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DETECTING ANOMALIES IN
PROCESS CONTROL NETWORKS

Julian Rrushi and Kyoung-Don Kang

Abstract This paper presents the estimation-inspection algorithm, a statistical
algorithm for anomaly detection in process control networks. The algo-
rithm determines if the payload of a network packet that is about to be
processed by a control system is normal or abnormal based on the effect
that the packet will have on a variable stored in control system memory.
The estimation part of the algorithm uses logistic regression integrated
with maximum likelihood estimation in an inductive machine learning
process to estimate a series of statistical parameters; these parameters
are used in conjunction with logistic regression formulas to form a prob-
ability mass function for each variable stored in control system memory.
The inspection part of the algorithm uses the probability mass functions
to estimate the normalcy probability of a specific value that a network
packet writes to a variable. Experimental results demonstrate that the
algorithm is very effective at detecting anomalies in process control net-
works.
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1. Introduction

After decades of research, most of the physical processes underlying a system
such as a nuclear power plant are known. If a physical system is operated in
a digital (cyber) mode, as is the case of some Generation III, most Generation
III+ and all Generation IV nuclear reactors, one can argue that, with the
available knowledge in hand, we have a good definition of normalcy about
the physical side of such a cyber-physical system. Because several behavior
profiles of control systems and networks are induced by physical processes in the
physical side, it is intuitively appealing to leverage the knowledge of normalcy
in the physical side to obtain an assessment of normal behavior in the cyber
side, and, thus, estimate the concept of normalcy for the entire cyber-physical
system.
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With this objective in mind, we conducted an observational study on an
experimental cyber-physical system formed by a limited number of elements
of a distributed control system [20] and simulated components of an advanced
boiling water reactor (ABWR) [4]. The study involved the statistical analy-
sis of the contents of random access memory (RAM) of a programmable logic
controller (PLC) that contains control logic computation data, input data and
output data, which we call “RAM variable memory.” We discovered that the
evolution of the values of logical and continuous variables stored in RAM vari-
able memory follow specific flows that persist over time. This finding motivated
our development of the estimation-inspection algorithm for anomaly detection.

The estimation-inspection algorithm probabilistically estimates the normal
flows of values of logical or continuous variables stored in the RAM variable
memory of PLCs and determines if a network packet is normal or abnormal by
considering the specific evolution of values of a logical or continuous variable
caused by the network packet. Experimental results using a simple testbed
demonstrate that the algorithm is very effective at detecting anomalies in pro-
cess control networks.

2. Related Research

This section discusses related research on intrusion and anomaly detection
in process control networks. Cheung, et al. [3] have examined protocol-level
models for intrusion detection in process control networks. The models employ
a definition of normalcy for payloads of byte-oriented protocols such as Mod-
bus [13] and are derived from the protocol specifications and implementation
guides. Protocol-level models and the estimation-inspection algorithm both
focus on the inspection of network packets. Protocol-level models search for
violations related to function codes, exception codes, protocol identifiers and
other attributes. They also examine cross-field relationships because a legiti-
mate value of a field may depend on the value of another field. On the other
hand, the proposed anomaly detection approach focuses entirely on data fields
and uses applied statistics to assess their legitimacy.

Some researchers [17–19] have applied reactor mirage theory (RMT) as a
deception-based intrusion detection technique for process control networks in
nuclear power plants. RMT, which is based on signal detection theory [8,
12], uses continuous simulation [16] based on genuine control network traffic.
The proposed approach differs from RMT in that it addresses situations where
attackers target control systems attached to real, operational equipment.

The challenges involved in detecting attacks on control systems have been
discussed by Cardenas, et al. [1] and by Naess, et al. [15]. The approach of
Cardenas, et al. is based on an understanding of the interactions between the
control system and the physical system. They model the behavior of a physical
system as a linear dynamical system and use the model to determine the ef-
fects of control commands on the physical parameters of the system in question.
Their approach assumes that an attack on a control system produces abnor-
mal behavior in the physical system by having negative effects on the system
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parameters; thus, they use sequential detection theory to detect the negative
effects. Our approach models the interactions between a control system and a
physical system in terms of the evolutions of values of logical and continuous
variables stored in the RAM variable memory of the control system. A sta-
tistical estimation technique is used to obtain a series of parameters that are
used with logistic regression formulas to form a probability mass function for
each variable stored in control system memory. For a control command to be
deemed normal, the network packet that conveys it should cause an evolution
of values of a logical or continuous variable that is deemed to be normal by the
probabilistic model.

Naess, et al. propose an intrusion detection approach that uses high-level
application-based policies implemented at the middleware level. The misuse
policies are based on attack signatures, procedural-based policies that use ex-
ecution patterns of monitored components, and interval-based policies that
look for anomalies in parameter values and method invocation frequencies.
Procedural-based policies are not comparable with our statistical approach,
nor are misuse policies and interval-based policies that deal with method invo-
cation frequencies. Our research suggests that interval-based policies take into
account the state of the physical system when setting parameter thresholds.
Naess, et al. discuss maximum and minimum value policies that look for pa-
rameter values that lie outside the range of allowable values. For instance, if
the allowed set point for the linear position of a control rod used to adjust the
reactivity of a nuclear reactor core [21] should be an even value between 6 and
24, a maximum and minimum value policy would classify a set point of 24 as
normal. However, if the value of reactivity is high, moving the control rod from
a low value to a linear position of 24 is abnormal and possibly very dangerous.

The approach of Naess, et al. incorporates the delta value and maximum
average policies, which are used to detect unexpected variations in parameter
values over a short amount of time and excesses of maximum distance from
a moving average for each measurement, respectively. A consideration of the
state of a physical system would enable delta value and maximum average poli-
cies to produce corrective responses that are initiated by control systems upon
an equipment fault or breakage. To our knowledge, such corrective responses of-
ten involve set points that cause large and abrupt changes to parameter values.
Naess, et al. also use interval-based policies that employ cumulative distri-
bution functions to detect rare values given a history of normally-distributed
values. Thus, these policies compare the next value of a parameter with some
number of previous values of the same parameter. In our experience, the next
normal value of a parameter also depends on the current values of other pa-
rameters that characterize a physical system. In a nuclear power plant, for
example, the next value of the position of a turbine bypass valve depends on
the current value of the pressure in the reactor vessel. Our approach addresses
this issue by considering the complete state of a physical system when esti-
mating a probability distribution for the next value of a logical or continuous
variable.
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Naedele and Biderbost [14] describe an approach for reducing the security-
related events that occur in a process control environment to quantitative met-
rics, which are understandable by system operators with limited computer se-
curity expertise. The quantitative metrics are presented to system operators
during plant operation, enabling them to assess if an attack is taking place.
Naedele and Biderbost’s approach and the proposed approach both consider
the dynamics of a digitally-controlled physical system when estimating the
normalcy of network packets. However, the two approaches differ in how they
estimate the normalcy of network packets. Naedele and Biderbost’s approach
uses humans for pattern matching while the proposed approach engages statisti-
cal estimation theory. We believe that the proposed approach is better because
it supports real-time detection while the human analysis of events takes at least
a few seconds. Consider, for example, a malicious network packet that opens
a circuit breaker to desynchronize a power generator in the electrical power
grid. While Naedele and Biderbost’s approach would likely detect the mali-
cious network packet only after circuit breaker has been opened, the proposed
approach would detect the packet before it is processed by the control system
that controls the circuit breaker.

3. Statistical Approach for Anomaly Detection

This section presents our statistical approach for anomaly detection. In
particular, it describes the mathematical modeling and statistical parameter
estimation techniques, and the estimation-inspection algorithm.

3.1 Mathematical Modeling

The RAM variables of control systems can be expressed as a matrix W whose
elements model logical or continuous variables that store process measurement
data or actuator control data along with set points:

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 x2 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . xl

xl+1 xl+2 . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . xm

xm+1 xm+2 . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . xn

xn+1 xn+2 . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . xg

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The elements x1, x2, . . . , xl model input register variables; the elements xl+1,
xl+2, . . . , xm model holding register variables; the elements xm+1, xm+2, . . . ,
xn model discrete input variables; and the elements xn+1, xn+2, . . . , xg model
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coil variables. A control system can hold as many as 65,536 variables of each
type. If q is the number of control systems in a process control network, then l
= 65,536q, m = 2l, n = 3l and g = 4l. In a real-world control system, it may
be the case that not all the input register variables, holding register variables,
discrete input variables and coil variables are needed; consequently, not all of
them are defined.

Logical variables and continuous variables in RAM variable memory, and,
thus, the elements of matrix W are mapped to process parameters (i.e., vari-
ables characterizing the operation of physical equipment and/or physical pro-
cesses) according to specific schemes (i.e., cyber-physical mappings) that de-
pend on the communication protocol being used. In some byte-oriented pro-
tocols (e.g., Modbus), cyber-physical mappings are defined ad hoc by control
engineers and are applied during device configuration. Other protocols (e.g.,
IEC 61850 [6]) have the cyber-physical mappings defined in their specifications.
Process parameters are related to each other by mathematical formulas based
on the processes taking place in the physical side of the system.

A cyber-physical mapping associates the physical or chemical relations be-
tween process parameters with functional relations among logical variables and
continuous variables in RAM variable memory, and, thus, with the functional
relations among the elements of matrix W . The functional relations, in turn,
determine the logical data and continuous data assigned to sensor or actuator
variables during the controlled operation of a physical system. Thus, given a
process in the physical side of a controlled system along with a cyber-physical
mapping, a value assigned to an element of matrix W can be explained by
consulting a set of other elements of W under the assumption that the analysis
is being performed on a safe operation of the controlled physical system.

The fundamental thesis of this research is that for every possible combina-
tion of values of W elements, including the current value of W [i][j], W [i][j] may
take any one of its possible values with a probability that varies from 0 to 1. We
refer to the probability in question as the “normalcy probability.” A normal
transition flow step occurs when W [i][j] takes a value whose associated nor-
malcy probability is non-zero. Thus, a network packet that is about to write to
W [i][j] is classified as normal if it causes a normal transition of the current value
of W [i][j], i.e., it writes a value to W [i][j] whose associated normalcy probabil-
ity is non-zero. In the statistical context, we refer to the elements of matrix W
as W [i][j] and x1, x2, . . . , xg when we treat them as dependent variables and
exposure variables, respectively. The estimation-inspection algorithm, which is
described later in this section, estimates the probability distribution of the val-
ues of W [i][j] given x1, x2, . . . , xg and checks that a network packet that writes
to W [i][j] conveys a value for W [i][j] whose associated normalcy probability is
non-zero.

The possible values of each W [i][j] lie in {min (W [i][j]), min (W [i][j]) + 1,
. . . , min (W [i][j]) + h}, where min (W [i][j]) + h = max (W [i][j]). We use the
term “possible value” because each logical variable, by definition, may assume
the value 0 or 1, while each continuous variable takes values from a defined
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interval that depends on the process parameter to which it is mapped. In
a nuclear power plant, for example, the continuous variable mapped to the
reactor vessel pressure may take values that vary from 0 psi at plant start-
up to a maximum value of 1,000 psi when the plant is operating at 100%
thermal power. Similarly, if the maximum synchronous speed of a two-pole AC
induction motor is 1,500 rpm, then the applied voltage frequency, which is used
control the actual rotational speed of the motor, may assume values from 0 Hz
to 25 Hz. Note that W [i][j] can take negative values because it is possible for
process measurements and actuator control data to have negative values.

We use stochastic vectors to store the probability distributions of W [i][j]
values. These stochastic vectors are defined by:
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Let pk = VW [i][j][k] be the normalcy probability that W [i][j] takes the value
min (W [i][j])+k where k ∈ {0, 1, . . . , h}. Thus, p0 = VW [i][j][0] is the normalcy
probability that W [i][j] takes the value min (W [i][j]); p1 = VW [i][j][1] is the
normalcy probability that W [i][j] takes the value min (W [i][j]) + 1; and so on.

We use a probability mass function ΓW [i][j] to model the normal data transi-
tion flows that may potentially be followed by element W [i][j]. The probability
mass function ΓW [i][j] is defined by:

ΓW [i][j] : x1 × ... × xl+1 ×. . . × xm+1 ×. . . × xn+1 ×. . . × xg → VW [i][j] (2)

The estimation part of the estimation-inspection algorithm uses logistic re-
gression integrated with maximum likelihood estimation in an inductive ma-
chine learning process to estimate a series of statistical parameters. These
statistical parameters in conjunction with logistic regression formulas form a
practical definition of the probability mass function ΓW [i][j] for each W [i][j].
The inspection part of the estimation-inspection algorithm uses the probability
mass function ΓW [i][j] to estimate the normalcy probability of a specific value
min (W [i][j]) + k that a network packet is about to write to W [i][j].

3.2 Statistical Parameter Estimation

As described later, an element W [i][j] may take any one of its possible values
with a probability that depends on x1, x2, . . . , xg and the statistical parameters
α(s) and β(s). The parameters α(s) are intercept terms while β(s) are coefficient
terms. We estimate the statistical parameters using applied logistic regression
analysis integrated with maximum likelihood estimation [5, 9]. The first step
is to run a model of the controlled physical system normally and without any
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attacks. The values of the logical and continuous variables in control system
RAM are recorded in a database as they evolve over time.

Next, we have different individuals run the model multiple times. Despite
undergoing similar training and certification regimens, different nuclear reactor
operators usually adjust process parameters in different ways to reach the de-
sired operational states. Furthermore, process-related events may be handled
differently, but are considered normal operations as long as the desired tasks
are performed correctly. What is important is that the model be used to gen-
erate a sample of network packets that characterizes the population of network
packets during normal operation of the controlled physical system.

For each program variable modeled by W [i][j], we create a database view
with rows of the form {ϕ(W [i][j]), x1, x2, ..., xg}, where ϕ(W [i][j]) denotes the
next value of W [i][j]. ϕ(W [i][j]) is extracted from a network packet transmitted
over a process control network that is about to write W [i][j], while the record
of values of x1, x2, . . . , xg is a snapshot of the current values of the elements
of matrix W just before the network packet changes the value of W [i][j] to
ϕ(W [i][j]).

We now consider the case where W [i][j] models a continuous variable. If (in
statistical terms) each possible value of W [i][j] is considered to be an outcome
category, then ordinal logistic regression is applicable because the categories (in
general) are ordered in controlled physical systems. In a nuclear power plant,
for example, the possible values of continuous variables mapped to process pa-
rameters (e.g., reactor vessel pressure, reactor water level, neutron population
in the reactor core and steam flow rate) are ordered. In ordinal logistic regres-
sion, comparisons between the contiguous values of a dependent variable play
a key role in estimating their probabilities of occurrence. Since the possible
values of W [i][j] lie in [min (W [i][j]), min (W [i][j]) + h], there are h possible
comparisons between contiguous values of W [i][j]. Consequently, according to
ordinal logistic regression, there are h intercept terms α in the ordinal logistic
model α1, α2, ..., αh.

An intercept term αk is defined for each value min (W [i][j]) + k of W [i][j]
such that k ̸= 0. Later in this section we will see that αk is used to estimate the
probability that W [i][j] takes the value min (W [i][j]) + k. We will also show
that there is no α0 defined for min (W [i][j]). Since the logistic model under
consideration is ordinal rather than polytomous, there is only one coefficient
term βa associated with each exposure variable xa where a ∈ {1, 2, . . . , g}.
Furthermore, there is a unique set of coefficient terms β1, β2, . . . , βg defined for
all values min (W [i][j])+k of W [i][j]. Like the intercept term αk, the coefficient
terms β1, β2, . . . , βg are also used to estimate the probability that W [i][j] takes
the value min (W [i][j]) + k.

Given x1, x2, . . . , xg, the probability that W [i][j] takes a value greater than
or equal to min (W [i][j]) + k is:

P (ϕ(W [i][j]) ≥ min (W [i][j]) + k | W ) =
1

1 + e−(αk+
Pg

a=1 βaxa)
(3)
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As a matter of fact, we are interested in min (W [i][j]) + k ≥ 1 because
P (ϕ(W [i][j]) ≥ 0 | W ) = 1. Similarly, the probability that W [i][j] takes a
value greater than or equal to min (W [i][j]) + k + 1 given x1, x2, ..., xg is:

P (ϕ(W [i][j]) ≥ min (W [i][j]) + k + 1 | W ) =
1

1 + e−(αk+1+
Pg

a=1 βaxa)
(4)

Equations (3) and (4) are used to derive the probability that W [i][j] takes
the value min (W [i][j]) + k given x1, x2, ..., xg. The probability is given by:

P (ϕ(W [i][j]) = min(W [i][j]) + k | W ) = P (ϕ(W [i][j]) ≥ min(W [i][j]) +

k | W ) − P (ϕ(W [i][j]) ≥ min(W [i][j]) + k + 1 | W ) (5)

Upon substituting Equations (3) and (4) into Equation (5), we obtain:

P (ϕ(W [i][j]) = min (W [i][j]) + k | W ) =

1

1 + e−(αk+
Pg

a=1 βaxa)
−

1

1 + e−(αk+1+
Pg

a=1 βaxa)
(6)

For the case where k = 0 and the value of W [i][j] whose probability of
occurrence is being estimated is min (W [i][j]), the minuend in Equation (6) is
1 because P (ϕ(W [i][j]) ≥ min(W [i][j]) | W ) = 1. This explains why no α0 is
defined for min (W [i][j]) (i.e., when k = 0).

Next, we discuss the development of the likelihood function LW [i][j] for an
element W [i][j]. The function LW [i][j] represents the joint probability for the
likelihood of observing the data of the d rows in the database view. Assuming
that the rows of the database view are numbered from 1 to d, let ybk be an
indicator variable defined on the bth row as follows:

ybk =

{

1 if in the bth row, ϕ(W [i][j]) = min (W [i][j]) + k
0 if in the bth row, ϕ(W [i][j]) ̸= min (W [i][j]) + k

(7)

The joint probability for the likelihood of observing the data in the database
view is:

d
∏

b=1

h
∏

k=0

P (ϕ(W [i][j]) = min (W [i][j]) + k | W )ybk (8)

Equation (8) estimates the individual contribution made by each row to the
probability that ϕ(W [i][j]) is min (W [i][j])+k, and then combines the individ-
ual likelihood contributions made by each row. Clearly, each row contributes
the probability of one value min (W [i][j]) + k taken by W [i][j] because only
one of the indicator variables is equal to 1. Upon substituting Equation (6)
into Equation (8), we obtain:

d
∏

b=1

h
∏

k=0

(

1

1 + e−(αk+
Pg

a=1 βaxa)
−

1

1 + e−(αk+1+
Pg

a=1 βaxa)

)ybk

(9)
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The values of the exposure variables x1, x2, . . . , xg in Equation (9) are avail-
able from the database view because each individual row is processed by the
equation. Therefore, after performing the multiplications of the probabilities
contributed by each individual row, the likelihood function LW [i][j] appears as
a function of the statistical parameters, and is given by:

LW [i][j] (α1, α2, . . . , αh, β1, β2, . . . , βg) (10)

We estimate the values of the statistical parameters α1, α2, . . . , αh, β1, β2,
. . . , βg that maximize LW [i][j] using the maximum likelihood technique [11].
We organize the parameters of the likelihood function LW [i][j] as a vector
θ = (θ1, θ2, . . . , θh+g). Maximizing LW [i][j] (θ) is equivalent to maximizing
ln

[

LW [i][j] (θ)
]

. If r ∈ {1, 2, ..., h + g} and θr is the rth element of vector
θ, the values of the statistical parameters that maximize LW [i][j] (θ) are the
solutions of a system of equations of the form:

∂ln
[

LW [i][j] (θ)
]

∂θr
= 0 (11)

where the fraction is a partial derivative of the natural logarithm of the likeli-
hood function LW [i][j] with respect to θr. The solutions of the system of equa-
tions yield estimates of the parameters α1, α2, . . . , αh, β1, β2, . . . , βg. Armed
with the estimated values of the parameters, we return to Equation (6) and
estimate the probability that W [i][j] takes the value min (W [i][j]) + k given
the current values of the elements of matrix W . This is an integral component
of the estimation-inspection algorithm, which is presented below.

Estimating pk = (P (ϕ(W [i][j]) = min (W [i][j]) + k | W )) and storing pk in
VW [i][j][k], for each k ∈ {0, 1, . . . , h}, fills all the positions of stochastic vector
VW [i][j]. Iterating this procedure over every possible tuple of values of exposure
variables x1, x2, . . . , xg associates each tuple with a stochastic vector VW [i][j],
which leads to the computation of the probability mass function ΓW [i][j].

We now consider the case where W [i][j] models a logical variable that takes a
value of 0 or 1. Since a logical variable matches the definition of a dichotomous
measure in a statistical context, dichotomous logistic regression can be applied.
In a dichotomous logistic model, there is only one intercept term α defined for
the two possible values of W [i][j], and only one coefficient term βa associated
with each exposure variable xa where a ∈ {1, 2, . . . , g}. Furthermore, a unique
set of coefficient terms β1, β2, . . . , βg is defined for the two possible values of
W [i][j]. Upon applying the logistic function of the dichotomous logistic model,
we obtain the probability that an element W [i][j] takes the value 1:

P (ϕ(W [i][j]) = 1|W ) =
1

1 + e−(α+
Pg

a=1 βaxa)
(12)

The probability that W [i][j] takes the value 0 is given by:

P (ϕ(W [i][j]) = 0|W ) = 1 − P (ϕ(W [i][j]) = 1|W ) = 1 −
1

1 + e−(α+
Pg

a=1 βaxa)
(13)
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We arrange the rows of the database view so that for the first c rows:
ϕ(W [i][j]) = 1, and for the remaining d − c rows: ϕ(W [i][j]) = 0. Let P (Xb)
denote P (ϕ(W [i][j]) = 1 | W ) for the bth row. Also in a dichotomous logis-
tic model, the joint probability for the likelihood of observing the data in the
database view is given by the likelihood function LW [i][j] defined by:

c
∏

b=1

P (Xb)
d

∏

b=c+1

1 − P (Xb) (14)

Equation (14) estimates the individual likelihood contribution made by each
row numbered from 1 to c to the probability that W [i][j] takes the value 1, along
with the individual likelihood contribution made by each row numbered from
c+1 to d to the probability that W [i][j] takes the value 0; it then combines the
individual likelihood contributions made by each row. The values of the expo-
sure variables x1, x2, . . . , xg in Equation (14) are available from the individual
rows of the database view. Upon multiplying the probabilities contributed by
each row, we obtain the likelihood function LW [i][j] defined by:

LW [i][j] (α, β1, β2, ..., βg) (15)

Next, we estimate the values of the statistical parameters α, β1, β2, . . . , βg

that maximize LW [i][j] using maximum likelihood estimation. We apply the
unconditional likelihood technique instead of the conditional technique because
the number of statistical parameters in the model is usually small relative to the
number of rows in the database view. Furthermore, the conditional likelihood
technique does not allow the estimation of the intercept term α, which, as
can be seen from Equations (12) and (13), is indispensable to estimating the
probability that W [i][j] takes values of 1 and 0, respectively. If we denote the
parameters of the likelihood function LW [i][j] as θ = (θ1, θ2, . . . , θg+1), then the
values of the statistical parameters that maximize LW [i][j] (θ) are the solutions
of a system of equations of the form given by Equation (11).

In this case, θr is the rth individual parameter for r ∈ {1, 2, . . . , g + 1}.
The solutions of the system of equations give the estimates of the statistical
parameters α, β1, β2, ..., βg. With the statistical parameter estimates in hand,
we use Equations (12) and (13) to estimate the probability that W [i][j] takes
the values 1 and 0, respectively, given the current values of the elements of
matrix W . This is also an integral component of the estimation-inspection
algorithm.

Estimating p1 = P (ϕ(W [i][j]) = 1 | W ) and p0 = P (ϕ(W [i][j]) = 0 | W ),
and storing p1 and p0 in VW [i][j][1] and VW [i][j][0], respectively, fills both the
positions of the stochastic vector VW [i][j]. Iterating over every possible tuple
of values of the exposure variables x1, x2, . . . , xg associates each of them with
a stochastic vector VW [i][j], which leads to the computation of the probability
mass function ΓW [i][j].
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Algorithm 1 : Assess the normalcy of a network packet payload.

Part I

1: for all W [i][j] that models a program variable that is defined do
2: if W [i][j] models a continuous variable then
3: estimate the associated statistical parameters α1, α2, . . . , αh, β1, β2,

. . . , βg using ordinal logistic regression and maximum likelihood esti-
mation

4: end if
5: if W [i][j] models a logical variable then
6: estimate the associated statistical parameters α, β1, β2, . . . , βg using

dichotomous logistic regression and maximum likelihood estimation
7: end if
8: end for

Part II

1: U ⇐ payload
2: Norm ⇐ true
3: for all W [i][j] such that ϕ(W [i][j]) ∈ U do
4: k ⇐ ϕ(W [i][j]) − min(W [i][j])
5: if W [i][j] models a continuous variable then
6: pk ⇐ 1

1+e−(αk+
Pg

a=1
βaxa) − 1

1+e−(αk+1+
Pg

a=1
βaxa)

7: end if
8: if W [i][j] models a logical variable and k = 1 then
9: pk ⇐ 1

1+e−(α+
Pg

a=1
βaxa)

10: else if W [i][j] models a logical variable and k = 0 then
11: pk ⇐ 1 − 1

1+e−(α+
Pg

a=1
βaxa)

12: end if
13: if pk = 0 then
14: Norm ⇐ false
15: break for loop
16: end if
17: end for
18: return Norm

3.3 Estimation-Inspection Algorithm

The first part of the estimation-inspection algorithm (see Part I of Algorithm
1) is concerned with estimating the statistical parameters (intercept terms α(s)
and coefficient terms β(s)) and is, therefore, conducted during the learning
phase. As indicated in Line 1 (Part I), the algorithm estimates a specific set of
statistical parameters for each element of the matrix W that models a program
variable defined in a control system. As discussed above, the algorithm applies
ordinal logistic regression integrated with maximum likelihood estimation on a
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learning data set to estimate the intercept and coefficient terms of the ordinal
logistic model developed for an element of matrix W that models a continuous
variable (Lines 2–4). The algorithm applies dichotomous logistic regression in-
tegrated with maximum likelihood estimation on a learning data set to estimate
the intercept term and the coefficient terms of the dichotomous logistic model
developed for an element of matrix W that models a logical variable (Lines
5–7).

Part II of the algorithm is concerned with scrutinizing network packets in
a process control network. To assess the normalcy of a network packet, the
algorithm conducts its statistical analysis in relation to each variable that is
written by the network packet (Line 3). The algorithm checks if the program
variable written by the network packet is a continuous variable (Line 4) or a
logical variable (Lines 8, 10). This information along with the value of index k
computed in Line 4 are used to identify: (i) the type of logistic model and, thus,
the corresponding logistic regression formula applicable to the network packet;
and (ii) the intercept terms α(s) and coefficient terms β(s) of the applicable
logistic model defined for the variable by the packet.

If the program variable written by the network packet is a continuous vari-
able, the algorithm plugs the intercept terms α(s) and coefficient terms β(s)
along with the current values of the exposure variables x1, x2, . . . , xg into the
formula of the ordinal logistic model and produces an estimate of the normalcy
probability of the specific value that the network packet writes to the contin-
uous variable in question (Line 6). If the program variable written is a logical
variable, the algorithm plugs the intercept term α and coefficient terms β(s)
along with the current values of the exposure variables x1, x2, . . . , xg into the
formula of the dichotomous logistic model to estimate the normalcy probability
of value 1 (Line 9) or value 0 (Line 11) depending on whether 1 or 0 is written
to the logical variable, respectively.

If the normalcy probability of the value written to the program variable
under consideration is greater than zero, the algorithm conducts its statistical
analysis in relation to the next variable that the network packet under inspec-
tion will write, if any. If this is not the case, i.e., the estimate of the normalcy
probability is equal to zero, the algorithm interrupts the scrutinization process
and classifies the network packet as abnormal (Lines 13–16).

4. Experimental Evaluation

A small testbed was used to generate a data set for the inductive machine
learning process used by the estimation-inspection algorithm and to conduct
an experimental evaluation of the algorithm. The control system employed in
the testbed comprised Linux PC-based PLCs [20], specifically, MatPLCs [22]
installed on general-purpose Linux machines with x86 CPUs. Custom MatPLC
modules were employed in the master mode to control and monitor a limited
number of simulated components of an ABWR. These modules implemented
control logic for processing MatPLC points (inputs, outputs, internal coils and
registers). The MatPLC points were mapped to physical I/O parameters and,
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therefore, represented the link between the MatPLC modules in master mode
and the parameters of simulated ABWR components. Network communications
were implemented using the Modbus protocol over TCP/IP.

Sensors and actuators were emulated using custom MatPLC modules run-
ning in the slave mode. A MatPLC human-machine interface (HMI) GNU im-
age manipulation program toolkit (GTK) module was used to read and write
MatPLC points corresponding to supervisory network operations of a power
plant. We conducted continuous simulations [2] of the mechanisms used to
insert or withdraw a control rod (namely, the joint operation of an AC induc-
tion motor that produces a torque and a ball screw that transforms rotational
motion into linear motion), a motor-driven water pump used to inject water
within the reactor core, and limited portions of the nuclear fission process that
involve reactivity [21] and core flow (i.e., water in the reactor core).

A prototype implementation of the estimation-inspection algorithm was de-
ployed and activated in the MatPLCs and the simulated ABWR components
were run normally using the control system and network. The main purpose
of the test was to assess if the algorithm would mistakenly classify normal net-
work packets as abnormal and, thus, generate false positives. To assess the
effectiveness of the algorithm in detecting attacks, a series of memory errors
were inserted in the Modbus implementation running on the MatPLCs and
attack code was developed to exploit the errors.

The attacks launched on the MatPLCs included stack overflow exploits with
shellcode injection, stack overflow exploits with arc injection, heap overflow
exploits with shellcode injection, frame pointer overwrites with shellcode in-
jection, format bug exploits with shellcode injection that corrupted function
pointers in the global offset table, indirect pointer overwrites with shellcode in-
jection that corrupted function pointers in the global offset table, and exploits
of out-of-boundary array indices with shellcode injection. Inertial attacks [10]
were also mounted on the simulated AC induction motor along with exclusion
attacks that violated a functional dependency between the (limited) simulated
control rod insertion and withdrawal system and the (limited) simulated reactor
feedwater system.

We obtained a false alarm rate of zero false positives/hour, which we believe
is a clear indication of the need to test the estimation-inspection algorithm on
a data set comprising network packets sniffed from the process control network
of a real power plant. Conversely, this initial result may indicate that the
algorithm has potential to be highly effective.

We also obtained a detection probability of 98%, i.e., 98% of the malicious
network packets were detected by the algorithm. When possible, we crafted
network packets so as to inject shellcode one byte at a time. A few of these
bytes managed to pass undetected because they were indeed normal process
data in defined states of the simulated ABWR components. All the network
packets that injected memory addresses were detected by the algorithm. In
summary, all the attacks launched in the test were detected by the estimation-
inspection algorithm.



164 CRITICAL INFRASTRUCTURE PROTECTION III

5. Conclusions

The estimation-inspection algorithm is intended to protect cyber-physical
systems such as power plants from application-level computer network attacks.
The algorithm uses statistical techniques to determine if the payload of a net-
work packet that is about to be processed by a control system is normal or
abnormal based on the evolution of the variable that the network packet will
modify. Experimental results with a small testbed demonstrate that the algo-
rithm yields a detection probability of 98% with a zero false positive rate.

It is necessary to conduct additional tests of the estimation-inspection al-
gorithm. In particular, the algorithm should be tested using packets collected
from the process control network of a real power plant.

Acknowledgements

This work was supported in part by NSF Grant CNS 0614771. The research
of Julian Rrushi was partially supported by scholarships from the University
of Milan and (ISC)2.

References

[1] A. Cardenas, S. Amin and S. Sastry, Research challenges for the security
of control systems, Proceedings of the Third USENIX Workshop on Hot
Topics in Security, 2008.

[2] F. Cellier and E. Kofman, Continuous System Simulation, Springer, New
York, 2006.

[3] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner and A. Valdes,
Using model-based intrusion detection for SCADA networks, Proceedings
of the SCADA Security Scientific Symposium, 2007.

[4] General Electric Company, Advanced Boiling Water Reactor (ABWR),
Fairfield, Connecticut (www.gepower.com/prod serv/products/nuclear en
ergy/en/new reactors/abwr.htm).

[5] D. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley, Hoboken,
New Jersey, 2000.

[6] International Electrotechnical Commission, IEC 61850-7-410: Communi-
cation Networks and Systems for Power Utility Automation, Part 7-410:
Hydroelectric Power Plants – Communication for Monitoring and Control,
Geneva, Switzerland, 2007.

[7] H. Javitz and A. Valdes, The NIDES Statistical Component Description
and Justification, SRI Project 3131 Annual Report, SRI, Menlo Park, Cal-
ifornia, 1994.

[8] S. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection
Theory, Prentice Hall, Upper Saddle River, New Jersey, 1998.



Rrushi & Kang 165

[9] D. Kleinbaum, L. Kupper, L. Muller and A. Nizam, Applied Regression
Analysis and Multivariable Methods, Duxbury Press, Pacific Grove, Cali-
fornia, 2007.

[10] J. Larsen, SCADA security, presented at Blackhat DC, 2008.

[11] E. Lehmann and G. Casella, Theory of Point Estimation, Springer, New
York, 2003.

[12] J. Marcum, A statistical theory of target detection by pulsed radar, IRE
Transactions on Information Theory, vol. 6(2), pp. 59–267, 1960.

[13] Modbus IDA, MODBUS Application Protocol Specification v1.1a, North
Grafton, Massachusetts (www.modbus.org/specs.php), 2004.

[14] M. Naedele and O. Biderbost, Human-assisted intrusion detection for pro-
cess control systems, Proceedings of the Second International Conference
on Applied Cryptography and Network Security, pp. 216–225, 2004.

[15] E. Naess, D. Frincke, A. McKinnon and D. Bakken, Configurable
middleware-level intrusion detection for embedded systems, Proceedings of
the Second International Workshop on Security in Distributed Computing
Systems, vol. 2, pp. 144–151, 2005.

[16] D. Nicol and P. Heidelberger, Parallel execution for serial simulators, ACM
Transactions on Modeling and Computer Simulation, vol. 6(3), pp. 210–
242, 1996.

[17] J. Rrushi and R. Campbell, An intrusion detection system for operation in
nuclear power plants, presented at the Fourth ITI Workshop on Depend-
ability and Security, 2007.

[18] J. Rrushi and R. Campbell, Using deception to facilitate intrusion de-
tection in nuclear power plants, Proceedings of the Third International
Conference on Information Warfare and Security, 2008.

[19] J. Rrushi and K. Kang, Mirage theory: A deception approach to intrusion
detection in process control networks, Proceedings of the NATO Sympo-
sium on Information Assurance for Emerging and Future Military Systems,
2008.

[20] K. Stouffer, J. Falco and K. Scarfone, Guide to Industrial Control Systems
(ICS) Security, Special Publication 800-82, Final Public Draft, National
Institute of Standards and Technology, Gaithersburg, Maryland, 2008.

[21] U.S. Department of Energy, DoE Fundamentals: Handbook of Nuclear
Physics and Reactor Theory, DOE-HDBK-1019/1-93, Washington, DC,
1993.

[22] C. Wuollet, A. Romanenko, H. Jack, J. Baum, J. Orozco and M. de Sousa,
MatPLC (mat.sourceforge.net), 2006.


