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STACK-BASED BUFFER OVERFLOWS IN
HARVARD CLASS EMBEDDED SYSTEMS
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Abstract Many embedded devices used to control critical infrastructure assets
are based on the Harvard architecture. This architecture separates data
and program memory into independent address spaces, unlike the von
Neumann architecture, which uses a single address space for data and
program code. Buffer overflow attacks in desktop and server platforms
based on the von Neumann model have been studied extensively. How-
ever, buffer overflows in Harvard architectures have only just begun
to receive attention. This paper demonstrates that stack-based buffer
overflow vulnerabilities exist in embedded devices based on the Harvard
architecture and that the vulnerabilities are easily exploited. The paper
shows how the reversal in the direction of stack growth simplifies attacks
by providing easier access to critical execution controls. Also, the paper
examines defense techniques used in server and desktop systems and
discusses their applicability to Harvard class machines.
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1. Introduction

The buffer overflow is a well-researched attack vector. However, most re-
search has focused on high performance processors based on the von Neumann
memory model. The von Neumann model uses a single address space for data
and program code [4]. On the other hand, the Harvard architecture – which is
widely used in embedded devices – separates data and program memory into
independent address spaces [15]. The independent data address space allows
the data segment to grow and be manipulated without regard to the location
of the program memory. Because the address space in a von Neumann machine
is shared by data and program code, the program must take steps to prevent
data from interfering with program code. This paper examines the Harvard and
von Neumann architectures and demonstrates how stack-based vulnerabilities
in Harvard class machines render them vulnerable to buffer overflow exploits.
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Figure 1. von Neumann memory model.

2. Stack-Based Buffer Overflows

Buffer overflow vulnerabilities have been documented since the early 1970’s
[2], but the most celebrated exploit involved the Morris worm of 1988 [11],
which opened a Pandora’s box of buffer overflows and other exploits. Stack-
based buffer overflows were popularized by Levy (aka Aleph One) in his 1996
paper, “Smashing the Stack for Fun and Profit” [1]. A buffer overflow is an
artifact of dynamic memory and occurs when a program attempts to write “too
much” data to a specified location. The effect of writing excess data is that
the extra data spills over the boundary of allocated space, possibly overwriting
other important data. The effect of an overflow on a running program depends
on where the allocated space exists within memory and how the space is used
by the system and/or program. Levy’s paper, which focused exclusively on
von Neumann class architectures, examined overflows that occur in dynamic
memory structures used by C-like languages.

A stack is a data structure with the property that the last item placed on
the stack is the first item to be removed. A stack has two principal operations,
Push and Pop. Push places a new item on top of the stack; Pop removes an
item from the top of the stack.

The arrangement of a stack in memory varies according to the processor
architecture and compiler implementation. A von Neumann machine almost
always has a stack that starts in high address memory and grows into low
address memory (Figure 1). On the other hand, a Harvard class machine
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Figure 2. Harvard memory model.

usually has a stack that starts in low address memory and grows into high
address memory [4, 15] (Figure 2).

Many modern programming languages use a stack to support dynamic calling
mechanisms such as function calls. The stack stores the state of the machine
prior to a dynamic jump. Specifically, whenever a function is invoked, the state
of the machine is saved by pushing the processor registers on the stack along
with bookkeeping items associated with the machine state (e.g., the current
stack top pointer and return address for code execution). The result is a clean
processor that is ready to execute the called function.

Each logical memory segment on a stack that is associated with an instance
of a function is called a “frame.” After a function has finished executing, the
variables belonging to the previous function are popped off the stack and placed
back in the processor; this effectively moves the function frame from the stack
to the processor registers and status words. The return pointer is removed from
the stack when a function exits; this pointer gives the address where execution
resumes after the function has terminated. Thus, the execution sequence relies
on the integrity of the stack. Corrupting the stack can cause a processor to
execute unintended code, process invalid data or crash. Interested readers are
referred to [8] for a discussion of stack-based buffer overflow exploits in von
Neumann architectures.

The memory organization for an executing program is also dependent on
the operating system and compiler. For instance, in an IA32 Linux system
(von Neumann architecture), the executable code of a process usually starts at
memory location 0x08000000 and the stack begins at 0xBFFFFFFF and grows
downward in memory [10]. Note, however, that the actual starting locations
vary for different IA32 Linux versions.

Many environments, such as multitasking operating systems, use virtual
memory systems to simplify the execution environment. The resulting “vir-
tual address space” creates the illusion that each process can access the entire
address space without interfering with other processes. These systems may
complicate the physical memory organization, but simplify the operation of
the stack from the point of view of an executing process. Virtual memory is
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not discussed in this paper because it is typically not supported by Harvard
architectures.

3. Harvard Architecture

The Harvard architecture is prevalent in small devices and embedded sys-
tems, but is relatively rare in higher capacity systems due to the cost of incorpo-
rating large amounts of integrated CPU memory. Harvard class microprocessors
are used for low-power, high-reliability embedded applications such as micro-
controllers, sensors and actuators. Examples include vehicle engine controllers,
flight systems, mobile communication systems and remote sensing equipment.
Embedded control devices are ubiquitous in critical infrastructure components
and are becoming increasing common in consumer products. Security research,
however, has historically focused on desktop and server environments, and has
only recently turned its attention to embedded systems.

This paper focuses on the Intel 8051 Harvard class microprocessor [14]. In-
troduced by Intel in 1980 as a logical extension to its 8048 microprocessor, the
Intel 8051 exemplifies all the characteristics of a Harvard class processor – a
comparatively small instruction word, small program space and a minuscule
data space. The original chip contains 4 KB of ROM and 128 bytes of RAM,
both integrated into the chip.

We use the C8051F530 embedded system development kit from Silicon Lab-
oratories, which is based on the Intel 8051 architecture. The development kit
contains a complete board with an interface to the processor, several output
ports and a Keil C compiler for the Intel 8051. The board also contains a JTAG
port that provides direct access to ROM and RAM during processor execution
(primarily for debugging purposes). The JTAG-based debugging system en-
ables programmers to inspect the machine state during execution and to view
the entire RAM contents. The board also contains an integrated universal asyn-
chronous receiver transmitter (UART) that communicates with the processor
and delivers data to the running program.

4. Stack Frames

As described earlier, the stack frame associated with a function call contains
critical data that describes the status of the function and the flow of execu-
tion. The data placed in a frame is dependent on the programming language,
operating system and compiler that are involved. The return pointer is a crit-
ical piece of data that is placed on the stack prior to each function call. The
stack frame is an ideal location for the return pointer because each frame is
associated with a single instance of a function. Compilers may store variables,
processor registers and function parameters differently within a frame, but all
compilers save the return pointer on the stack in some form or another.

The organization of stack frames is relatively consistent in compilers for
von Neumann machines; however, compilers designed for Harvard architectures
(e.g., Keil 8051 C compiler) organize stack frames in a non-conventional manner
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Figure 3. von Neumann stack organization.

[9]. Specifically, the Keil C compiler attempts to pre-allocate the stack space
required for function calls. The stack frames built by Keil C are minimal and
do not reside on top of the stack (unlike frames built by a GNU C compiler,
for example [13]). Instead, Keil C frames exist lower in the stack and below
the global variables. A frame pointer associated with a function call does not
reside within a frame, but is instead pushed to the top of the stack.

The basic frame structure follows the order of operations outlined by a pro-
cessor function call. Most modern processors automatically push the return
pointer on the stack when a CALL instruction is encountered. The compiler
must then produce a function header that saves the other processor registers.
This task is left to the compiler instead of being integrated within the CALL
instruction so that intelligent optimization routines can reduce the number of
pushes and pops if registers are not needed during function execution.

Figure 3 presents an example of a frame produced by the GNU C compiler
executing on an IA32 processor. Note that the first items pushed on the stack
before a function call are the function parameters (placed on the stack by the
calling function). The next items are the return pointer and the frame pointer
of the previous function (note, however, that not all compilers and processors
store the frame pointer). The last items placed on the stack are the local
variables of the function.

It is important to note that, because the stack for the IA32 architecture
starts in high memory and grows down, contiguous writes to local variables
(e.g., a character array) begin writing in low memory and progress to high
memory towards the locations of the return pointer and frame pointer. For
example, the strcpy() function (which copies one array to another) creates a
buffer overflow vulnerability in the IA32 architecture by overwriting the return
pointer and causing the processor to return to a location different from what
was intended. Exploit writers use such a misdirected return to gain control of an
executing machine, essentially by modifying the execution path of a program.

Not all compilers and processors store the frame pointer. Harvard architec-
tures produce a frame that is organized differently from that produced by a von
Neumann machine. Early Harvard architectures rarely stored the frame pointer
because the data space was small enough to preclude the need for additional
reference points. Moreover, since the stack is in a separate address space, it
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Figure 4. Harvard stack organization.

can begin at low memory and grow into high memory – the direction of stack
growth is opposite to that for a von Neumann machine.

Figure 4 shows a typical frame in a Harvard architecture. The structure is
similar to that of a von Neumann machine frame (with local variables on top
of the stack). However, because a Harvard architecture stack grows from low
memory to high memory, contiguous writes are made in the same direction as
stack growth and, thus, do not approach the return pointer in the frame. As
a result, it is impossible to overwrite a return pointer through a typical buffer
overflow, except when the return pointers are placed above the local variables.

5. Buffer Overflow Exploits

Exploiting a buffer overflow vulnerability requires an intimate knowledge
of stack behavior, execution procedures and the programming environment.
The stack frame organization is especially significant because variables that
are critical to the continued operation of a function may have to be overwritten
to get to the targeted address. The change in the direction of stack growth in a
Harvard architecture creates a more complex exploit environment because the
buffer overflow moves away from the return pointer instead of towards it.

This section describes the process of overwriting a return pointer via a buffer
overflow and examines how the process differs for the Harvard and von Neu-
mann architectures. Our experiments used the C8051F530 development kit for
the Intel 8051 microprocessor along with the Keil C compiler. The Keil C com-
piler employs several defensive techniques for inhibiting buffer overflow, which
will be discussed in more detail later in this paper.

A simple terminal application connected to the UART (called the “Echo”
program) was used to explore buffer overflows. The Echo program incorporates
a UART and hardware timer drivers along with interface functions for gathering
and sending data to the UART. The UART driver is an interrupt-driven system
that transfers data to and from the UART port asynchronously. A simple echo
routine is used to pull data from the UART buffers as a string terminated by
a newline character. The function that pulls strings from the UART is similar
to the getline() function in the GNU C library. After a complete string has
been input, the string is copied into another buffer using the strcpy() function
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Function func{

char buff1[32];
char buff2[16];
while(1){

...
GetStringFromUART(buff1);
strcpy(buff2, buff1);

PutStringToUART(buff2);
...

}

}

Figure 5. Echo program pseudocode.

and the new buffer is sent back to the terminal. If a user were to connect to
the embedded device through a terminal program (e.g., HyperTerminal), the
program would simply display what the user types.

The GNU C library strcpy() function was implemented as a known vector
for buffer overrun exploits because it insecurely copies one array to another –
it does not perform any bounds checking. Interested readers are referred to [8]
for a complete list of C library vulnerabilities and to [7] for a comparison of
vulnerability detection tools.

Our Echo program uses a func() function to create two buffers of different
sizes and then invokes strcpy() to insecurely copy data from a larger buffer
to a smaller buffer – a classic coding error. The Echo program also contains
an orphaned function, owned(), which continuously echoes the string “owned!”
to the UART. The owned() function is considered to be orphaned because it
is not called by any other function and is unreachable via normal execution
paths. Our test program uses a stack-based buffer overflow to redirect the
execution of the Echo program from func() to owned(). Once the redirection
occurs, execution never exits owned(), and an endless stream of “owned!” text
is produced, which indicates that the exploit is successful.

Figure 5 shows the Echo program. Variables buff1 and buff2 are defined
as global space for arrays of size 32 and size 16, respectively. Thus, a buffer
of size 32 is copied to a buffer of size 16 without bounds checking. The result
is that up to 15 bytes of data can be written beyond the bounds of buff2 on
the stack plus a null terminator. The overwritten data can contain important
control identifiers that dictate the flow of execution and data passed to other
functions. As shown in Figure 3, a successful buffer overflow in the frame of a
von Neumann machine enables an attacker to access all the variables defined
after the buffer along with the return pointers and frames located deeper in
the stack. The exact opposite is true for Harvard architectures. The reversed
direction of code growth means that an attacker has access only to the data
defined after the overflowed buffer. Note, however, that subtle nuances in stack
implementation may create exploitable vulnerabilities.
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Figure 6. Mapping a buffer overrun exploit.

In general, it is relatively difficult to successfully gain control of a process
without causing an illegal instruction or reference to unallocated memory. Fig-
ure 6 shows a stack representation (similar to the GNU C compiler) for the
Atmega AVR, which is also a Harvard architecture. The global variables are
placed at the base of the stack before any functions are allocated.

Note that strcpy() is called by func() and is passed two parameters with
the addresses of the source (buff1) and destination (buff2) buffers. The
strcpy() function repeatedly references the parameters within its frame dur-
ing the copying process; thus, any corruption of the values causes the function
to write data to incorrect locations. In order to gain control of the process, an
attacker must write a value into the two bytes containing the return pointer
for strcpy(). This causes strcpy() to return to a location of the attacker’s
choosing (in our case, the orphaned function that repeatedly outputs “owned!”).
The challenge is to get to the location of the return pointer without corrupting
the parameters passed to strcpy() by including the proper values for the two
parameters in the source buffer. The overflow writes valid data to the two
parameters used by strcpy(); the overwritten parameters must contain the
correct values that allow strcpy() to proceed normally and successfully write
to the memory locations containing the return pointer.
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Figure 7. Stack structure of Echo program.

Figure 6 suggests that a Harvard architecture that places the return address
on top of the stack should be easy to exploit. However, this is difficult in
practice because of the efforts taken by compiler writers to organize memory
effectively. The Keil C compiler for the Intel 8051 is an excellent example of
a non-standard stack arrangement devised to simplify the use of limited RAM
[9]. The Keil C compiler does not include return pointers in stack frames,
but instead rearranges global variables in a way that essentially pre-allocates
space for function variables. It moves the global variables towards the top of
the stack, above the space where local function variables reside and, instead
of placing return pointers inside stack frames, aggregates them at the very top
of the stack above the global variables. Thus, stack frames constructed by the
Keil C compiler are not reentrant.

Figure 7 shows the actual stack mapping for the Echo program. Because of
the arrangement of global variables by the Keil C compiler, an overflow of buff2
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allows direct access to the return pointers. An attacker can directly access the
uppermost return pointer without regard for the other return pointers that may
be destroyed – this is because the uppermost return pointer is the first to be
loaded. In fact, the attacker can gain immediate control merely by loading the
uppermost return pointer with a valid location.

6. Exploit Payloads

As described above, it is possible to conduct a successful exploit on a Harvard
architecture embedded system. However, the “payload” of the exploit is an
issue that deserves consideration. Specifically, what would an attacker hope to
execute that is not already in the ROM of the embedded system? Developing
a “worthwhile” exploit is more difficult than in a traditional von Neumann
architecture where the processor makes no distinction between data and code.

An exploit on a von Neumann system can deliver custom code within the
overflow string and jump to that code, enabling the attacker to insert func-
tionality that was never present in the original program. At first glance, this
does not seem possible in a Harvard architecture because the code is “frozen”
in ROM or flash memory, and the processor only manipulates data in the data
address space. The memory separation effectively eliminates the ability of an
attacker to inject custom code into the execution stream. The attacker must
instead use the functionality already present in the system. However, there are
some well-researched analogs to building an effective payload for Harvard ar-
chitectures. For example, it is possible to create a buffer overflow that performs
a return-to-libc attack, which then injects entirely new code into the data
segment of an Atmega based wireless sensor [5].

Non-executable stacks have been implemented in BSD, Linux, Solaris and
Windows Vista as a method for combating exploits. Such an implementa-
tion requires the processor to permit memory segments to be designated as
non-executable (newer X86 processors and processors belonging to the SPARC
family support this feature). A non-executable stack is constructed by set-
ting the no-execute (NX) bit for the appropriate memory segments. When
a memory segment has the NX bit set, the processor refuses to execute data
as instructions in the memory segment. The result is a Harvard-like memory
organization where a section of memory is designated as non-executable data
space. While the address spaces are not entirely separate, the characteristics of
the two segments in memory loosely equate to the program and data address
spaces encountered in the Harvard architecture.

Attackers have developed methods for defeating non-executable memory seg-
ments by utilizing available functionality. Specifically, instead of pushing cus-
tom instructions into the machine, execution is directed to pre-existing func-
tionality. The strategy of using existing code to circumvent no-execute pro-
tection is leveraged in a return-to-libc attack [12]. This type of attack ma-
nipulates the stack so that it is intact and functional when the return pointer
redirects execution to a function within the program. Exploit writers have used
the return-to-libc attack to cause programs to invoke remote shells, down-
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load toolkits and execute commands on a host system even when the system
has non-executable memory enabled. The return-to-libc attack is analogous
to identifying functionality within the data space of a Harvard class machine
and causing the program to return to the desired functionality with the stack
in a valid state. An example is redirecting execution to an update routine used
to change data in embedded system memory. The routine is already present in
the machine; however, clever manipulation of the stack enables the attacker to
upload a new ROM image of his/her choosing.

7. Defense Techniques

Several techniques have been devised to guard against buffer overflows, most
of them involve strict bounds checking or surrounding buffers with verifiable
values. The values placed on the stack are called “canaries” (from the old prac-
tice of using birds to detect deadly gas in coal mines). To detect an overflow, a
variable with a known value is placed before and after the variables in a stack
frame. If an overflow occurs, the variable placed after the buffer is overwritten
and its value is, therefore, altered. Before the executing function exits, it checks
the value of this canary variable. The program is terminated if the value has
changed, thwarting an attempt at forcing a redirected function return.

Several canary implementations have been devised. Systems used in von
Neumann architectures, such as the randomized canaries employed by Stack-
Guard [3] and ProPolice [13], protect stack frames and mitigate attacks that
redirect execution. StackGuard modifies the GNU C compiler so that an in-
teger value is inserted just before the return pointer in each stack frame and
another copy of the integer is placed before the local variables. Comparing the
two values before function return helps determine if an overflow has occurred,
at which point the program is terminated. ProPolice, used in BSD and the
GNU C version 4.1 compiler, incorporates a traditional random canary sys-
tem and reorganizes the placement of variables within frames. By reorganizing
variables and placing buffers at the beginning of frames, the compiler makes it
more difficult to overwrite return pointers without destroying critical data.

Canary systems are not limited to protecting entire frames and detecting
overflows. The Keil C compiler prevents overflows from occurring by performing
a bounds check on every write to a buffer; this involves an integrity check
of the null byte located at the end of the buffer. To accomplish this, the
compiler translates array assignments into complete function calls that perform
the bounds check and determine if the write is allowed. This method works well
for null terminated strings. However, if a program allows nulls to be written to
a buffer, an attacker can simply write a null byte to the location of the check
value. The check routine would interpret the null value as an intact canary
and permit the write. While this method is effective for simple character array
operations and null terminated strings, it is not appropriate for all systems.
The Keil C canary method also dramatically increases the overhead of write
operations. A normal translation of an array write produces five to seven
machine instructions. Since the Keil C compiler translates the array operation
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into a complete function call, it produces ten to fifteen instructions, including
several (slow) memory operations.

Mitigating overflows using canaries comes with a significant performance
penalty. The security of a randomized canary is based on the statistical im-
probability of correctly guessing its value; this requires the invocation of a
random number generation routine, which takes time. Canary values also con-
sume stack space and require extra instructions to be executed before and after
function calls. Other canary systems that protect individual buffers instead
of entire frames involve considerable overhead. Small systems that rely on
buffered input/output can be dramatically slowed by the decreased speed of
operations on buffers. Interestingly, the Keil C compiler is targeted specifically
at small embedded systems, which are usually input/output driven and rely on
fast asynchronous interaction with external devices.

8. Conclusions

Stack-based buffer overflow vulnerabilities existing in the Harvard architec-
ture can be exploited in much the same manner as in von Neumann systems.
However, the process of exploiting a vulnerability is tricky, and delivering or
identifying an exploit payload can be relatively complicated.

The memory management model used in the Harvard architecture changes
the direction of writes in relation to stack growth; this simplifies the task of
obtaining control of the instruction path. Memory space limitations may re-
quire compiler writers to be frugal with stack allocation, often leading to the
clustering of key variables. In the case of the Keil C compiler, the non-standard
placement of global variables permits direct access to the complete list of re-
turn pointers, which actually simplifies the exploit. The separation of data and
program space in the Harvard architecture limits the ability of an attacker to
inject operational code, but it does not limit the ability to redirect execution.
Once an attacker has control of execution, he/she can find code to execute as
in the case of a return-to-libc attack. Embedded systems commonly have
the ability to dynamically update their code. The dynamic update systems are
used for remote patching, feature updates and general fixes. Such a system can
be exploited, for example, by using a buffer overflow to enter an update routine
and then introduce unauthorized code into the embedded device.

Exploit writers have traditionally focused on powerful desktop and server
systems, but attackers are increasingly targeting smaller devices, including em-
bedded systems based on the Harvard architecture. Generalized protection
mechanisms such as canaries are effective, but come with significant overhead
that can impact the real-time performance of embedded systems, especially
those used to control critical infrastructure assets.
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