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DETECTING SENSOR SIGNAL
MANIPULATIONS IN NON-LINEAR
CHEMICAL PROCESSES

Thomas McEvoy and Stephen Wolthusen

Abstract Modern process control systems are increasingly vulnerable to subver-
sion. Attacks that directly target production processes are difficult to
detect because signature-based approaches are not well-suited to the
unique requirements of process control systems. Also, anomaly detec-
tion mechanisms have difficulty coping with the non-linearity of indus-
trial processes.

This paper focuses on the problem where attackers gain supervisory
control of systems and hide their manipulations in signal noise or con-
ceal computational states. To detect these attacks, we identify suitable
proxy measurements for the output of a control system. Utilizing control
laws, we compare the estimated system output using real-time numerical
simulation along with the actual output to detect attacker manipula-
tions. This approach also helps determine the intervention required to
return the process to a safe state.

The approach is demonstrated using a heat exchange process as a case
study. By employing an explicit control model rather than a learning
system or anomaly detection approach, the minimal requirements on
proxy sensors and the need for additional sensors can be characterized.
This significantly improves resilience while minimizing cost.
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1. Introduction

Supervisory control and data acquisition (SCADA) systems are vital com-
ponents in critical infrastructures. Advanced technologies have significantly
improved the operation and management of these systems, but they increase
the vulnerability to attack [12]. Control systems are often generic computing
hosts with complete operating systems and network stacks [7] as opposed to
isolated, proprietary systems. This increases the potential for manipulation
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of the computational states in a SCADA network [10, 21] and process control
signals at the sensors and remote terminal units (RTUs) [4].

In previous work [20], we showed that simple statistical anomaly detection
can be bypassed by a knowledgeable attacker, underscoring the need for a multi-
sensor approach to detection. We, therefore, proposed a novel approach that
analyzes process correlations using additional sensors [15]. This paper presents
a formal model of the approach, which utilizes process control laws to directly
achieve the goals. A beer pasteurizer is considered as a case study because it is
a simple, but realistic, example of heat exchange in a production environment.

Pasteurization involves a series of heat exchanges that are controlled to en-
sure specific target temperatures required for production. The relations be-
tween heat exchange inputs and outputs are captured using material and energy
balance equations [1]. An attack may be defined as a “concealed” manipula-
tion of these relations [15], which implies that a process degradation cannot
be detected by conventional fault analysis. We assume that the attacker has
supervisory access to the plant and can alter setpoint values or sensor values,
while hiding these manipulations from plant operators [4, 21].

This paper shows how to identify suitable (composite) proxy measurements
for making a determination of the current process behavior. The approach re-
lies on the presence of non-linear relations, so that small alterations in proxy
values may be correlated with significant process changes. These proxy mea-
surements support the comparison of the actual behavior of the pasteurizer
with its estimated behavior, making direct use of material and energy balances
and utilizing real-time numerical simulation techniques. This enables the ef-
ficient detection of process signal inconsistencies that indicate the presence of
manipulated states. In contrast, non-linearity in industrial processes renders
conventional anomaly detection approaches (e.g., statistical analysis or learning
systems) computationally infeasible for real-time applications.

The proxy measurements also provide a basis for implementing intervention
strategies. In a practical implementation, the sensors used for proxy measure-
ments may reside in an out-of-band network with data being pushed to the
network via data diodes for detection purposes.

2. Related Work

SCADA systems are increasingly vulnerable to cyber attack due to their
modernization and exposure to untrusted networks [3, 12, 16, 23]. This has led
to increased interest in intrusion detection [18]. As in the case of conventional
computer systems, intrusion detection research has focused on signature-based
approaches (generally) at the perimeter and anomaly-based approaches that
address the insider threat and direct attacks on control processes [9, 13, 24].

The predictable nature of SCADA traffic can be leveraged to detect system
anomalies [5, 21, 24]. However, a knowledgeable attacker can seize the advan-
tage by manipulating computational states or utilizing signal noise to obfuscate
attacks that would otherwise be recognized [4, 20, 21].
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We argue that this adversary capability highlights a requirement for addi-
tional sensors [2, 6, 20] to provide different points of view in order to detect
anomalies [21]. This requirement is underscored by the introduction of sophis-
ticated control processes that rely on multivariate controls and, hence, require
more complex forms of supervision [19]. Note that this approach would also
apply to traditional control systems. The approach has strong parallels with
fault detection strategies in SCADA environments [22], but unlike fault detec-
tion approaches, the sensors cannot always be assumed to be reliable.

We use functional models to map systems [17] and identify suitable redun-
dant characteristics for evaluating process behavior. We combine these readings
with a process simulation to detect signal manipulation [1], extending the in-
variant model proposed in [15]. This approach obviates the need for linear
approximations as used in explicit control models (see, e.g., Lin, et al. [11]).

3. Problem Definition

We assume that an attacker is capable of remote penetration attacks on a
process control system and understands the industrial process under control.
Furthermore, the attacker may gain unauthorized supervisory access to the
system and be able to alter setpoints and sensor readings while disguising this
from plant operators [4, 21]. For a complex process, which requires multivariate
analysis to ensure that production values are achieved, the attacker may not
be able to disguise an attack simply by manipulating signals to hide the attack
in signal noise [20]. However, as discussed in the next section, it is possible to
conceal the attack by falsifying a subset of control signals and relying on the
behavior of other parts of the system to normalize the anomalous signals.

Our focus is to identify a conservative number of additional sensors that
could provide an inexpensive, practical and computationally-feasible means of
uncovering attacks in real time. It is also desirable to be able to use the detec-
tion approach as a basis for intervention, although meeting this requirement is
beyond the scope of this paper.

4. Detection Model

Heat exchange is a common industrial process. In our case study, we consider
heat exchange in the operation of a flash pasteurizer and model the identifi-
cation of potential proxy measurements. Subsequently, we use a simulation of
the pasteurizer to develop a profile of proxy behavior under different operat-
ing conditions to determine information about the state of the pasteurizer by
observing the proxy behavior.

4.1 Pasteurizer Simulation

Pasteurization is achieved by a series of heat exchanges between hot and cold
fluids, where the hot side setpoint temperature is determined by the flow rate
and the cold side temperature by the packaging requirements. In flash pasteur-
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ization, the interaction of the pasteurized (hot) and unpasteurized (cold) prod-
uct is used as part of the temperature cycle with target values being achieved
through secondary heat exchanges using steam-heated water on the hot side
and a glycol refrigerant on the cold side [15]. The basic equations for heat
exchange are:

q̇ = UA(Tin,s − Tout,c) (1)

wCp
dT

dt
= ẇCp(Tin,c − Tout,c) + q̇ (2)

uCp
dTs

dt
= u̇CP (Tin,s − Tout,s) − q̇ (3)

where q̇ is the rate of heat exchange; U is the coefficient of heat exchange for
the construction material; A is the heat exchange area; Tin,s is the initial hot
side temperature; Tout,s is the final hot side temperature; Tin,c is the initial
product temperature; and Tout,c is the final product temperature. Equations
(2) and (3) represent the respective energy balances of the cold and hot sides
where ẇ and u̇ represent the hot side and cold side flow rates, respectively; w
and u are the corresponding liquid volumes; and Cp is the specific heat capacity
of the product.

We use a diagrammatic form of these equations in Matlab/Simulink (Figure
1(a)), which we subsequently link together in larger blocks to simulate the main
plate heat exchanger called the splitter/regeneration unit. This unit uses the
hot and cold beer flows as a primary counterflow heat exchange mechanism
(Figure 1(b)).

The secondary heating and cooling actions of steam-heated water and glycol
refrigerant at the hot and cold sides may be modeled in separate heat exchange
sections using a proportional-integral-derivative (PID) block to mimic valve
action. The cooling section is presented in Figure 1(c).

The pasteurization unit (PU) is derived from the flow rate and temperature
values using the equation:

PU =
w

ẇ
(60)1.393(T−60) (4)

where w is the holding volume; ẇ is the flow rate; and T is the temperature.
This is an oddly dimensioned measure, which was derived by Dayharsh, et
al. [8]. Note the non-linear relationship between flow rates, temperature and
pasteurization values.

The flow rate ẇ is given by:

ẇ = ẇmax − ẇmin
Lactual − Lmin

Lmax − Lmin
(5)

where L is the tank level; and ẇ is the flow rate as before. The minimum and
maximum tank levels for this specimen are 100 and 220 (cm), respectively; and
the minimum and maximum flow rates are 250 and 500 (l/hr), respectively.
Flow rates are clamped to their extrema when tank level values exceed their
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Figure 1. Heat exchange process system.
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minimum or maximum values. The tank levels change almost continuously
during pasteurization due to alterations in packaging (called “kegging”) rates.
We add the appropriate calculations to the model to simulate these setpoints.

4.2 Proxy Discovery

We use an adapted functional causal model of the pasteurizer to visualize
significant relations and sensor values under specific attack conditions [17] in
order to uncover potential proxy nodes. This is a technique that we have found
to be suitable for analyzing small-scale configurations. An algebraic transform
of the same technique may be used for large-scale configurations.

Let
−→
G = V (

−→
E ) be a graph. Let each v ∈ V represent a characteristic aspect

of pasteurizer functionality (e.g., water temperature). Let each −→e ∈
−→
E be

a causal relationship between distinct pasteurizer characteristics. We assume
that conditional questions may be asked about the state of a node v ∈ V
where it is directly or transitively linked to a node u ∈ V , except where v is
also linked to a dominant node w. Where a dominant node exists, its state
determines the value of all slave (or invariant) nodes that are tail adjacent. All
other relations to invariant nodes are represented as dotted lines. We assume,
but do not explicitly show in graph form, that the state of each node is subject
to unmeasured disturbances that create a probability distribution over node
values. These values are perturbed under an attack, but the perturbation may
be concealed by the attacker who manipulates computational states or uses
process noise. Clearly, the attacker would attempt to conceal the values of all
nodes that are directly implicated in determining the success of pasteurization.
Supervisory access also allows the manipulation of certain nodes.

Figure 2 shows the pasteurizer under attack. Potentially manipulated nodes
have a shaded ring, while probable concealed nodes have an unshaded ring.
All the ringed nodes belong to the set of “covered” nodes whose values may
not be known during an attack. Note that PUSP is the pasteurization unit
setpoint; TL is the tank level; FR is the flow rate; TSP is the hot side tem-
perature setpoint; S is the steam temperature; W is the water temperature;
Tin is the initial product temperature; HXS is the product temperature after
heating in the splitter; HXW is the product temperature after being heated
by the water; HXH is the product temperature at the end of the holding pipe
and pre-regeneration; PUest is the estimated PU value; HXR is the product
temperature post regeneration; Tout is the product temperature at the end of
the process after glycol cooling; CSP is the cold side setpoint; and G is the
glycol temperature.

According to Equation (4), the temperature and flow rate determine the
pasteurization value; and these values are central to the material and energy
balance equations in the heat exchange process (Equations (1-3)). These ob-
servations suggest that it may be possible to estimate the pasteurization values
from the heat exchange performance and vice versa. Finally, note that the heat
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Figure 2. Adapted functional causal model.

exchange output values are uncovered at HXS and HXR, potentially enabling
their use as proxy measurements for determining the success of pasteurization.

5. Analysis of Heat Exchange Profiles

Based on the assumptions about attacker capabilities and assuming no in-
sider collusion, three attack strategies are possible:

Lower the PU by spoofing a lower tank level, thus increasing the flow
rates relative to temperature using negative error values.

Lower the PU by lowering the water temperature and, hence, product
temperature relative to the flow rates using positive error values, or equiv-
alently by resetting the PU setpoint.

Combine the above two strategies in a single attack.

In the first two attack strategies, the adversary has to cover all the relevant
sensors so that they appear to show consistent values. In the third strategy, the
attacker may omit to cover the hot side temperature as a stepped approach to
jointly lower the water temperatures and raise the relative flow rates. This can
be concealed in process noise, where the product temperature remains constant,
but the pasteurization process is still degraded. Therefore, it is necessary to
show that the proxy measurements identified in Section 4.2 can be used to
estimate the flow rate and the temperature and, hence, the pasteurization unit
value.
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5.1 Pasteurization Profiles

As a preliminary, we show that there are distinct temperature to flow rate
ratios for each PU . Upon solving Equation (4) for temperature [15], we plot
the temperature values against flow rates for PU values of 40 (nominal value)
and 20 (fail or “divert” value) and determine the PU value for a 1◦C alteration
downwards for the nominal value of PU = 40, which represents a significant
loss of quality (i.e., we also solve for T − 1 with PU = 28.7). The results are
shown in Figure 3(a).

5.2 Establishing Flow Rate

The temperature of the cooled (pasteurized) product leaving the regenerator
tank can be used to estimate the flow rates. To show this, we plot this tem-
perature for four distinct tank levels T = 120, 140, 160 and 180 (representing
different flow rates) against the nominal pasteurization rate of 40, the divert
value of 20 and the quality loss value of 28.7. The distinct banding of temper-
atures for the cooled product (color coded by flow rate in Figure 3(b)) shows
that the flow rate and, hence, the tank level can be estimated. Confidence
intervals are estimated at ±10 l/hr. It follows that it should be possible to
detect the first attack strategy that alters the flow rate by spoofing false tank
level readings.

5.3 Establishing a Temperature Profile

Next, we show how a concealed alteration in temperature may be detected.
Setting the tank level at TL =180 to lock in the flow rate, we present the results
of three runs with distinct pasteurization profiles as before (Figure 3(c)). Given
the non-linear relationship between pasteurization levels, these temperature
differences are on the average sufficiently significant so that, in combination
with the flow rate, it is possible to estimate the process success with a confidence
level greater than 3σ. Similar results are obtained for the other flow rates.
Hence, it is possible to determine the current PU level modulo approximately
four units.

5.4 Uncovering Concealed Attacks

Finally, we show how transitions concealed by signal noise can be detected.
We assume that an attack causes the PU value to drop gradually by lowering
the water temperatures and raising the flow rates in an effort to hide the ma-
nipulations in the process signal. We set the tank level to 220 and dropped it
in stages to 172, altering the flow rate upwards. We dropped the pasteuriza-
tion target from 40 to 28.7 (equivalent to quality loss) by altering the water
temperature error signal or PU setpoint.

Figures 4(a) and 4(b) show that the product temperatures do not vary from
their mean values, while the PU rates drop significantly. Obviously, the at-
tacker could continue this process until the divert or abort values are achieved.
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(a) PU profiles for flow rate vs. temperature.
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(b) Cooled product temperature as a proxy for flow rates.
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(c) Nominal, degraded and divert PU values (T = 180◦C).

Figure 3. Heat exchange profiles.
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(a) Hiding in signal noise – pasteurization rate alteration.
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(b) Hiding in signal noise – product temperature.
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(c) Detecting flow adjustments in noise.

Figure 4. Disguising and detecting alterations in signal noise.
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Figure 4(c) shows the difference in the heat exchange profile as a result of the
concealed adjustments of the hot side and cold side temperatures. Note that the
attack produces a greater contrast in the heat exchange profile compared with
the other attacks because both the lower and upper product temperatures are
altered simultaneously to create anomalous steps in the heat exchange profile.
It follows that it is possible to estimate (and even control) the actual pasteur-
ization rates using this profile. We estimate that confidence levels of ±4PU
can be achieved assuming a precision of ±0.5◦C in the hot side temperature
values and ±10 l/hr in the flow rate estimations.

6. Discussion

In Section 5, we discussed three possible attacks on the pasteurization pro-
cess. The first attack lowers the water temperature setpoint so that the product
is not heated to the requisite temperature to achieve the target pasteurization
value. The second attack raises the flow rate by spoofing lower tank levels.
The third attack combines the previous two attacks while keeping the beer
temperature invariant to hide the attack manifestations in process noise while
degrading the pasteurizer value.

Using well-chosen proxy measurements, it is possible (in combination with
numerical simulation) to capture inconsistent and anomalous behavior in a
manner that minimizes the computational cost of detection. This approach
also supports attack intervention strategies. While this is not strictly relevant
for a batch process such as pasteurization (which can restart if there is a fault),
there are other processes involving heat exchange where the ability to adjust to
attacker actions “on the fly” is necessary because the processes are not easily
restarted. Intrusion prevention thus becomes a dynamic process of defending
process integrity.

Clearly, the ideal situation is to have a fully redundant set of sensors, but
physical and cost constraints along with certification and accreditation require-
ments make this approach infeasible. Our approach, therefore, seeks to min-
imize the effort involved in implementing a signal-based anomaly detection
mechanism, which is important when dealing with large-scale industrial pro-
cesses. Although this paper focuses on heat exchange in the context of pas-
teurization, the approach is applicable to a variety of non-linear engineering
processes.

In many cases, there exists the potential to identify output values that are
redundant for process control, but that can be used as proxy measurements
in combination with real-time control system simulation for intrusion detec-
tion. We have previously shown that anomaly detection techniques based on
univariate statistical techniques may be unable to distinguish signal noise from
an attack, but in the case of a non-linear process, even a difference of σ in the
average performance can radically alter the result [20]. Classical intrusion tech-
niques, in general, do not consider process signals. Even if these approaches
were to be applied, their reliance on signature-based detection has no valid-
ity in the application. Moreover, anomaly detection techniques that rely on
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complex statistical analyses (e.g., Markov models) have limited applicability
to non-linear systems because they do not accommodate the sharp disparities
in process state that result from small alterations in such systems. Learning
systems face similar problems because considerable data is required to create
a training set that accommodates non-linearity. In case of the pasteurizer, a
learning system would have to learn the pasteurization profile of each product
that is processed by a pasteurizer, track the performance degradation and es-
timate state changes. In contrast, a control model of the system encapsulates
these aspects in a straightforward manner and provides a computationally in-
expensive numerical simulation of process behavior.

Nevertheless, our approach has certain limitations. Some limitations may be
introduced by physical constraints such as sensor placement [1] that can reduce
the confidence in the results. Distinct processes are associated with different
perturbation levels; this can reduce (or increase) confidence levels. However,
in most cases, even the process models used to set up the control systems are
limited in precision and tuned based on experience rather than physical or
chemical models. Thus, the approach is ultimately limited by the precision of
these models.

7. Conclusions

Attacks on industrial control systems that involve signal manipulations are
often invisible to traditional intrusion detection systems. A promising solution
is to use proxy measurements to determine anomalous readings in key process
characteristics in a computationally efficient manner while minimizing the need
for additional sensors, thereby reducing the accompanying costs. This approach
permits the continued safe operation of a process when shutdown is not feasible.

The primary limitations of the approach are process specific and plant spe-
cific in nature. Different processes are associated with distinct perturbations.
In addition, variations in plant design may not permit the satisfactory place-
ment of supplementary sensors. These factors result in lower confidence levels.

Our future work will attempt to characterize processes that are amenable
to this approach. We will also develop a more rigorous adversary capability
model. Finally, we hope to combine this approach with other anomaly detection
mechanisms (e.g., [14]) to eliminate some of the assumptions imposed on sensor
and actuator integrity.
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