
Chapter 7

DISTRIBUTED INTRUSION DETECTION
SYSTEM FOR SCADA PROTOCOLS

Igor Nai Fovino, Marcelo Masera, Michele Guglielmi, Andrea Carcano
and Alberto Trombetta

Abstract This paper presents an innovative, distributed, multilayer approach for
detecting known and unknown attacks on industrial control systems.
The approach employs process event correlation, critical state detection
and critical state aggregation. The paper also describes a prototype
implementation and provides experimental results that validate the in-
trusion detection approach.

Keywords: Industrial control systems, SCADA protocols, intrusion detection

1. Introduction

Critical infrastructures rely very heavily on information and communications
technologies (ICT). These technologies provide features and services such as re-
mote monitoring, remote management, intra-system coordination, inter-system
communication and self-orchestration. Unfortunately, critical infrastructure as-
sets are susceptible to a large number of ICT attacks [5, 10]. These attacks
can be categorized into two classes. The first class includes traditional ICT
attacks that leverage vulnerabilities in general purpose ICT systems; these
attacks can be mitigated by adopting ICT countermeasures such as software
patches, antivirus software and firewalls. The second class includes industrial
system attacks that exploit vulnerabilities specific to industrial ICT systems,
e.g., attacks that leverage the lack of authentication and integrity checks in
SCADA communication protocols [1].

Due to the peculiarities of industrial systems, ICT countermeasures cannot
be deployed efficiently in all environments. Indeed, the countermeasures are
inadequate for dealing with attacks of the second class that exploit SCADA
protocols. Also, even when countermeasures (e.g., signature-based intrusion
detection) are successfully deployed, they may not protect against unknown

96 CRITICAL INFRASTRUCTURE PROTECTION IV

attacks. Such exposure is unacceptable as far as critical infrastructure assets
are concerned.

This paper presents a novel approach for detecting attacks on industrial
control systems based on the concepts of event analysis, event aggregation
and correlation, and critical state detection. A prototype distributed intrusion
detection system for monitoring SCADA systems is described. It uses event
correlation to identify race conditions in critical states induced by malicious
actions.

2. Background

Intrusion detection is a well-established field of research. The basic idea,
presented in the mid-1980s (see, e.g., [3]), is to search for evidence indicating
that a malicious attack is underway during a certain period of time. Intrusion
detection systems (IDSs) can be classified according to (i) the source of the
information used to detect intrusions; and (ii) the technique used to discrimi-
nate between licit behavior and malicious behavior. Discriminating IDSs based
on their information source leads to their classification as network-based IDSs
that analyze network traffic in search of malicious packets; and host-based IDSs
that analyze host behavior for suspicious activities. Categorizing IDSs based
on their discrimination technique gives rise to signature-based IDSs that detect
attacks based on known attack patterns; and anomaly-based IDSs that detect
attacks based on deviations from normal system behavior.

This paper focuses on network-based intrusion detection system (NIDS) ar-
chitectures. Typical NIDS architectures incorporate a number of distributed
sensors that analyze network traffic in search of attack signatures and anoma-
lies. In the case of a SCADA system, a NIDS must be able to understand
and analyze an industrial communication protocol such as Modbus, DNP3 or
Profibus. These protocols, which were originally designed for serial commu-
nication, are currently embedded in TCP packets and ported over TCP/IP.
Traditional NIDSs are unable to understand such “application level” protocols.

Digital Bond [4] has released a set of ad hoc rules for detecting certain at-
tacks on the Modbus protocol. These rules specify unauthorized uses of the
Modbus protocol, protocol errors and network scans. A traditional NIDS that
incorporates these rules could identify primitive, single-packet-based attacks,
in which the attacker sends a malicious packet to a Modbus device or uses a
rare command. However, as shown in [10], SCADA attacks can be extremely
complex and rarely involve a single step (i.e., the exploitation of a single vul-
nerability). Consequently, it is necessary to identify complex and dangerous
attacks based on the analysis of different, low-risk atomic operations.

Several researchers have used such “attack correlation” techniques for intru-
sion detection in traditional ICT networks. Gross, et al. [6] have proposed a
“selecticast” mechanism for collaborative intrusion detection that uses a cen-
tralized server to dispatch information about suspicious activities to intrusion
detection sensors. Yegneswaran, et al. [16] employ a distributed overlay tech-
nique to monitor attacks. These approaches provide a broad picture regarding

Nai Fovino, et al. 97

suspicious events, but they are unable to identify complex malicious actions
that are strategic as opposed to tactical.

Ning, et al. [15] have developed a model for identifying causal relation-
ships between alerts on the basis of prerequisites and consequences. Likewise,
Cuppens and Miege [2] engage pre-conditions and post-conditions in multiple
analysis phases such as alert clustering, alert merging and intention recogni-
tion. This approach facilitates the automatic generation of correlation rules,
but it can produce a large number of spurious rules that significantly increase
noise in intrusion detection.

In summary, the correlation techniques described in the literature attempt to
identify “malicious actions.” However, in an industrial control system, routine
actions can be used to implement devastating attacks. Consequently, an effec-
tive IDS for process control networks should be able to correlate licit actions
and events in its search for malicious attacks.

3. Event Correlation and Anomaly Detection

As mentioned above, traditional IDSs often fail to detect complex attacks on
process control networks. Most IDSs are unable to analyze SCADA communi-
cation protocols and detect attacks that exploit protocol vulnerabilities. The
few IDSs that are able to analyze SCADA protocols (e.g., Snort) employ single-
packet signatures; they cannot detect complex attacks where sequences of licit
packets put the system in a critical state. Classical anomaly detection tech-
niques also have limited effectiveness in industrial control environments. One
of the major challenges is to specify and detect anomalies in process control
networks that may have hundreds of PLCs.

Thus, we argue that a different intrusion detection approach must be devised
for industrial control systems. Our approach is described as follows:

A SCADA system is at the core of every process network in an industrial
process system. A SCADA system controls every process in the indus-
trial system. Therefore, the key to detecting intrusions is to monitor the
activity of SCADA systems.

Most industrial process systems are analyzed carefully and the possible
“critical states” (or dangerous states) are usually identified,

The data flowing between master and slave devices in a SCADA sys-
tem can be used to construct a virtual image of the monitored system.
The virtual states can be compared with the critical states that must be
avoided. Upon tracing the evolution of the virtual states, it is possible to
predict if the system is moving to a critical state.

The industrial system is modeled in a modular fashion. A set of critical
states for each subsystem comprising the industrial system is identified.
The dependencies between subsystems are described so that the state of
the system can be monitored. This enables the detection of many types

98 CRITICAL INFRASTRUCTURE PROTECTION IV

P
V

V

1

1

2

Figure 1. Example of a critical state.

of attacks. The effectiveness of this approach depends on the granularity
of the virtual state representation and on the effects that attacks have on
the evolution of the virtual states.

In general, anomaly detection defines the normal behavior of a system using
a mathematical model and flags any deviation beyond a given threshold as a
potential attack. We use a complementary method that identifies the critical
states that are to be avoided (i.e., anomalous configurations that might put
the system at risk) and flag them as the possible results of an attack. This
approach is rarely employed in large, open ICT systems because it is almost
impossible to describe all the possible combinations of behaviors that can drive
a system into a critical state. However, industrial systems operate in tightly-
controlled environments comprising electromechanical devices that react to a
limited set of well-defined commands in relation to physical conditions that are
known a priori. In these systems, the critical states are limited in number and
are well-known; also, the task of describing them is more manageable than in
traditional ICT systems.

The problem posed by false positives is addressed if attention is focused on
identifying the sequences of events that could drive a system into a critical
state. Moreover, focusing on system state evolution and on critical states (and
not on specific attacks), makes it possible to detect new, unknown attacks that
traditional signature-based IDSs would not be able to detect.

Figure 1 clarifies the notion of a critical state. The example system is a pipe
P1 through which high-pressure steam flows. The pressure is regulated by two
valves V1 and V2.

An attacker with the ability to inject command packets in the process control
network could direct the programmable logic controller (PLC) to close valve
V2 and open valve V1. These two operations are perfectly licit when executed
separately. However, the two operations performed in sequence put the system
in a critical state because the pressure in P1 could rise to a high enough level
to cause the pipe to burst.

Nai Fovino, et al. 99

Table 1. Internal structure of PLCs.

Name Object Type Comments

Discrete Inputs 1 bit R Provided by I/O system
Coils 1 bit R/W Alterable by application
Input Registers 16-bit word R Provided by I/O system
Holding Registers 16-bit word R/W Alterable by application

This simple example describes a scenario involving a two-command sequence.
However, in general, the command sequences are long and complex, making it
very difficult to specify their signatures for traditional IDSs. For this reason,
we concentrate on the results of command sequences (i.e., the resulting states).

We represent critical states using our Industrial Critical State Modeling Lan-
guage (ICSML). The current version of the language supports SCADA systems
that use the Modbus protocol, but it is easily extended to accommodate other
protocols.

The system under consideration is modeled in a modular manner as a col-
lection of subsystems. Each subsystem is, in turn, modeled as a set of sub-
subsystems, and so on. Thus, the overall system can be decomposed to the
desired level of granularity.

At the most basic level, a system is composed of a set of PLCs, whose internal
structure is essentially a sequence of registers and their corresponding values
(Table 1).

ICSML is specified as follows:

<Critical State> ::= <term> | <Critical State><op><Critical State>
| NOT<Critical State> | (<Critical State>)

<op> ::= AND | OR

As mentioned above, a system is decomposed in terms of subsystems, which
are, in turn, decomposed in terms of sub-subsystems, and so on.

<system> ::= <sysName>
| <sysName>[<component>.<componentList>]

| <system>.<system>
<componentList> ::= <component>.<componentList> | e
<sysName> ::= valid system name over the ASCII character set

Note that PLCs constitute the basic building blocks of a system. A compo-
nent in ICSML represents a specific PLC (and its status) in a given subsystem.
Each PLC in a Modbus network is identified by an IP address, port and iden-
tification number.

<component> ::= PLC[<address>:<port>:<id>].<comp_status>

<address> ::= <byte>.<byte>.<byte>.<byte>
<byte> ::= 0 | 1 | ... | 255
<port> ::= 0 | 1 | ... | 65535

100 CRITICAL INFRASTRUCTURE PROTECTION IV

<id> ::= <byte>
<comp_status> ::= CO[<reg_index>]<rel><bit>

| DI[<reg_index>]<rel><bit>
| IR[<reg_index>]<rel><word>
| HR[<reg_index>]<rel><word>

<reg_index> ::= 0 | 1 | ... | 65535
<bit> ::= 0 | 1
<word> ::= 0 | 1 | ... | 65535

<rel> ::= <= | >= | < | > | =

Using ICSML, it is possible to formally describe the critical states of a sys-
tem and subsystems. For example, suppose that the following facts hold in
the example above: (i) the output stream of valve V1 is connected to PLC
192.168.0.1 port 502 id 1 and the holding register 10 contains 100 if V1 is open
and 0 if V1 is closed; (ii) the input stream of valve V2 is connected to PLC
192.168.0.2 port 502 id 1 and the holding register 20 contains 100 if V2 is open
and 0 if V2 is closed; and (iii) the system is in a critical state if valve V1 is open
less than 50% and if valve V2 is open more than 50%. Then, the critical state
can be formalized in the following manner using ICSML:

PLC[192.168.0.1 : 502 : 1].HR[10] < 50 AND
PLC[192.168.0.2 : 502 : 1].HR[20] > 50

The relationships between subsystems are modeled using transition rules
that specify what happens (in terms of changes in the values of components)
in one or more subsystems given that something has changed in some other
subsystem. The syntax of a transition rule is very simple. Given two compo-
nents C1 and C2, a transition rule is an expression of the form C1 → C2. The
transition rule states that if the status of the first component is described by
the expression C1, then the status of the second component changes to that
described by expression C2.

ICSML permits the description of a set of critical states that represent – at
the desired level of detail – unwanted occurrences of the subsystems contained
in the industrial system under scrutiny. Also, ICSML permits the modeling of
data flows between SCADA masters and slaves to create a virtual representation
of the state of the entire system. The set of production rules should faithfully
represent the industrial system and its subsystems along with the relationships
between the various subsystems.

Of course, production rules alone are inadequate to ensure that changes
in the virtual system states accurately model those in the industrial system
over time. For this reason, it is necessary to periodically poll the SCADA
network components to map changes related to external events (e.g., variations
in sensor readings) to virtual states. Also, as we discuss below, it is important
to recognize as early as possible that a state is evolving into a critical state.

Nai Fovino, et al. 101

3.1 High-Level Event Correlation

It would be useful to correlate all the licit low-level events to discover crit-
ical patterns that are potentially caused by malicious attacks. However, it is
practically impossible to enumerate all the critical states of a complex system
with hundreds of devices, let alone correlate all the low-level events.

Masera and Nai Fovino [9] have presented a methodology for modeling sys-
tem features that are relevant to detection and correlation. The methodology
expresses a complex system and its subsystems as a “system-of-systems” – a
set of interconnected collaborative systems. A system is a set of independently-
managed subsystems that provide services in a producer/consumer environment
with a locality property. Thus, a system (which is also a subsystem) is recur-
sively defined in terms of subsystems. Each subsystem has four attributes:

Name: Uniquely identifies the subsystem.

Description: Describes the purpose of the subsystem.

Service List: Specifies the services provided by the subsystem.

Data Flow List: Specifies data flows as tuples of the form < S1, S2 >,
which represents a flow of information from subsystem S1 to subsystem
S2.

The notion of a service provides the glue for describing a system-of-systems in
terms of subsystems. Every action that a subsystem performs can be viewed as
a service, and every subsystem communicates with other subsystems by provid-
ing services. Damage to a subsystem usually manifests itself as a corresponding
lack in some service. Indeed, the modeling of a service has a central role in our
critical state event correlation approach. Each service has four attributes:

ID: Uniquely identifies the service.

Service Dependency List: Specifies the service dependencies as tuples
of the form < Service, DamageThreshold > where Service is the ID of
a service and DamageThreshold is the maximum level of damage to the
service that can be tolerated.

Dependencies: Describe the relations between the service and the ser-
vices in the service dependency list using first-order logical expressions.

Service Value: Specifies the value of the service (essential, valuable or
expendable).

Thus, we represent a complex system in terms of subsystems, dependencies
and services. Each subsystem is a black box that produces and consumes ser-
vices (from which the data flows are derived). The subsystems, services and
dependencies yield a system graph that represents the intrinsic interdependen-
cies between the elements of the industrial system of interest.

102 CRITICAL INFRASTRUCTURE PROTECTION IV

Subsystem 1

IDS 1 Local DB

Subsystem 2

IDS 2 Local DB

Subsystem n

PLC 1 PLC 2

PLC n

IDS n Local DB

Global IDS

Global DB

PLC 1 PLC 2

PLC n

PLC 1 PLC 2

PLC n

Figure 2. Global intrusion detection system architectures.

Using ICSML, it is possible to define high-level critical states in which each
critical state represents a particular scenario where certain services provided
by a collection of subsystems are partially or completely damaged, potentially
moving the entire system into an unsafe state. The description of the critical
states at this level is compact because it only involves the description of the
failure of the higher-level services. In other words, a high-level critical state
is reached when certain high-level services fail partially or totally, causing the
system to move to a dangerous state.

The high-level and low-level event correlations can be merged using the fol-
lowing three-step procedure:

When a low-level critical state is identified, information about the im-
pacted subsystem services is delivered as an event to the high-level event
correlation engine (HLEC).

The HLEC propagates subsystem service failures across the whole system
based on an exploration of the system graph.

After the HLEC completes the propagation of service failures, it analyzes
the entire system by comparing its general status with the set of high-level
critical states in search of a match.

4. Architectural Overview

The distributed IDS is presented in Figure 2. The SCADA system under
consideration is decomposed into component subsystems, each of which is mon-
itored by a local IDS (figure 3). Each local IDS implements low-level correlation
and detection, and raises specific alerts. The entire system is monitored by a

Nai Fovino, et al. 103

Loader

Protocol Constructor

Basic
Rules

Critical
State
Rules

DB
Streamer

Collector

Analyzer

Virtual
System
Loader

SCADA
Discovery

Critical
State

Analyzer

Basic
Analyzer

Basic
Rules File

Critical State
Rules File

Virtual System
Descriptor File

Virtual System

Real System
Synchronizer

Update System
Manager

Protocol
Builder

Protocol
Discovery

Real System

PLC 1 PLC 2

PLC n

Event
Collector

Event
Analyzer

Protocol Constructor

Figure 3. Local intrusion detection system architecture.

global IDS, which receives information from the local IDSs and implements
high-level correlation and detection.

A local IDS has two information sources: network traffic flowing through the
monitored subsystem, and direct queries that are periodically sent by the IDS
to PLCs for information about their status. A local IDS contains a virtual rep-
resentation of the monitored subsystem, and uses the two information sources
to keep the local virtual system (LVS) in line with the real subsystem. The IDS
identifies local unsafe states by comparing the state of the LVS with the set of
critical states of the subsystem described using ICSML. Once a critical state is
detected, the local IDS raises an alert and sends the list of subsystem services
impacted by the critical state to the global IDS. The global IDS maintains a
high-level virtual system, which is updated with the information received from
the local IDSs. Then, the global state of the system is compared with the set
of high-level critical states in search of a match.

4.1 Local IDS Prototype

The local IDS prototype incorporates five modules and fourteen functional
components implemented in C# (Figure 3).

104 CRITICAL INFRASTRUCTURE PROTECTION IV

Loader (LS): This module is responsible for initializing the system. It
uses three XML files. The XML virtual system descriptor file contains
the information used to create the virtual system. The basic rules file,
commonly used in IDSs such as Snort, specifies malicious commands.
The critical state rules file contains ICSML descriptions of rules related
to critical states. The two rule files are imported and loaded into memory
by separate functional components.

Protocol Constructor (PC): This module contains the functional com-
ponents that manage the construction and interpretation of SCADA pro-
tocols (currently Modbus and DNP3).

Analyzer (AZ): This module monitors SCADA communications and
performs single-packet detection, event correlation and local critical state
detection.

Virtual System Manager (VSM): This module stores a virtual repre-
sentation of the SCADA system in memory. It updates the virtual system
using the command flows captured by other components as input and by
periodically querying the real system.

Database: This MySQL database stores the alerts received from the
analyzer.

4.2 Global IDS Prototype

The global IDS prototype receives critical state alerts from the local IDSs
and correlates them to identify global critical states. The structure is simpler
than that of the local IDS because it does not need modules to handle specific
SCADA protocols. The global IDS has three modules:

Loader (LS): This module is responsible for initializing the system. It
uses two XML files, one to create the global virtual system image and the
other to store the global critical states.

Global Virtual System Manager (GVSM): This module manages
the global virtual system, keeping track of its evolution and using as input
the alerts received from the local IDSs.

Critical State Discovery (CSD): This module analyzes the global
virtual system to identify global critical states.

5. Experimental Tests

Several experiments were conducted to verify the performance of the dis-
tributed IDS. The SCADA testbed employed for the experiments reproduces
the network, hardware and software used in a typical gas power plant [10]. In
addition to evaluating IDS performance, the experiments analyzed the delays
introduced by single-signature analysis, packet capture, virtual system updates
and critical state analysis.

Nai Fovino, et al. 105

Data Rate Alerts Alerts
Kbps Expected Detected

2.24 800 800
22.50 8,000 8,000
44.79 16,000 16,000
89.58 32,000 32,000
156.77 56,000 56,000
179.17 64.000 64,000
223.96 80.000 80,000
313.64 112,000 112,000
358.33 128,000 128,000
403.12 144,000 144,000
492.71 176,000 176,000

Kbps Alerts
2.24 800
22.5 8000
44.79 16000
89.58 32000
156.77 56000
179.17 64000
223.96 80000
313.64 112000
358.33 128000
403.12 144000
492.71 176000

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 100 200 300 400 500 600

N
um

be
r o

f A
le

rt
s

Traffic (Kbps)

Figure 4. Alerts expected and alerts detected.

5.1 Single Signature Analysis

The amount of bandwidth that can be analyzed is a key critical issue in a
NIDS. To evaluate this aspect, we implemented standard master/slave commu-
nications involving 100 request/response messages comprising 40 read requests,
50 write requests and 10 special functions. The IDS was configured to monitor
Modbus and DNP3 traffic using a set of 2,000 ad hoc rules.

Figure 4 shows the results obtained when SCADA packets were sent simul-
taneously to a group of PLCs. The first column of the table shows the data
rate (for an average SCADA packet size of 253 Bytes); the second and third
columns show the numbers of expected alerts and detected alerts, respectively.
Note that the IDS can analyze a large number of packets per second without
packet loss.

Figure 4 also compares the number of expected alerts with the number of
alerts raised by the IDS. Note that the IDS was able to raise all the alerts
expected up to a data rate of 500 Kbps, which is very satisfactory given the

106 CRITICAL INFRASTRUCTURE PROTECTION IV

Table 2. Packet capture performance.

Requests Sent 100,000
Responses Sent 100,000
Request Size 315 Bytes
Response Size 315 Bytes
Request Rate 1 Request/ms
Traffic Rate 615.2 Kbps
Packet Loss 0

number of rules inspected and the low bandwidth available in industrial net-
works.

5.2 State-Based IDS

The state-based portion of the IDS has the largest impact on the real-time
performance and, therefore, needs accurate control. For this reason, we carried
out several tests, one for each step necessary to check the critical states of the
system.

Packet Capture Packet loss is rare because “thread programming” was
used to implement the IDS. Such losses can occur in the case of network con-
gestion, but this is unlikely in a SCADA network. We tested the packet capture
performance by sending a large number of packets at a very high bit rate.

The request/response transaction used in the packet capture experiment in-
volved the master sending the slave a large request packet of 260 Bytes (max-
imum size allowed in Modbus); and the slave then responding with a large
response packet of 260 Bytes. The request and response packets were both
captured by the IDS.

The experiment to measure packet loss repeated this request/response trans-
action 100,000 times in order to generate a large amount of network traffic.
The results are shown in Table 2. Note that the packet size is 315 Bytes (TCP
header: 260 + 20 Bytes; IP header: 20 Bytes; Ethernet header: 15 Bytes).

No packet loss occurred for a burst of 100,000 packets at a rate of 615.2
Kbps (which is extremely high for a SCADA network). The experiment clearly
demonstrates the reliability of the IDS.

Virtual System Updates The IDS updates the virtual system image in
two steps: (i) it finds the PLC related to the content of the packet; and (ii) it
updates the virtual object that represents the PLC.

The first step has no impact on IDS performance because the list of PLCs is
stored in a hash table. The time required to find a PLC is the same for tables
with 1 or 1,000 PLCs – around 0.0042 ms in our test environment.

Nai Fovino, et al. 107

Number Average Time
of Coils (ms)

1 0.0012168
50 0.0030485
100 0.0044824
500 0.0173109

1,000 0.0334344
2,000 0.0624535

read coils read hr
num coils average time in ms (on 1000 pck) num hr average time in ms (on 1000 pck)

1 0.0012168 1 0.0013398
50 0.0030485 25 0.0023591

100 0.0044824 50 0.0031325
500 0.0173109 75 0.0040776

1000 0.0334344 100 0.0051986
2000 0.0624535 125 0.0060151

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000 1500 2000 2500

Ti
m

e
(m

s)

Number of Coils

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 20 40 60 80 100 120 140

Ti
m

e
(m

s)

Number of Holding Registers

Figure 5. Virtual system performance test.

The second step takes more time, especially if it involves many registers or
coils. Consequently, we conducted an analysis of PLC update times in a worst-
case scenario. This worst-case scenario occurs when the IDS receives a packet
with the function code 01 (read coils) with 2,000 coils to be read (maximum
value in the Modbus specification [11–13]). The scenario requires the IDS to
update the values of 2,000 coils.

Experiments were conducted for 1, 50, 100, 500, 1,000 and 2,000 coils to be
updated. Figure 5 shows the average time taken to update values in the virtual
PLC. The request/response transaction was repeated 1,000 times in order to
obtain the average update time. As expected, the average time increases with
the number of coils to be updated, but the increase is linear.

Critical State Analysis The performance of the critical state analyzer
depends on two factors: (i) the number of conditions in each rule; and (ii) the
number of rules.

To analyze the impact of rule size, we employed a request/response transac-
tion with IDS capture and rule checking. The transaction involved the master
sending a generic request to the slave; and the slave then sending the appropri-
ate response. The IDS captured the request/response transaction and checked

108 CRITICAL INFRASTRUCTURE PROTECTION IV

Number of Average Time
Conditions (ms)

2 0.0204746
4 0.0217611
8 0.0244149
16 0.0301169
32 0.0370071
64 0.0550301
128 0.1206957
256 0.2127598
512 0.4226185

1,024 1.0706136

num cond average time in ms (on 1000 pck)
2 0.0204746
4 0.0217611
8 0.0244149

16 0.0301169
32 0.0370071
64 0.0550301

128 0.1206957
256 0.2127598
512 0.4226185

1024 1.0706136

num rules average time in ms (on 1000 pck)
10 0.1123061
50 0.5153591

100 1.0248889
500 2.6010271

1000 5.0175991
2000 9.9285867

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

Ti
m

e
(m

s)

Number of Conditions

Figure 6. Critical state analyzer performance (Test 1).

if the virtual system entered into a critical state based on only one rule with a
certain number of conditions.

Experiments were performed using rules with 2, 4, 8, 16, 32, 64, 128, 256,
512 and 1,024 conditions. In each case, the request/response transaction was
repeated 1,000 times to obtain the average time for checking a rule.

Figure 6 shows the results of the experiments. Note that the elapsed time
increases with the number of rule conditions and that the growth is linear.

Similar experiments were conducted to evaluate the impact of the number
of rules. However, in this case, each rule had two conditions. The experiments
used 10, 50, 100, 500, 1,000 and 2,000 rules. The results are shown in Figure
7. Note that the elapsed time increases with the number of rules and that the
increase is linear. The results also demonstrate that critical state rules analysis
is the performance bottleneck because it requires the most time of all the IDS
operations.

Nai Fovino, et al. 109

Number Average Time
of Rules (ms)

10 0.1123061
50 0.5153591
100 1.0248889
500 2.6010271

1,000 5.0175991
2,000 9.9285867

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

Ti
m

e
(m

s)

Number of Rules

Figure 7. Critical state analyzer performance (Test 2).

6. Conclusions

The distributed intrusion detection approach developed for industrial control
environments takes into account the state of the system of interest instead of
attack signatures and anomaly heuristics. The approach rests on the assump-
tion that the ultimate goal of an attacker is to put the system into a critical
state. Consequently, instead of searching for the evolution of an attack, the ap-
proach tracks the evolution of the system. This approach addresses problems
posed by false positives and permits the detection of unknown attacks.

Experimental results indicate that the IDS prototype exhibits good perfor-
mance with respect to packet capture, virtual system updates and critical state
analysis. Our future research will extend the prototype for application in a
real-world industrial control environment. In addition, we plan to incorporate
a critical state prediction feature, which will anticipate the evolution of the
system into a known critical state on the basis of local sensor information.

References

[1] A. Carcano, I. Nai Fovino, M. Masera and A. Trombetta, SCADA malware:
A proof of concept, presented at the Third International Workshop on
Critical Information Infrastructure Security, 2008.

110 CRITICAL INFRASTRUCTURE PROTECTION IV

[2] F. Cuppens and A. Miege, Alert correlation in a cooperative intrusion
detection framework, Proceedings of the IEEE Symposium on Security and
Privacy, pp. 202–215, 2002.

[3] D. Denning, An intrusion-detection model, IEEE Transactions on Software
Engineering, vol. 13(2), pp. 222–232, 1987.

[4] DigitalBond, Modbus TCP IDS signatures, Sunrise, Florida (www.digitalb
ond.com/index.php/research/ids-signatures/modbus-tcp-ids-signatures).

[5] G. Dondossola, J. Szanto, M. Masera and I. Nai Fovino, Effects of inten-
tional threats to power substation control systems, International Journal
of Critical Infrastructures, vol. 4(1/2), pp. 129–143, 2008.

[6] P. Gross, J. Parekh and G. Kaiser, Secure selecticast for collaborative
intrusion detection systems, Proceedings of the International Workshop on
Distributed Event-Based Systems, 2004.

[7] M. Masera and I. Nai Fovino, Modeling information assets for security
risk assessment in industrial settings, Proceedings of the Fifteenth EICAR
Annual Conference, 2006.

[8] M. Masera and I. Nai Fovino, Models for security assessment and man-
agement, Proceedings of the International Workshop on Complex Network
and Infrastructure Protection, 2006.

[9] M. Masera and I. Nai Fovino, A service-oriented approach for assessing
infrastructure security, in Critical Infrastructure Protection, E. Goetz and
S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 367–379, 2007.

[10] M. Masera, I. Nai Fovino and R. Leszczyna, Security assessment of a turbo-
gas power plant, in Critical Infrastructure Protection II, M. Papa and S.
Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 31–40, 2008.

[11] Modbus IDA, MODBUS Application Protocol Specification v1.1a, North
Grafton, Massachusetts (www.modbus.org/specs.php), June 4, 2004.

[12] Modbus IDA, MODBUS Messaging on TCP/IP Implementation Guide
v1.0a, North Grafton, Massachusetts (www.modbus.org/specs.php), June
4, 2004.

[13] Modbus.org, MODBUS over Serial Line Specification and Implementation
Guide v1.0, North Grafton, Massachusetts (www. modbus.org/specs.php),
February 12, 2002.

[14] I. Nai Fovino and M. Masera, Emergent disservices in interdependent sys-
tems and system-of-systems, Proceedings of the IEEE Conference on Sys-
tems, Man and Cybernetics, vol. 1, pp. 590–595, 2006.

[15] P. Ning, Y. Cui and D. Reeves, Constructing attack scenarios through
correlation of intrusion alerts, Proceedings of the Ninth ACM Conference
on Computer and Communications Security, pp. 245–254, 2002.

[16] V. Yegneswaran, P. Barford and S. Jha, Global intrusion detection in the
DOMINO overlay system, Proceedings of the Network and Distributed Sys-
tem Security Symposium, 2004.

