M. Miller, Exploiting 802.11 wireless driver vulner-
abilities on Windows, Uninformed, vol. 6 (uninformed.org/index.cgi?v=6),
January 2007.

[7] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill and D. Engler, EXE: Auto-
matically generating inputs of death, ACM Transactions on Information
and System Security, vol. 12(2), pp. 10:1–38, 2008.

[8] S. Convery, Hacking Layer 2: Fun with Ethernet switches, presented at
the BlackHat USA Conference (www.blackhat.com/presentations/bh-usa-
02/bh-us-02-convery-switches.pdf), 2002.

[9] G. Devarajan, Unraveling SCADA protocols: Using Sulley fuzzer, pre-
sented at the DefCon 15 Hacking Conference, 2007.

[10] Digital Bond, ICCPSic assessment tool set released, Sunrise, Florida (www
.digitalbond.com/2007/08/28/iccpsic-assessment-tool-set-released), 2007.

[11] M. Eddington, Peach Fuzzing Platform (peachfuzzer.com), 2010.

[12] GitHub, QueMod, San Francisco (github.com/struct/QueMod), 2010.

[13] D. Kaminsky, Black ops: Pattern recognition, presented at the BlackHat
USAConference (www.slideshare.net/dakami/dmk-blackops2006), 2006.

[14] H. Meer, Memory corruption attacks: The (almost) complete history,
presented at the BlackHat USA Conference (media.blackhat.com/bh-us-
10/white papers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Cor
ruption-Attacks-wp.pdf), 2010.

[15] B. Miller, L. Fredriksen and B. So, An empirical study of the reliability of
UNIX utilities, Communications of the ACM, vol. 33(12), pp. 32–44, 1990.

[16] C. Miller and Z. Peterson, Analysis of Mutation and Generation-Based
Fuzzing, White Paper, Independent Security Evaluators, Baltimore, Mary-
land (securityevaluators.com/files/papers/analysisfuzzing.pdf), 2007.

[17] Mu Dynamics, Mu Test Suite, Sunnyvale, California (www.mudynamics
.com/products/mu-test-suite.html).

[18] C. Nevill-Manning and I. Witten, Identifying hierarchical structure in se-
quences: A linear-time algorithm, Journal of Artificial Intelligence Re-
search, vol. 7, pp. 67–82, 1997.

[19] T. Proell, Fuzzing proprietary protocols: A practical approach, presented
at the Security Education Conference Toronto (www.sector.ca/presentat
ions10/ThomasProell.pdf), 2010.

[20] F. Raynal, E. Detoisien and C. Blancher, arp-sk: A Swiss knife tool for
ARP (sid.rstack.org/arp-sk), 2004.

72 CRITICAL INFRASTRUCTURE PROTECTION V

[21] J. Roning, M. Laakso, A. Takanen and R. Kaksonen, PROTOS: System-
atic approach to eliminate software vulnerabilities, presented at Microsoft
Research, Seattle, Washington (www.ee.oulu.fi/research/ouspg/PROTOS
MSR2002-protos), 2002.

[22] VDA Labs, General Purpose Fuzzer, Rockford, Michigan (www.vdalabs
.com/tools/efs gpf.html), 2007.

[23] J. Ziv and A. Lempel, A universal algorithm for sequential data compres-
sion, IEEE Transactions on Information Theory, vol. 23(3), pp. 337–343,
1977.

