
Chapter 4

MODELING CONTROL SYSTEM
FAILURES AND ATTACKS –
THE WATERLOO CAMPAIGN
TO OIL PIPELINES

Jonathan Butts, Mason Rice and Sujeet Shenoi

Abstract This paper presents a model for expressing control system failures and
attacks on control protocols that involve the exchange of messages. Con-
trol failures and attacks are modeled using the notion of an attacker who
can block and/or fabricate messages. These two attack mechanisms can
cover a variety of scenarios ranging from control failures in the Wa-
terloo Campaign to cyber attacks on oil pipelines. The model helps
provide a comprehensive understanding of control system failures and
attacks, which supports the development of strategies for attack as well
as defense.

Keywords: Control systems, failure modeling, attack modeling

1. Introduction

Mankind’s first conflicts were waged on land. As military technology ad-
vanced, battles were fought on sea and in the air. The earliest recorded naval
battle occurred in 1210 BC when the Hittites led by Suppiluliumas II defeated
a fleet from Cyprus. Aerial warfare was pioneered by the ancient Chinese who
launched fire arrow attacks from “war kites” [1]; the first airplane bombing
occurred in 1911 during the Libyan War between Italy and Turkey [1]; the first
dogfights came soon after during World I. The first attack in space was a 1985
test that involved a U.S. F-15 shooting down a P78-1 communications satellite
in a 345 mile orbit [15].

The 21st century brings a new dimension to the field of battle – cyberspace.
Cyberspace, through its inextricable connection with the critical infrastructure,
pervades all aspects of human endeavor – business, government and military

44 CRITICAL INFRASTRUCTURE PROTECTION IV

operations, and societal functions. It is certain that future warfare will involve
both cyberspace and the critical infrastructure.

Control is a vital component of any battle plan. A commander is responsible
for controlling military operations. The commander must maintain constant
situational awareness of the battlespace – allied forces, opposing forces, time
and terrain. The commander uses various control techniques to maneuver forces
to accomplish the mission within the battlespace parameters. Historians believe
that Napoleon lost the Battle of Waterloo because of control failures made two
days earlier during the Battles of Ligny and Quatre Bras [2, 11]. Sometimes,
control failures are accidental; at other times, they are the result of the enemy
compromising the control protocol. But however they occur, battles are won
and lost because of control successes and failures.

This paper presents a model for expressing control system failures and at-
tacks on control systems. Control system failures as well as attacks are modeled
using the notion of an attacker who blocks and/or fabricates messages. In fact,
these two types of attacks on control protocols can be used to express scenarios
ranging from control failures during the Waterloo Campaign to cyber attacks
on critical infrastructure assets such as oil pipelines.

The model, which is readily defined using graph theory, helps conceptualize
attacks and failures in one control protocol and translate them to similar attacks
and failures in another protocol. It also assists in targeting specific control
protocol and system implementations. In particular, the model helps identify
the information requirements, articulate possible outcomes and examine the
feasibility of attacks based on the available information. The comprehensive
understanding of attacks can facilitate risk analysis and risk management, the
implementation of defensive postures and the design of robust control protocols.

2. The Waterloo Campaign

On June 16, 1815, two days before the pivotal Battle of Waterloo, Napoleon’s
troops were arrayed south of the road between the Belgian towns of Ligny and
Quatre Bras (Figure 1). His 125,000 troops were divided into two commands
[5]. Napoleon himself commanded the force on the east, just south of Ligny.
Marshall Ney led the force to the west, a few miles south of Quatre Bras.

Napoleon’s troops were opposed by two allied forces [5]. One force of 90,000
British, Dutch, Belgians and Germans commanded by the Duke of Wellington
was positioned just north of Quatre Bras. The other force, a 115,000-man
Prussian army led by Marshal Blucher, was positioned on the northern outskirts
of Ligny.

The Battles of Ligny and Quatre Bras were fought that day. Napoleon won
the Battle of Ligny; the Battle of Quatre Bras was a standoff [2]. Historians
believe that the French forces could have crushed the opposition were it not for
certain “control” failures [2, 11]. As a result, Wellington and Blucher were able
to move north and reconstitute their forces. On June 18, 1815, the combined
armies led by Wellington routed Napoleon’s forces near the village of Waterloo.

Butts, Rice & Shenoi 45

Quatre Bras

Ligny

Waterloo

Brussels
Leuven

Namur

Wagnele

Wagnee NAPOLEON

WELLINGTON

BLUCHER

NEY

D’ERLON

Charleroi

NORTH

1 2 3 4 50

SCALE IN MILES

Figure 1. Battles of Ligny and Quatre Bras.

Before the Battles of Ligny and Quatre Bras, Napoleon had split his forces
into two groups intending to drive a wedge between Wellington and Blucher
(Figure 1). Napoleon wanted Ney to seize the crossroads at Quatre Bras while
he destroyed Blucher’s forces at Ligny [11]. The control failures occurred in the
following chronological order:

Delay in Attacking Quatre Bras (Control Failure 1): On the morn-
ing of June 16, 1815, Ney was in good position to take the strategic cross-
roads at Quatre Bras. Ney claimed that he did not receive the order to
attack that morning. The Battle of Quatre Bras did not begin until 2 p.m.
The delay gave Wellington time to place his troops in strong defensive
positions.

Failure to Mobilize a Blocking Force (Control Failure 2): Napo-
leon assumed that Ney would take the crossroads at Quatre Bras with
ease. Shortly after 1 p.m., he ordered Ney to send a force towards Ligny
to block the retreat of the Prussian forces involved in the Battle of Ligny.
Ney did not receive the order. In any case, the Battle of Quatre Bras was
still underway and Ney could not spare a blocking force.

46 CRITICAL INFRASTRUCTURE PROTECTION IV

Napoleon Ney

Attacker
(A1)

Communication Link
(L1)

Figure 2. Communication pathway for Control Failures 1 and 2.

Failure to Engage a Reserve Force (Control Failure 3): While
the battle raged on at Quatre Bras, Napoleon’s forces inflicted signifi-
cant damage to the Prussians at Ligny. Sensing an opportunity for a
devastating blow, Napoleon sent two messages: one to General d’Erlon
ordering him to move his troops to Wagnele to attack the Prussian flank,
and the other to Ney (d’Erlon’s commander) informing him about the or-
der. d’Erlon received Napoleon’s message, but misread the message and
marched towards the town of Wagnee instead of Wagnele.

The message from Napoleon to Ney about moving d’Erlon’s forces never
arrived. When Ney learned that his reserve force under d’Erlon was
moving away, he ordered it to turn back and support his forces at Quatre
Bras. But it was too late and d’Erlon’s reserve force neither joined the
Battle of Ligny nor the Battle of Quatre Bras.

3. Modeling Napoleon’s Control Failures

The control failures during the Battles of Ligny and Quatre Bras occurred
as a result of delayed, lost and misinterpreted messages. The failures are at-
tributed to the fog of war. However, we can formally model the failures using
the notion of an attacker who blocks and/or fabricates messages. Indeed, these
two types of attacks on messaging protocols can be used to express scenarios
ranging from the control failures in the Waterloo Campaign to cyber attacks
on critical infrastructure assets.

3.1 Modeling Control Failure 1

Figure 2 illustrates the communication pathway for Control Failure 1. Three
nodes are involved: (i) Napoleon (∈ ControlNodes), (ii) Ney (∈ EdgeNodes)
and (iii) A1 (∈ AttackNodes). Communications occur over L1 (∈ Links). In
general, a link supports bidirectional message transfer, although each message
is unidirectional from sender to receiver.

Control Failure 1 is consistent with a man-in-the-middle attack involving
Attacker A1. In particular, Ney’s delay in attacking Quatre Bras is modeled

Butts, Rice & Shenoi 47

System
Napoleon ∈ ControlNodes
Ney ∈ EdgeNodes
A1 ∈ AttackNodes
L1 ∈ Links

L1 = (A1: (Napoleon, Ney))
Request ∈ MsgTypes

Capabilities
A1 = {¬, +}

Initial Node States
Ney := Ney0

Napoleon := Ney0

Possible Node States
Ney := Ney0 | Ney1

Ney0 ≡ Attack on Quatre Bras is FALSE
Ney1 ≡ Attack on Quatre Bras is TRUE

Napoleon := Ney0 | Ney1

Control Failure 1

1. Napoleon
L1
−→

A1 ¬Request
Ney[Attack]

Ney := Ney0

Napoleon := Ney1

2. Napoleon
L1
−→

A1 +Request
Ney[Attack]

Ney := Ney1

Napoleon := Ney1

Figure 3. Formal specification of Control Failure 1.

by A1 blocking Napoleon’s message to Ney, then fabricating the same message
and transmitting it to Ney some time later. This first step, a block (¬) of
Napoleon’s message, is represented as:

Napoleon
L1
−→

A1 ¬Request
Ney[Attack].

Since Napoleon ∈ ControlNodes, he can issue request messages (Request
∈ MsgTypes) that are received and acted on by EdgeNodes like Ney. For a
message to be valid, the nodes must have access to a common link (L1). In the
man-in-the-middle attack, A1 ∈ AttackNodes blocks (¬) the message sent from
Napoleon to Ney along L1. At this point, Napoleon expects Ney to engage;
however, Ney did not receive the message.

The second message transfer step in Control Failure 1 involves A1 fabricating
a copy of Napoleon’s original message (+) and sending it to Ney:

Napoleon
L1
−→

A1 +Request
Ney[Attack].

Figure 3 shows the complete representation of Control Failure 1. The model
includes the various nodes, links and message types. Attacker A1 has the capa-
bility to block (¬) and fabricate (+) messages. Note that L1 = (A1: (Napoleon,
Ney)) expresses the fact that A1 has compromised Link L1 to perpetrate a man-
in-the-middle attack between Napoleon and Ney. Ney’s status is represented
as one of two possible states: (i) Ney is not attacking Quatre Bras (Ney0)
or (ii) Ney is attacking Quatre Bras (Ney1). Similarly, Napoleon maintains
his perception of Ney’s status (Ney0 or Ney1). The initial states for Ney and
Napoleon are both Ney0, i.e., Ney is not attacking Quatre Bras.

Figure 3 also shows the two-step message sequence for Control Failure 1.
After Step 1 (message block), Napoleon assumes that Ney is attacking Quatre
Bras (Napoleon := Ney1) when, in fact, Ney is not attacking Quatre Bras (Ney
:= Ney0). It is only after Step 2 (message fabrication) that Napoleon’s and
Ney’s states match (Napoleon := Ney1 and Ney := Ney1).

48 CRITICAL INFRASTRUCTURE PROTECTION IV

System
Napoleon ∈ ControlNodes
Ney ∈ EdgeNodes
A1 ∈ AttackNodes
L1 ∈ Links

L1 = (A1: (Napoleon, Ney))
Request ∈ MsgTypes

Capabilities
A1 = {¬}

Initial System State

Ney := Ney0

Napoleon := Ney0

Possible Node States
Ney := Ney0 | Ney1

Ney0 ≡ Blocking Force is FALSE
Ney1 ≡ Blocking Force is TRUE

Napoleon := Ney0 | Ney1

Control Failure 2

1. Napoleon
L1
−→

A1 ¬Request
Ney[Attack]

Ney := Ney0

Napoleon := Ney1

Figure 4. Formal specification of Control Failure 2.

3.2 Modeling Control Failure 2

The failure of Napoleon to mobilize a blocking force against the retreating
Prussians is modeled by Attacker A1 blocking Napoleon’s order to Ney. The
communication pathway is the same as that for Control Failure 1 (Figure 2).

Figure 4 shows the complete representation of Control Failure 2. The nodes,
links and message types are the same as for Control Failure 1 (Figure 3). How-
ever, Attacker A1 only requires the capability to block (¬) messages. Ney’s
status is represented as one of two possible states: (i) Blocking force is not
engaged (Ney0) or (ii) Blocking force is engaged (Ney1). Similarly, Napoleon
maintains his perception of Ney’s status (Ney0 or Ney1). The initial states for
Ney and Napoleon are both Ney0, i.e., Blocking force is not engaged.

The bottom half of Figure 4 shows the one-step message sequence corre-
sponding to Control Failure 2. After Step 1 (message block), Napoleon assumes
that Ney’s blocking force is engaged (Napoleon := Ney1) when, in fact, Ney’s
blocking force is not engaged (Ney := Ney0).

3.3 Modeling Control Failure 3

Figure 5 shows the communication pathways involved in Control Failure 3.
Note that Napoleon, Ney ∈ ControlNodes ; d’Elron ∈ EdgeNodes ; and A1, A2
∈ AttackNodes. Communication occurs over three links: L1, L2, L3 ∈ Links.
Links L1 and L2 are compromised by Attackers A1 and A2, respectively. Link
L3 supports communication between Ney and d’Erlon, and is not compromised
by an attacker.

Figure 6 shows the complete representation of Control Failure 3. Attacker A1
has the capability to block (¬) messages while Attacker A2 can block (¬) and
fabricate (+) messages. d’Erlon’s status is represented as one of three possible
states: (i) d’Erlon is at Quatre Bras (d’Erlon0), (ii) d’Erlon is at Wagnele
(d’Erlon1) or (iii) d’Erlon is at Wagnee (d’Erlon2). Similarly, Napoleon and
Ney each maintain their own perceptions of d’Erlon’s status (d’Erlon0, d’Erlon1

Butts, Rice & Shenoi 49

Napoleon

Ney

Attacker
(A1)

Communication Link

(L1)

d’Erlon

Communication Link(L2)

Attacker
(A2)

Communication Link
(L3)

Figure 5. Communication pathways for Control Failure 3.

or d’Erlon2). The initial states for d’Erlon, Ney and Napoleon are all d’Erlon0,
i.e., d’Erlon is staged at Quatre Bras.

The message sequences that result in Control Failure 3 are broken down into
three processes. Processes 1 and 2 are independent and can occur in parallel;
however, Process 3 must occur after Process 1.

The first step in Process 1 involves Attacker A2 blocking Napoleon’s message
to d’Erlon that orders his troops to Wagnele. After Step 1, Napoleon believes
that d’Erlon is at Wagnele (Napoleon := d’Erlon1); however, d’Erlon is still at
Quatre Bras (d’Erlon := d’Erlon0). Since Ney is not involved in the message
exchange, his perception of d’Erlon’s status is unchanged (Ney := d’Erlon0). In
Step 2, Attacker A2 sends a fabricated message to d’Erlon ordering him to move
his troops to Wagnee (d’Erlon := d’Erlon2). Napoleon still believes d’Erlon to
be at Wagnele (Napoleon := d’Erlon1) and Ney’s perception of d’Erlon’s status
is unchanged (Ney := d’Erlon0).

In Process 2, A1 blocks Napoleon’s message to Ney that would have informed
Ney of d’Erlon’s movement. Process 2 may run concurrently with Process 1,
implying that d’Erlon is either at Quatre Bras (d’Erlon := d’Erlon0) or Wagnee
(d’Erlon := d’Erlon2) depending on the order of execution. The superscript (∗)
denotes that d’Erlon is in one of multiple possible states (d’Erlon := d’Erlon∗).
Note that the specific state is not relevant because d’Erlon would still be out
of position.

Process 3 is conditional on Ney’s observation that d’Erlon is moving away
from Quatre Bras (Ney := d’Erlon1 or Ney := d’Erlon2). At this point, Ney
sends a message to d’Erlon to reverse course and engage at Quatre Bras. Upon
receiving this message, d’Erlon moves to Quatre Bras (d’Erlon := d’Erlon0),

50 CRITICAL INFRASTRUCTURE PROTECTION IV

System
Napoleon, Ney ∈ ControlNodes
d’Erlon ∈ EdgeNodes
A1, A2 ∈ AttackNodes
L1, L2, L3 ∈ Links

L1 = (A1: (Napoleon, Ney))
L2 = (A2: (Napoleon, d’Erlon))
L3 = (Ney, d’Erlon)

Request ∈ MsgTypes

Capabilities
A1 = {¬}
A2 = {¬, +}

Initial System State

d’Erlon := d’Erlon0

Ney := d’Erlon0

Napoleon := d’Erlon0

Possible Node States
d’Erlon :=

d’Erlon0 | d’Erlon1 | d’Erlon2

d’Erlon0 ≡ Quatre Bras is TRUE
d’Erlon1 ≡ Wagnele is TRUE
d’Erlon2 ≡ Wagnee is TRUE

Ney :=
d’Erlon0 | d’Erlon1 | d’Erlon2

Napoleon :=
d’Erlon0 | d’Erlon1 | d’Erlon2

Process 1

1. Napoleon
L2
−→

A2 ¬Request
d’Erlon[Wagnele]

d’Erlon := d’Erlon0

Ney := d’Erlon0

Napoleon := d’Erlon1

2. Napoleon
L2
−→

A2 +Request
d’Erlon[Wagnee]

d’Erlon := d’Erlon2

Ney := d’Erlon0

Napoleon := d’Erlon1

Process 2

1. Napoleon
L1
−→

A1 ¬Request
Ney[d’Erlon Wagnele]

d’Erlon := d’Erlon∗

Ney := d’Erlon0

Napoleon := d’Erlon1

Process 3
CONDITIONAL: IF (d’Erlon != d’Erlon0)

1. Ney
L3
−→

Request
d’Erlon[Quatre Bras]

d’Erlon := d’Erlon0

Ney = d’Erlon0

Napoleon = d’Erlon1

Figure 6. Formal specification of Control Failure 3.

Ney believes that d’Erlon is moving to Quatre Bras (Ney := d’Erlon0), but
Napoleon believes that d’Erlon is at Wagnele (Napoleon := d’Erlon1).

4. Formal Model

This section formalizes the approach used to express the control failures
involved in the Battles of Ligny and Quatre Bras. The formal model is intended
to express and reason about failures and attacks on SCADA systems used to
control critical infrastructure assets.

Control protocols use messages to direct actions and provide feedback us-
ing a hierarchical, request-reply paradigm. Figure 7 shows a generic process
diagram. ControlNodes send request messages to subordinate EdgeNodes or
other control nodes (sub-control devices) to specify control actions and/or ob-
tain data. EdgeNodes translate request messages into physical actions and/or
physical actions into reply messages that are transmitted to their ControlNodes.
In general, a message may involve a request-reply sequence, a request without
a reply or an unsolicited reply. Request and reply messages are transmitted
along bi-directional communication links that connect two or more nodes.

Butts, Rice & Shenoi 51

ControlNode EdgeNode Physical
System

Control Message
(Request)

Response Message
(Reply)

Figure 7. Generic process diagram.

A communication involves a sender transmitting a message to a receiver
along a communication link:

MsgSource
Link
−→

MsgTypes
MsgDest[Payload].

MsgSource and MsgDest are ControlNodes or EdgeNodes that communicate over
the specified Link. MsgType is the type of message as defined by the control
protocol (e.g., Request or Reply). Payload is the data contained in the message.

An attack on a control protocol occurs when an attacker (represented as an
AttackNode) blocks legitimate messages or sends fabricated messages along a
communication link. Formally, a message used in an attack is specified as:

MsgSource
Link
−→

AttackNodes,Capabilities,MsgTypes
MsgDest[Payload].

MsgSource is the original sender or the spoofed sender of the attack message (∈
ControlNodes ∪ EdgeNodes). MsgDest is the intended target of the message (∈
ControlNodes ∪ EdgeNodes). The AttackNode, the perpetrator of the attack,
has the Capabilities to block and/or fabricate messages along the Link. Note
that message blocking and fabrication enable an attacker to launch a variety
of messaging attacks. Message modification is implemented by blocking a le-
gitimate message followed by sending a fabricated message. Message replay is
implemented by sending a fabricated message with the same payload as an ear-
lier message. Likewise, message delay is implemented by blocking a legitimate
message followed by sending the original message some time later.

In general, an attacker has two attack avenues. The first is to compromise
a ControlNode or EdgeNode and convert it into an AttackNode; this enables
the attacker to block messages sent to the compromised node and to send
fabricated messages from the compromised node. The second attack avenue
is to compromise a link, which enables the attacker to perpetrate man-in-the-
middle attacks. As shown in Figures 3, 4 and 6, the situation where Attacker
A1 compromises Link L1 between Nodes N1 and N2 is expressed as L1 = (A1:
(N1, N2)).

A node N has an initial state (N := Np) and may change its state (N := Nq)
upon receiving a message or as a result of a change in the physical state of the

52 CRITICAL INFRASTRUCTURE PROTECTION IV

device expressed by the node (e.g., closed valve). Note that a superscript (∗) is
used to denote that a node is in one of multiple possible states. A ControlNode
also maintains information about the status of its subordinate EdgeNodes. For
example, Z := (N1p, N2q) denotes that ControlNode Z perceives the states of
subordinate nodes N1 and N2 to be N1p and N2q, respectively.

The formal model expresses temporal and causal properties using sequential
steps, conditional statements and independent processes. A “process” is a
sequence of messages that occur in a specific order; the process may be executed
ψ number of times. A “conditional process” only executes when a Boolean
condition holds.

5. Modeling an Attack on an Oil Pipeline

Oil pipelines often rely on SCADA systems to manage, direct and monitor
large-scale, distributed operations. Similar to the Waterloo Campaign, control
failures in these systems can result in devastating consequences.

This section describes and models a pipeline rupture incident that occurred
at Fork Shoals, South Carolina on June 26, 1996. The rupture released 957,600
gallons of fuel oil and caused damage estimated at $20.5 million. According to
the National Transportation Safety Board (NTSB) Pipeline Accident Report
[8], the incident occurred as a result of failures in system components and
improper operator actions. However, as we show in this section, the same
results can be produced by targeted cyber attacks. For brevity, only the critical
events that led to the pipeline rupture are discussed.

5.1 Pipeline Rupture Incident

The Fork Shoals pipeline transports fuel oil from Atlanta to Greensboro
(North Carolina). Figure 8 shows the pipeline section of interest, which contains
four pump stations (A–D), a delivery facility (F) with breakout tankage and
a control center (Z) located in a central office north of the pipeline. Control
Center Z houses operators that remotely monitor and control the pipeline using
communication links (L1–L4). The remote pump stations (A–D) each have one
RTU that controls actuators and reads pipeline sensors. Delivery Facility F is
monitored by the control center, but the communication link is not shown
because it is not pertinent to the analysis.

The pipeline rupture was due to two primary factors: (i) increase in pressure
flow beyond the maximum allowable pipeline pressure, and (ii) failure of opera-
tor to realize and correct the conditions before structural failure occurred. The
control failures that resulted in the pressure increase occurred in the following
chronological order:

Increase in Pumping Capacity (Control Failure 1): Pumping ca-
pacity is increased by starting additional pumps and/or turning on larger
pumps and shutting down smaller ones. After a transfer to Delivery Facil-
ity F was completed, pumping capacity at downstream pumping facilities
was sequentially increased to accommodate the additional fuel oil in the

Butts, Rice & Shenoi 53

Pump Station A

Delivery Facility F

Pump Station B

Pump Station C

Control Center Z

Direction of Flow

Breakout Tankage

Delivery Facility

Pump Station

Control Center

Pipeline
Communication Link

L1
L2

L3

L4

Pump Station D

Figure 8. Pipeline layout.

pipeline. In particular, Pump Stations A and B each started a second
pump. Also, Pump Station C started a larger pump and shut down a
smaller one.

Failure to Start a Second Pump at Pump Station D (Control
Failure 2): The operator attempted to start a larger pump at Pump
Station D to increase capacity. The operator noted that a green light
appeared on the console to indicate that the pump had started, but, for
some reason, the pump did not start.

Stoppage of the Active Pump at Pump Station D (Control Fail-
ure 3): Believing that two pumps at Pump Station D were running, the
operator stopped the smaller (and only operating) pump. Shutting down
the only pump at Pump Station D created a pressure surge that trav-
eled upstream to Pump Station C, causing its only operating pump to
shut down due to high discharge pressure. The resulting second pressure
surge caused the two pumps at Pump Station B to shut down. The con-
tinued high fuel oil flow rate caused the pipeline pressure to grow rapidly,
resulting in a rupture between Pump Stations A and B.

Meanwhile, the pipeline operator at Control Center Z either ignored, misin-
terpreted or did not receive alarm notifications. The following control failure
hindered the pipeline operator’s situational awareness:

Failure to Receive and React to Alert Notifications (Control
Failure 4): A pressure alarm was triggered shortly after the pump at
Pump Station B shut down; however, the operator took no action. Ad-
ditionally, low suction pressure alarms were triggered intermittently for
readings at Pump Station B, but the operator did not react because the

54 CRITICAL INFRASTRUCTURE PROTECTION IV

alarms were behaving erratically and he assumed that the pressure read-
ings were inaccurate. Moreover, the SCADA system did not report the
failure of the pump to start at Pump Station D.

5.2 Cyber Attack Scenario

This section uses a cyber attack scenario to recreate the control system
failures that led to the pipeline rupture. As shown in Figure 8, the system
incorporates five nodes: Z (∈ ControlNodes) and A–D (∈ EdgeNodes), and four
communication links L1–L4 (∈ Links).

The attacks described below involve compromising ControlNode Z and using
it as the AttackNode. Essentially, the attacker has “root” access to Z, and can
block (¬) and fabricate (+) messages.

Control Failure 1: This control failure occurred because of a series of
messages that started and stopped various pumps along the pipeline. The
attacker begins by fabricating (+) a message from Z to A to start the second
pump (Pump #2):

Z
L1
−→

Z +Request
A[Start Pump #2].

Pump Station A then generates an acknowledgment message to Z confirming
that Pump #2 has started. In pipeline control protocols (e.g., Modbus), field
(slave) devices typically send acknowledgements in response to requests from
the control center (master); these acknowledgment messages must be blocked
to mask the attack from the operator. Thus, the next step is to block (¬) the
acknowledgment message from A to Z:

A
L1
−→

Z ¬Reply
Z[ACK].

Next, the attacker sends a fabricated message from Z to B to start Pump
#2 and blocks the acknowledgement message:

Z
L2
−→

Z +Request
B[Start Pump #2],

B
L2
−→

Z ¬Reply
Z[ACK].

The attacker then starts a larger pump (Pump #3) at Pump Station C and
blocks the acknowledgement message:

Z
L3
−→

Z +Request
C[Start Pump #3],

C
L3
−→

Z ¬Reply
Z[ACK].

Finally, the attacker stops the smaller pump (Pump #1) at Pump Station
C and blocks the acknowledgement message:

Butts, Rice & Shenoi 55

Z
L3
−→

Z +Request
C[Stop Pump #1],

C
L3
−→

Z ¬Reply
Z[ACK].

Control Failure 2: This control failure occurred because the operator
did not realize that the larger pump (Pump #3) at Pump Station D had not
started despite directing it to start. The attacker implements this failure by
ensuring that Pump #3 does not start and that the operator is unaware of this
situation. Consequently, the attacker blocks a message from the Control Center
Z to Pump Station D to start Pump #3 and fabricates an acknowledgement
from D to Z that Pump #3 has started:

Z
L4
−→

Z ¬Request
D[Start Pump #3],

D
L4
−→

Z +Request
Z[ACK].

Control Failure 3: This control failure occurred because the operator
stopped the only pump (Pump #1) at Pump Station D. The attacker imple-
ments this failure by fabricating a message to stop Pump #1 at Pump Station
D and then blocking the acknowledgment message from D to Z:

Z
L4
−→

Z +Request
D[Stop Pump #1],

D
L4
−→

Z ¬Reply
Z[ACK].

Control Failure 4: This control failure occurred because the operator did
not receive and react to alert notifications. Pressure fluctuations and pump
shutdowns trigger alarms in SCADA systems. Alarms in typical SCADA sys-
tems are sent in the form of response messages from a field device to the master
during normal polling cycles. The control failure is implemented by having the
attacker block polling messages from Z to A–D and fabricate response messages
to reflect normal operating conditions:

Z
L1
−→

Z ¬Request
A[Poll], A

L1
−→

Z +Reply
Z[ACK],

Z
L2
−→

Z ¬Request
B[Poll], B

L2
−→

Z +Reply
Z[ACK],

Z
L3
−→

Z ¬Request
C[Poll], C

L3
−→

Z +Reply
Z[ACK],

Z
L4
−→

Z ¬Request
D[Poll], D

L4
−→

Z +Reply
Z[ACK].

5.3 Modeling the Cyber Attack Scenario

Figures 9 and 10 present the formal specification of the cyber attacks de-
scribed above. Figure 9 specifies the nodes, attacker capabilities, and the pos-
sible and initial node states. The system has five nodes: Control Center Z,

56 CRITICAL INFRASTRUCTURE PROTECTION IV

System
Z ∈ ControlNodes
A, B, C, D ∈ EdgeNodes
Z ∈ AttackNodes
L1, L2, L3, L4 ∈ Links

L1 = (Z, A)
L2 = (Z, B)
L3 = (Z, C)
L4 = (Z, D)

Request, Reply ∈ MsgTypes

Capabilities
Z = {¬, +}

Initial Node States
A := A0

B := B0

C := C0

D := D0

Z := (A0, B0, C0, D0)

Possible Node States
A := A0 | A1 | A2

A0 ≡ (1, 0, 0, 0, 0)
A1 ≡ (1, 1, 0, 0, 0)
A2 ≡ (*, *, *, *, 1)

B := B0 | B1 | B2

B0 ≡ (1, 0, 0, 0, 0)
B1 ≡ (1, 1, 0, 0, 0)
B2 ≡ (*, *, *, *, 1)

C := C0 | C1 | C2 | C3

C0 ≡ (1, 0, 0, 0, 0)
C1 ≡ (1, 0, 1, 0, 0)
C2 ≡ (0, 0, 1, 0, 0)
C3 ≡ (*, *, *, *, 1)

D := D0 | D1 | D2 | D3

D0 ≡ (1, 0, 0, 0, 0)
D1 ≡ (0, 0, 1, 0, 0)
D2 ≡ (0, 0, 0, *, *)
D3 ≡ (*, 0, 1, 0, 0)

Z := (A0 | A1 | A2,
B0 | B1 | B2,
C0 | C1 | C2 | C3,
D0 | D1 | D2 | D3)

Figure 9. Formal specification of the cyber attacks (nodes, capabilities and states).

which is both a ControlNode and an AttackNode, and Pump Stations A–D.
The attacker has the capability to block (¬) and fabricate (+) messages.

Table 1 shows the possible states of Pump Stations A–D. The first three
columns list the status of (small) Pump #1, (small) Pump #2 and (large)
Pump #3. The fourth column shows whether or not the pressure reading is
within acceptable limits. The fifth column indicates if the node is an alarm
state. The status of a pump is represented as On (1) or Off (0). The pressure
status is Acceptable (0) (i.e., within acceptable limits) or Not Acceptable (1).
The alarm status is True (1) or False (0). Note that a “*” entry signifies that
the specific binary value does not matter for that particular state.

The initial states for all four pump stations are identical:

A0, B0, C0, D0 ≡ (1, 0, 0, 0, 0).

This means that (small) Pump #1 is on, the other two pumps are off, the
pressure readings are within acceptable limits and no alarms are triggered.
The node states vary as different actions are performed along the pipeline.

The four control failures can be broken down into four processes: Processes
1, 2, 3 and 4. Process 1 (Figure 10) occurs only once, so ψ = 1. The second
pump (Pump # 2) at Pump Stations A and B are activated. At Pump Station
C, the small pump (Pump #1) is deactivated and the large pump (Pump #3)
is activated unbeknownst to the operator.

Process 2 (Figure 10) corresponds to Control Failure 2. It is conditional on
a message being sent to activate the large pump (Pump #3) at Pump Station

Butts, Rice & Shenoi 57

Table 1. Possible states of EdgeNodes (Pump Stations A–D).

State Pump Pump Pump Pressure Alarm
#1 #2 #3

A0 On Off Off Acceptable F
A1 On On Off Acceptable F
A2 * * * * T
B0 On Off Off Acceptable F
B1 On On Off Acceptable F
B2 * * * * T
C0 On Off Off Acceptable F
C1 On Off On Acceptable F
C2 Off Off On Acceptable F
C3 * * * * T
D0 On Off Off Acceptable F
D1 Off Off On Acceptable F
D2 Off Off Off * *
D3 * Off On Acceptable F

D. This condition always holds after the operator sends an activation message,
so ψ = ∞.

Process 3 (Figure 10) corresponds to Control Failure 3. The steps deactivate
Pump #1 at Pump Station D. Process 3, like Process 1, is executed once, so ψ
= 1.

Process 4 (Figure 10) corresponds to Control Failure 4. Since polling is a
continuous process, ψ = ∞. As discussed above, the attacker blocks polling
messages from Z to A–D and fabricates response messages to reflect normal
operating conditions despite the build-up of pressure that eventually causes
the pipeline to rupture.

Note that a targeted cyber attack would simply turn off the pumps and mask
the actions. However, the additional steps are incorporated in the example
above to model the events described in the NTSB report.

6. Model Evaluation

This section discusses key applications of the model and its relationship to
other work in the field.

6.1 Model Applications

The model was created specifically to express attacks on critical infrastruc-
ture assets. However, as demonstrated in the examples involving the Waterloo
Campaign and pipeline rupture incident, the model can also be used to express
failures in control protocols. In fact, the model is capable of expressing attacks
and failures in diverse protocols that involve the exchange of messages.

58 CRITICAL INFRASTRUCTURE PROTECTION IV

Process 1
ψ = 1

1. Z
L1
−→

Z +Request
A[Start Pump #2]

A := A1

Z := (A0, B0, C0, D0)

2. A
L1
−→

Z ¬Reply
Z[ACK]

A := A1

Z := (A0, B0, C0, D0)

3. Z
L2
−→

Z +Request
B[Start Pump #2]

B := B1

Z := (A0, B0, C0, D0)

4. B
L2
−→

Z ¬Reply
Z[ACK]

B := B1

Z := (A0, B0, C0, D0)

5. Z
L3
−→

Z +Request
C[Start Pump #3]

C := C1

Z := (A0, B0, C0, D0)

6. C
L3
−→

Z ¬Reply
Z[ACK]

C := C1

Z := (A0, B0, C0, D0)

7. Z
L3
−→

Z +Request
C[Stop Pump #1]

C := C2

Z := (A0, B0, C0, D0)

8. C
L3
−→

Z ¬Reply
Z[ACK]

C := C2

Z := (A0, B0, C0, D0)

Process 2
ψ = ∞
CONDITIONAL:
IF (Z==(A∗, B∗, C∗, D0)

or (A∗, B∗, C∗, D2))

1. Z
L4
−→

Z ¬Request
D[Start Pump #3]

D := D∗

Z := (A0, B0, C0, D3)

2. D
L4
−→

Z +Reply
Z[ACK]

D := D∗

Z := (A0, B0, C0, D3)

Process 3
ψ = 1

1. Z
L4
−→

Z +Request
D[Stop Pump #1]

D := D2

Z := (A0, B0, C0, D0)

2. D
L4
−→

Z ¬Reply
Z[ACK]

D := D2

Z := (A0, B0, C0, D0)

Process 4
ψ = ∞

1. Z
L1
−→

Z ¬Request
A[Poll]

A := A∗

Z := (A0, B0, C0, D0)

2. A
L1
−→

Z+Reply
Z[ACK]

A := A∗

Z := (A0, B0, C0, D0)

3. Z
L2
−→

Z ¬Request
B[Poll]

B := B∗

Z := (A0, B0, C0, D0)

4. B
L2
−→

Z+Reply
Z[ACK]

B := B∗

Z := (A0, B0, C0, D0)

5. Z
L3
−→

Z ¬Request
C[Poll]

C := C∗

Z := (A0, B0, C0, D0)

6. C
L3
−→

Z+Reply
Z[ACK]

C := C∗

Z := (A0, B0, C0, D0)

7. Z
L4
−→

Z ¬Request
D[Poll]

D := D∗

Z := (A0, B0, C0, D0)

8. D
L4
−→

Z+Reply
Z[ACK]

D := D∗

Z := (A0, B0, C0, D0)

Figure 10. Formal specification of Control Failures 1, 2, 3 and 4.

The model provides a powerful mechanism for conceptualizing attacks and
failures in one control protocol and translating them to similar attacks and fail-
ures in another protocol. For example, the sequence of attacks involved in rup-
turing a pipeline is very similar to the attack sequences that turn off a section

Butts, Rice & Shenoi 59

of the electric power grid or shut down telephone service. The nodes (pump-
ing stations, generators and service switching/transfer points) and protocols
(Modbus, DNP3 and SS7) for pipelines, power grid and telecommunications
infrastructures are different, but the attack strategies are practically identical
and merely involve different messages with different payloads.

Techniques for masking attacks are just as similar across critical infrastruc-
tures. For example, the attack on the polling mechanism in the oil pipeline
example is applicable to numerous protocols in the oil and gas sector (e.g.,
Modbus and Fisher ROC) and to protocols in other sectors such as the electric
power grid (DNP3) and manufacturing (Profibus). The underlying strategy is
to block polling messages and fabricate normal responses to mask alert condi-
tions. Some critical infrastructure protocols (e.g., DNP3) support additional
communication modes (e.g., unsolicited replies), but these modes are readily
accommodated by the model.

In addition to conceptualizing common attacks and attack strategies for dif-
ferent protocols, the formal model assists in targeting specific protocol and sys-
tem implementations. Developing attacks requires detailed information about
the control system as well as the underlying cyber-physical systems. The model
helps identify the information requirements, articulate possible outcomes and
examine the feasibility of attacks based on the available information.

The formal model provides a framework for infrastructure asset owners and
operators to evaluate system implementations and configurations for possible
weaknesses. Moreover, the comprehensive understanding of attacks supports
risk analysis and risk management, and the implementation of defensive pos-
tures. In particular, common vulnerabilities derived via attack analysis can be
grouped into general security dimensions to aid the development and deploy-
ment of mitigation strategies. The formal model also enables researchers to
analyze existing control protocols and to evaluate the implications of design
decisions in new protocols.

6.2 Comparison With Other Work

Numerous models have been developed for expressing and reasoning about
the security properties of computer systems and protocols. This section com-
pares the proposed model with some of the established approaches for modeling
attacks on computer and control systems.

The majority of attack models for computer systems are founded on the
notion of an attack tree [12]. The root node of an attack tree denotes the
goal of the attacker. The steps for completing the attack are decomposed
using parent-child relations such that a path from a leaf node to the root node
expresses one instance of the attack. The possible attacks correspond to the
different branches of the attack tree. Attack trees have been shown to capture
a variety of computer system attack scenarios [7, 17].

Attack tree models are attractive because of their simplicity and ease of
analysis. However, certain ambiguities and the lack of expressiveness of attack
tree models hinder quantitative reasoning and comparison. Precise analysis is

60 CRITICAL INFRASTRUCTURE PROTECTION IV

difficult because an attack tree node represents both the current system state
and the specific attack action [19]. Also, attack trees are susceptible to state
explosion, they do not represent the temporal aspects of dependent attacks,
and lack the ability to generalize beyond the modeled scenario [16].

An alternative model [16] views an attack as a series of capabilities instead
of a sequence of events. It provides constructs for defining intrusion signatures
and automating the discovery of attacks. Other researchers have proposed
taxonomies for classifying attacks [9] and ontology-based models [18]. These
models describe complex scenarios involving multiple attacks; however, they
lack formalisms for analyzing causality and sequential events. Additionally, in
these models, attacks focus on peer-to-peer communications and do not arise
from a holistic view of the system. Attack models for control systems require
the ability to express hierarchical communications, logical sequences of events
and system-wide situational awareness.

Models based on finite state machines allow the formal representation of
discrete-event, dynamic systems. Finite state machines facilitate the logical
analysis of deterministic and non-deterministic attributes. Finite state ma-
chine models based on Petri nets have been used to express common computer
attacks [6, 19]. Petri nets use graphs and set theory to model concurrency, syn-
chronization, resource allocation and randomness. Our formal model specifies
attack sequences and events that may be expressed and analyzed using Petri
nets or other graph theoretical constructs.

Models for failures in control systems have been developed primarily to an-
alyze reliability, resilience, functionality and risk. The U.S. Department of
Energy [10], National Institute of Standards and Technology [14] and other en-
tities [13] have developed models for predicting, reacting to and understanding
failures in control systems. Several failure analysis models (e.g., [4]) demon-
strate the conditions that can lead to failures in control systems. Our model
does not directly focus on failure analysis. However, a failure analysis model
can be used to determine the conditions under which physical damage can oc-
cur. The conditions can then be analyzed using our model to determine how a
control protocol may be attacked to cause physical damage.

Little, if any, research has specifically focused on modeling attacks on control
system protocols. Current work has tended to focus on modeling intrusion and
anomaly signatures, identifying attributes for system resilience and evaluating
system vulnerabilities for risk analysis. Cheung, et al. [3] describe a language
for modeling attacks on process control systems. Because the systems are
relatively static, models can be constructed to characterize the expected system
behavior. Traffic that does not conform to normal traffic patterns is identified
as a potential attack. The concept focuses on a purely defensive posture that
assumes attackers will not use legitimate traffic in an attack. Our model is
attack-centered in that it allows legitimate (as well as non-standard) messages
in attack scenarios. Moreover, our model expresses temporal aspects and causal
effects while lending itself to formal analysis.

Butts, Rice & Shenoi 61

7. Conclusions

The model presented in this paper can express control system failures and
attacks on control protocols that involve the exchange of messages. The model
helps provide a comprehensive understanding of control system failures and
attacks, which supports the development and analysis of attack and defense
strategies.

Our future research will concentrate on developing a graph-theoretic model
augmented with temporal and belief attributes. The extended model will per-
mit the specification of common modes of attack (e.g., control node compro-
mise, edge node compromise, malicious control of edge nodes and polling mech-
anism manipulation). The model will also facilitate the development of attack
metrics and will support formal reasoning about attacks and defensive strate-
gies.

References

[1] J. Buckley, Air Power in the Age of Total War, Indiana University Press,
Bloomington, Indiana, 1999.

[2] D. Chandler, Waterloo – The Hundred Days, Macmillan, New York, 1980.

[3] S. Cheung, U. Lindqvist and M. Fong, Modeling multistep cyber attacks
for scenario recognition, Proceedings of the Third DARPA Information
Survivability Conference and Exposition, pp. 284–292, 2003.

[4] L. Decker, A risk assessment model for pipeline facility operations, Pipeline
and Gas Journal, vol. 236(3), pp. 38–44, 2009.

[5] HowStuffWorks.com, Battle of Waterloo, Atlanta, Georgia (history.how
stuffworks.com/european-history/battle-of-waterloo.htm), 2008.

[6] J. McDermott, Attack net penetration testing, Proceedings of the New
Security Paradigms Workshop, pp. 15–21, 2000.

[7] A. Moore, R. Ellison and R. Linger, Attack Modeling for Information Se-
curity and Survivability, Technical Note CMU/SEI-2001-TN-001, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, 2001.

[8] National Transportation Safety Board, Pipeline Rupture and Release of
Fuel Oil into the Reedy River at Fork Shoals, South Carolina, Pipeline
Accident Report PB98-916502/NTSB/PAR-98/01,Washington, DC, 1996.

[9] P. Neumann and D. Parker, A summary of computer misuse techniques,
Proceedings of the Twelfth National Computer Security Conference, pp.
396–407, 1989.

[10] North American Electric Reliability Corporation, Reliability Functional
Model, Function Definitions and Functional Entities, Version 5, Prince-
ton, New Jersey (www.nerc.com/fileUploads/File/Standards/Functional
Model V5 Clean 2009Sept24.pdf), 2009.

62 CRITICAL INFRASTRUCTURE PROTECTION IV

[11] A. Roberts, Waterloo – June 18, 1815: The Battle for Modern Europe,
HarperCollins, New York, 2005.

[12] B. Schneier, Attack trees, Dr. Dobb’s Journal, vol. 24(12), pp. 21–29, 1999.

[13] J. Stamp, M. Berg and M. Baca, Reference Model for Control and Automa-
tion Systems in Electrical Power, Version 1.2, Sandia National Laborato-
ries, Albuquerque, New Mexico (www.oe.energy.gov/DocumentsandMedia
/Reference Model for Control and Auto Systems in Elec Ind.pdf), 2005.

[14] K. Stouffer, J. Falco and K. Scarfone, Guide to Industrial Control Systems
Security, Final Public Draft, NIST Special Publication 800-82, National
Institute of Standards and Technology, Gaithersburg, Maryland, 2008.

[15] A. Tan, G. Badhwar, F. Allahdadi and D. Medina, Analysis of Solwind
fragmentation event using theory and computations, Journal of Spacecraft
and Rockets, vol. 33(1), pp. 79–85, 1996.

[16] S. Templeton and K. Levitt, A requires/provides model for computer at-
tacks Proceedings of the New Security Paradigms Workshop, pp. 31–38,
2000.

[17] C. Ten, C. Liu and M. Govindarasu, Vulnerability assessment of cyber-
security for SCADA systems using attack trees, Proceedings of the IEEE
Power Engineering Society General Meeting, pp. 1–8, 2007.

[18] J. Undercoffer, J. Pinkston, A. Joshi and T. Finin, A target-centric on-
tology for intrusion detection, Proceedings of the IJCAI Workshop on On-
tologies and Distributed Systems, pp. 47–58, 2004.

[19] R. Wu, W. Li and H. Huang, An attack modeling based on hierarchical
colored Petri nets, Proceedings of the Second International Conference on
Computer and Electrical Engineering, pp. 918–921, 2008.

