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MODELING INOPERABILITY
PROPAGATION USING
BAYESIAN NETWORKS

Zaw Zaw Aung and Kenji Watanabe

Abstract The modeling of critical infrastructure interdependencies is a challeng-
ing task. This paper discusses several interdependency modeling re-
quirements and proposes a Bayesian network approach for modeling
interdependencies and inoperability propagation. The approach is ap-
plied to a case study involving the Japanese critical infrastructure sec-
tors. Survey data published by the National Institute of Land and
Infrastructure Management and the Japanese National Information Se-
curity Center are used to generate conditional probability values for the
Bayesian network. The approach has the flexibility to adapt to diverse
critical infrastructure scenarios and interdependency structures.
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1. Introduction

The modeling of critical infrastructure (CI) interdependencies is an impor-
tant but challenging research problem. One of major requirements is adequate
realistic data that can support the infrastructure modeling process [3]. How-
ever, data of sufficient detail, coverage and quality is not available for several
critical infrastructure sectors. Due to the scarcity of data, many critical in-
frastructure modeling approaches are limited to certain domains, and most
approaches are forced to engage scenario-based modeling.

This paper discusses the principal requirements for interdependency model-
ing and proposes an approach that uses a Bayesian network for interdependency
modeling and inoperability propagation. The modeling approach is validated
using a case study involving the Japanese critical infrastructure sectors.
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2. Related Work

The input-output inoperability model (IIM) developed by Haimes and co-
workers (see, e.g., [4]) is based on the economic equilibrium model of Leontief
[6]. Several extensions to IIM have been proposed (see, e.g., [1, 10, 11]).

The IIM formulation uses static economic data from “make” and “use” ma-
trices provided by the Bureau of Economic Analysis. This formulation assumes
that a direct correlation exists between national economic input-output data
and economic sector operability/inoperability. However, such a correlation rep-
resents a crude approximation of reality. As discussed in [2], national input-
output data can represent economic sector dependencies that are insignificant
in some cases. In the case of Japan, almost all the defined critical infras-
tructures correspond to utility service sectors. These sectors have insignificant
input-output table values, but they have high degrees of physical and functional
interdependence.

Setola, et al. [12] have introduced an alternative IIM formulation. Instead
of using national economic input-output data, their formulation derives the
interdependency coefficients using expert interviews, where the expert data
is expressed and processed using a fuzzy set methodology. Macaulay [7] has
proposed a similar quantitative method for modeling interdependencies, with
an emphasis on the financial sector. In particular, Macaulay develops tornado
charts of economic dependencies from national input-output data, and derives
data flow matrices based on a survey of experts in public and private critical
infrastructure entities.

IIM yields useful estimates of sector inoperability and provides a simple
method for translating these estimates into financial losses for each sector and
for the economy as a whole. Nevertheless, adequate data for interdependency
modeling is difficult to obtain. In Japan, for example, there have been a con-
siderable number of service interruptions – Japan experienced six major earth-
quakes from 2007 to 2009 alone; and numerous post-disaster reports and case
studies are available. However, the problem is that there is very little data
specifically related to infrastructure interdependencies. For this reason, a thor-
ough review of published reports is recommended as an alternative to acquiring
hard data.

3. Modeling Interdependencies

Our infrastructure interdependency modeling approach is designed to ad-
dress the requirements of flexibility, generality and reliability. While IIM is
regarded as the most convenient way of estimating the economic impact of cer-
tain disruptions, our model uses a Bayesian network as a buffer between initial
perturbations and IIM to allow flexible adjustment and risk management in-
tervention (Figure 1). The propagated inoperability values obtained using the
Bayesian network are input to the IIM for economic loss estimation and impact
assessment.
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Figure 1. Bayesian network as a buffer between external perturbations and IIM.

We assume that the structure and strength of interdependencies change over
time (daily, seasonal, etc.). The temporal changes may also occur during a
disaster: outbreak period, emergency period and restoration period. The in-
terdependencies during the outbreak period can be almost identical to those
under normal conditions. However, the limited availability of resources during
the emergency causes the interdependencies to be different from those during
the outbreak period. Similarly, the interdependencies during the restoration
period are different as a result of the recovery dynamics and resilience char-
acteristics. Therefore, critical infrastructure interdependency modeling should
address these situational dependencies and should adapt to the relevant disaster
periods.

4. Data Sources

Our primary major data source for modeling critical infrastructure inter-
dependencies was a 167-page technical report released in February 2009 by
the National Institute of Land and Infrastructure Management (NILIM) of the
Japanese Ministry of Land, Infrastructure, Transport and Tourism [5]. The re-
port investigated the interdependencies between critical infrastructures in past
disasters and presented the results in the form of tables and influence diagrams.
The report has three major components: (i) data collection; (ii) two analytical
models, one based on matrix equations and the other on system dynamics; and
(iii) a simulation of earthquake damage spreading in the Tokyo metropolitan
area. The data collection and matrix equations from the NILIM were used in
our study.
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Table 1. Dependencies during the Kobe and Niigata Chuetsu earthquakes.

Ref. Influence Influence Type Details
No. Generated Received

1 Water Health Lifeline 8,850 m3 of water had to
be delivered by trucks for
47 days

16 Road Water Restoration 66.5% of employees could
not reach work on the day
of the disaster due to con-
gestion

30 Water Road Alternative Hospitals needed increased
water delivery from 5-6
tons to 30 tons from loca-
tions as far as 7 km away

32 Elec. Health Lifeline Failure of artificial respi-
rators threatened sixteen
lives; the respirators had to
be operated manually

95 Water Gas Physical Gas supply was halted to
12,463 locations due to wa-
ter leakage into control sys-
tems

104 Comm. Industry Lifeline One of two NTT Online
Cable trunk lines between
the computing center and
the Kobe head office was
cut

13 Road Gas Restoration Gas supply system re-
pairs in the Yamaguchi and
Horikoe regions could not
proceed for three days be-
cause of road damage

25 Gas Waste Functional Sewage was used to cool
pressurized gas

16 Comm. Gas Restoration Vital SCADA data for the
Nagaoka control center and
Kawaguchi gas control unit
was delayed by more than
two hours

The data collection component of the NILIM report incorporates an exhaus-
tive review of 65 reports on the Kobe earthquake and 52 reports on the Niigata
Chuetsu earthquake. The unique CI-to-CI dependencies were extracted and
categorized into the six groups listed below. Excerpts are listed in Table 1.
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Physical Impact: 18 cases

Functional Impact: 33 cases

Restoration Delay: 62 cases

Alternative Impact: 43 cases

Common Failure: 4 cases

Lifeline Impact: 84 cases

Because it focuses on earthquake disaster management, the NILIM report
does not cover all ten (officially-defined) Japanese critical infrastructures [9].
Nevertheless, it provides a good foundation for further interdependency analy-
sis. Based on knowledge gained from literature surveys and government hear-
ings, a survey questionnaire was created to assess the quantitative influence on
the critical infrastructures.

Table 2. Survey results.
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The survey results are shown in Table 2. Each entry provides the influence of
the row CI on the column CI (receiver). Note that the table shows the CI-to-CI
influences as well as the influences on lifeline services.

Table 3. Influence matrix.

Elec. Gas Water Sewage Comm. Road Rail Harbors Air
Elec. 0 0.016393 0.049180 0.131148 0.065574 0.147541 0.262295 0.196721 0.131148
Gas 0.016393 0 0.016393 0.032787 0.016393 0 0.065574 0.016393 0.049180
Water 0.032787 0.016393 0 0.065574 0 0 0.065574 0.049180 0.049180
Sewage 0 0 0.016393 0 0 0 0.065574 0.016393 0.016393
Comm. 0 0.131148 0.032787 0.016393 0 0.065574 0.262295 0.065574 0.131148
Road 0 0.065574 0.032787 0 0.196721 0 0.016393 0.131148 0.065574
Rail 0 0.016393 0 0 0 0.098361 0 0.049180 0.065574
Harbors 0 0.049180 0 0 0 0 0 0 0
Air 0 0 0 0 0 0 0 0 0

Elec. Gas Water Sewage Comm. Road Rail Harbors Air
Elec. 0.003027 0.060529 0.062064 0.139291 0.103214 0.185284 0.310372 0.249977 0.185895
Gas 0.017125 0.006658 0.018984 0.036822 0.019919 0.011660 0.079578 0.028158 0.061886
Water 0.033289 0.023033 0.003787 0.071028 0.005186 0.013347 0.082301 0.063595 0.062982
Sewage 0.000600 0.003098 0.016766 0.001303 0.001434 0.006833 0.067607 0.021723 0.022540
Comm. 0.003768 0.150483 0.039683 0.024776 0.021507 0.095532 0.284585 0.099075 0.169147
Road 0.003076 0.103339 0.042159 0.009882 0.202890 0.021722 0.080962 0.155817 0.106637
Rail 0.000625 0.029102 0.004504 0.001665 0.020331 0.100717 0.009461 0.065036 0.077227
Harbors 0.000842 0.049508 0.000943 0.001811 0.000980 0.000573 0.003914 0.001385 0.003044
Air 0 0 0 0 0 0 0 0 0

The CI-to-CI influence matrix (Table 3) was generated from Table 2 by
normalizing the values based on the largest rowwise summation (= 61).
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Table 4. Total dependency matrix.

Elec. Gas Water Sewage Comm. Road Rail Harbors Air
Elec. 0 0.016393 0.049180 0.131148 0.065574 0.147541 0.262295 0.196721 0.131148
Gas 0.016393 0 0.016393 0.032787 0.016393 0 0.065574 0.016393 0.049180
Water 0.032787 0.016393 0 0.065574 0 0 0.065574 0.049180 0.049180
Sewage 0 0 0.016393 0 0 0 0.065574 0.016393 0.016393
Comm. 0 0.131148 0.032787 0.016393 0 0.065574 0.262295 0.065574 0.131148
Road 0 0.065574 0.032787 0 0.196721 0 0.016393 0.131148 0.065574
Rail 0 0.016393 0 0 0 0.098361 0 0.049180 0.065574
Harbors 0 0.049180 0 0 0 0 0 0 0
Air 0 0 0 0 0 0 0 0 0

Elec. Gas Water Sewage Comm. Road Rail Harbors Air
Elec. 0.003027 0.060529 0.062064 0.139291 0.103214 0.185284 0.310372 0.249977 0.185895
Gas 0.017125 0.006658 0.018984 0.036822 0.019919 0.011660 0.079578 0.028158 0.061886
Water 0.033289 0.023033 0.003787 0.071028 0.005186 0.013347 0.082301 0.063595 0.062982
Sewage 0.000600 0.003098 0.016766 0.001303 0.001434 0.006833 0.067607 0.021723 0.022540
Comm. 0.003768 0.150483 0.039683 0.024776 0.021507 0.095532 0.284585 0.099075 0.169147
Road 0.003076 0.103339 0.042159 0.009882 0.202890 0.021722 0.080962 0.155817 0.106637
Rail 0.000625 0.029102 0.004504 0.001665 0.020331 0.100717 0.009461 0.065036 0.077227
Harbors 0.000842 0.049508 0.000943 0.001811 0.000980 0.000573 0.003914 0.001385 0.003044
Air 0 0 0 0 0 0 0 0 0

The DEMATEL method was used to obtain the total (direct + indirect)
impact of the CI-to-CI influences. The resulting matrix is shown in Table 4.

Table 5. Total requirements of Japan’s ten critical infrastructures.

Elec. Gas Water Finance Rail Logistics Air Comm. Gov. Health
Elec. 1.043578 0.025498 0.093584 0.008200 0.060693 0.011241 0.015587 0.015551 0.017824 0.024930
Gas 0.000534 1.012813 0.001717 0.001005 0.001095 0.000808 0.001316 0.001071 0.001191 0.003883
Water 0.001937 0.005211 1.105431 0.002248 0.006977 0.002976 0.003473 0.004135 0.004786 0.007713
Finance 0.059927 0.029559 0.034154 1.099556 0.232122 0.038274 0.071628 0.046012 0.020523 0.037563
Rail 0.002233 0.002142 0.002420 0.009354 1.003249 0.002407 0.002884 0.002962 0.006447 0.004207
Logistics 0.012923 0.020586 0.011587 0.008528 0.006226 1.006349 0.007863 0.015381 0.010985 0.013164
Air 0.000791 0.000630 0.000836 0.001372 0.000626 0.000505 1.005925 0.002804 0.001273 0.001525
Comm. 0.012735 0.016381 0.018865 0.032934 0.017441 0.015884 0.021257 1.154597 0.021695 0.017611
Gov. 0.001230 0.001310 0.001932 0.001498 0.000911 0.001205 0.002105 0.001109 1.000440 0.000994
Health 0.000007 0.000024 0.000054 0.000034 0.000030 0.000004 0.000006 0.000049 0.000014 1.023300

Table 5 shows the total industry-by-industry requirements for the Japanese
critical infrastructures, which can be used to calculate the total industry re-
quirements per dollar of industry output. This data, which was obtained from
the input-output tables of Japan (Year 2000) published by the Statistics Bu-
reau (Ministry of Internal Affairs and Communications), expresses the economic
dependencies between critical infrastructures.

Figures 2 and 3 compare the operational dependencies obtained from Table
4 and the economic dependencies obtained from Table 5, respectively. Two
indices are computed to enhance readability. The influence driving index (D)
of a row infrastructure is the sum of the row entries. The influence receiving
index (R) of a column infrastructure is the sum of the column entries. The
indices D and R are plotted on the x-axis and y-axis, respectively.

The lifeline services (finance, health and government services) are omitted in
the NILIM survey data (plotted diagram on the left); as a result, they appear
to contradict each other. However, there are several interesting points to be
discussed. Judging from its relative position, electricity is the high influence
driving infrastructure in both figures. Communications in the right-hand-side
diagrams (economic dependence) shows a high influence driving index similar to
electricity. It underscores the similarity in the economic dependency patterns
of electricity and communications while electricity has a much higher influence
driving index than communications from the operational dependency point of
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view. Railways have the highest influence receiving indices from the economic
and operational perspectives.

The net influence of a critical infrastructure is computed as D−R. If D−R is
positive, then the critical infrastructure has a net driving influence, otherwise it
has a net receiving influence. The strength of relation of a critical infrastructure
is computed as D + R. Note that D−R and D + R are used as the x-axis and
y-axis, respectively, in Figure 4, which compares the operational and economic
dependencies between critical infrastructures.

A net driving influence is observed for the electricity, communications and
logistics infrastructures in Figures 2 and 3. The net influence of water is incon-
sistent because the NILIM survey considers operational and physical dependen-
cies (water leakage into control systems is a serious threat after an earthquake).
In the case of the D+R metric, electricity and communications have anomalous
results with respect to the economic and operational viewpoints. Communica-
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Figure 4. NISC interdependency analysis results.

tions in the right-hand-side diagrams (based on economic data) has a higher
strength of relation than electricity, which reflects the higher investment in
information technology by the communications sector. From an operational
perspective, electricity is a fundamental requirement for every other critical
infrastructure according to the NILIM survey. Logistics (road and transporta-
tion) has an insignificant strength of relation with respect to economic depen-
dence. However, in the case of a disaster, road networks are vital for all the
critical infrastructures, as demonstrated by the higher strength of relation in
the NILIM survey.

Figure 4 shows the results of an interdependency analysis conducted by the
Japanese National Information Security Center (NISC) [9]. The dark circles
represent sectors with low dependencies (weak systems); the dotted arrows
represent time-varying dependencies. Of the ten critical infrastructure sectors,
broadcasting, railway, electricity, gas, medical services, water and logistics are
termed as highly-independent (robust) systems. On the other hand, communi-
cations, finance, air transportation and government services are weak systems
with low independence. Note that communications and broadcasting is de-
fined as a single sector. However, they are treated separately because of their
different dependency characteristics.

5. Causal Network

Figure 5 presents the causal network developed using the results of NISC’s
interdependency analysis. The diagram shows the first-level propagation of in-
operability among the critical infrastructures. Quadrant I contains the major
influence sectors – communications, electricity and water; any perturbation to
one or more critical infrastructures in this quadrant will propagate to other
critical infrastructures. Quadrant II contains communications and water to
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handle the interdependencies between the two infrastructures. The thick dark
arrow between the first communications node in Quadrant I and the second
communications node in Quadrant II expresses the fact that an inoperability
perturbation in the first node (say 0.2) propagates to the second communica-
tions node as an identical value (0.2). If there are two external perturbations to
communications and electricity of 0.2 and 0.2, respectively, then the propagated
inoperability in the second communications node is the sum of 0.2 propagated
from the first communications node and some portion of the inoperability in-
fluenced by electricity on communications. The nodes in Quadrants III and IV
are infrastructures that have little or no influence on other infrastructures (that
correspond to leaf nodes in the causal network). The critical infrastructures in
Quadrant IV have low independence (i.e., they are weak systems) according to
the NISC analysis.

Certain inconsistencies exist in the NILIM and NISC dependency results.
The NILIM report focuses on earthquake damage spreading analysis and tar-
gets three types of dependency impact – physical, functional and restoration
delay. On the other hand, the NISC study mainly focuses on the functional
perspective. Our model focuses on the functional dependence and dependency
structure of critical infrastructures during the disaster period.

6. Bayesian Networks

Bayesian networks provide a flexible formalism for expressing expert knowl-
edge. Based on the causal network described above, we constructed a Bayesian
network utilizing the influence matrices and qualitative assessments of CI-to-
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CI dependencies presented in Section 4. Better results are obtained for a de-
cision node with a larger number of states. However, it requires many more
conditional probabilities and has a higher computational cost. For reasons of
simplicity and for demonstration purposes, each node in the network is limited
to having four states:

Normal: The system is in a normal condition and is fully operational
with an inoperability of 0.00.

Reduced: The system is slightly perturbed and is 80% operational with
an inoperability of 0.20.

Half: The system is 50% operational with an inoperability of 0.50.

Down: The system is completely out of service (0% operational) with
an inoperability of 1.00.

We used Hugin Lite (version 6.8) to construct the Bayesian network for the
first-order propagation of inoperability in the ten Japanese critical infrastruc-
tures. The network primarily targets functional dependencies and is modeled
for a one-day period. The structure of the Bayesian network conforms to the
NISC results and the influence levels (conditional probabilities) are based on the
NILIM results and influence matrices. In addition, the qualitative assessments
relied on the ratings and reasons provided by participants in the questionnaires,
the functional impact obtained by mining data pertaining to previous disasters,
interview notes, and NISC survey results such as the direct and time-varying
impact and critical infrastructure interdependencies.

7. Future Tokyo Earthquake Case Study

Figure 6 shows the initial situation where all the critical infrastructures are
in the normal operational state. In May 2006, the Tokyo Metropolitan Disaster
Management Council [13] produced a damage estimate report for a predicted
7.3 magnitude earthquake occurring directly beneath Tokyo. This earthquake
was assumed to occur together with a 6.9 magnitude quake beneath Tokyo Bay
near the Shinagawa area [8].

Figure 7 shows the inoperability propagation due to a 6.9 magnitude earth-
quake. The results were obtained using estimated service disruptions of 20.5%
to electricity and 18.2% to communications as the initial perturbations that
were input to the Bayesian network.

Figure 8 shows the effects of a 7.3 magnitude earthquake in the same region.
Estimated service disruptions of 48.6% to electricity and 38.4% to communi-
cations were used as the initial perturbations input to the Bayesian network.
These external perturbations propagated into the other critical infrastructures
creating varying levels of inoperability. The inoperability of communications
increases from 48.6% to 58.3% due to its dependence on electricity and water
supply. Of the other infrastructures, the financial system suffers the most with
an inoperability of 9.5%.



Aung & Watanabe 209

Figure 6. Initial situation in the critical infrastructure interdependency network.

8. Conclusions

The IIM is arguably the most popular method for estimating the economic
impact of critical infrastructure disruptions. However, the Bayesian network
described in this paper serves as a buffer between initial perturbations and the
IIM, providing the flexibility to adapt to various scenarios and adjustments in
interdependencies. The fidelity of the Bayesian network approach is, of course,
dependent on the conditional probability assignments. The strength of the
approach lies in its ability to combine expert judgment and objective data, and
to refine the results as new data of higher quality becomes available.
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