
Chapter 9

AN ONTOLOGY FOR IDENTIFYING
CYBER INTRUSION INDUCED FAULTS
IN PROCESS CONTROL SYSTEMS

Jeffrey Hieb, James Graham and Jian Guan

Abstract This paper presents an ontological framework that permits formal repre-
sentations of process control systems, including elements of the process
being controlled and the control system itself. A fault diagnosis algo-
rithm based on the ontological model is also presented. The algorithm
can identify traditional process elements as well as control system ele-
ments (e.g., IP network and SCADA protocol) as fault sources. When
these elements are identified as a likely fault source, the possibility exists
that the process fault is induced by a cyber intrusion. A laboratory-
scale distillation column is used to illustrate the model and the algo-
rithm. Coupled with a well-defined statistical process model, this fault
diagnosis approach provides cyber security enhanced fault diagnosis in-
formation to plant operators and can help identify that a cyber attack
is underway before a major process failure is experienced.

Keywords: Process control systems, security, conceptual modeling, ontology

1. Introduction

Process control systems play a central role in the operation and manage-
ment of many critical infrastructures, including the electric power grid, water
treatment facilities, and chemical and industrial manufacturing plants. In the
early days, process control systems were isolated and used proprietary, purpose-
built software and hardware. Today, these systems are increasingly connected
using Internet technologies, open or semi-open SCADA protocols, and com-
mercial hardware and software. This environment, coupled with the changing
landscape of telecommunications and computer networks, introduce the cyber
dimension to the security (and safety) of process control systems [1, 10]. While
major disasters have thus far been avoided, the recent penetration of a water
treatment facility in Harrisburg, Pennsylvania [4] and the Idaho National Lab-

126 CRITICAL INFRASTRUCTURE PROTECTION III

oratory experiment involving the destruction of an electrical power generator
[6] indicate that cyber intrusions are a very real threat.

The possibility of cyber intrusions raises several challenges related to control
systems security – understanding and assessing risk, integrating cyber security
in process control operations, and enforcing a security policy across multiple
heterogeneous systems [1, 10]. Another major challenge is fault diagnosis. Fault
diagnosis involves the determination of the cause of an identified process fault or
abnormal process behavior. Traditionally, fault diagnosis has limited its scope
to identifying faulty physical components (e.g., pumps and valves). However,
increased network convergence in process control environments means that the
detected faults (or abnormalities) in a process could be the result of cyber
intrusions instead of component failure.

This paper proposes an ontological model for process control systems. The
model supports the formal and explicit representation of a process control sys-
tem and the process being controlled. A fault diagnosis algorithm is developed
based on the ontological model and statistical process models. The algorithm
reasons about possible and likely fault sources, including sources that indicate
a cyber intrusion. Specifically, it provides cyber security enhanced fault diag-
nosis information to plant operators, alerting them to a possible cyber intrusion
before a process failure is experienced.

The approach is related to the human-assisted intrusion detection technique
for process control systems developed by Naedele and Biderbost [12] in that
it involves plant operators in security activities. Naedele and Biderbost’s ap-
proach provides process control operators with visual information generated
from network-based intrusion detection metrics, enabling operators to trans-
late their native experience with process monitoring to detect “unhealthy con-
ditions” in the network. The ontological model and fault diagnosis algorithm
presented in this paper differ from Naedele and Biderbost’s approach by com-
bining traditional process information and process control system information
in a formal, precise and semantically-rich manner.

2. Ontological Modeling

An ontological model defines a set of constructs and rules for modeling a
specific domain (e.g., the domain of process control systems) at a high level of
abstraction. The model is “an explicit specification of a conceptualization” for
the domain [8] and corresponds to a formal and precise definition (specification)
of the conceptualization [8, 15]. An ontological model of a process control
system allows the sharing of important properties of interconnected control
system elements and their interoperability.

Recent research has identified the lack of a sound, comprehensive, theoret-
ical basis for conceptual modeling [15]. Several ontological theories and, in
particular, Bunge’s ontology [2], have been proposed to provide a theoretical
basis. Meanwhile, research on ontologies and conceptual modeling has focused
on the evaluation of modeling languages and general modeling issues [3, 5, 14,
15]. Efforts have also been directed at domain ontology construction. It is often

Hieb, Graham & Guan 127

Distillation
Column

F
Feed
Flow

L
Level Column Level

F
Base
Flow

F

Steam
Flow

STEAM
Steam Flow Rate

T
Bottom
Temp

T
Top Temp

L
Tank
LevelF

Reflux
Flow

F
Distillate

Flow

Distilate

Distillate Flow

Reflux Valve Postion
Reflux Flow Rate

Condenser

Accumulator Level

Bottom Temperature

Distillate Flow
Valve Position

Steam Valve Postion

Base Flow Rate

Base Valve Position

Master (MTU) and HMI

Top Temperature

Feed Flow Valve Position

Feed Flow Rate

RTU_1

RTU_2

Accumulator

Figure 1. Distillation column system.

impossible to represent even a small part of the world in all its detail. It is more
practical to use a limited, essential and relevant number of concepts to describe
the static and dynamic aspects of a well-defined part of reality. This set of core
concepts forms a conceptualization of that reality. However, such a concep-
tualization is often informal and ambiguous. A domain ontology is a formal
and precise specification of a conceptualization, and is, therefore, concerned
with the identification and definition of the essential (static and dynamic) phe-
nomena of the particular domain [16]. A domain ontology for process control
systems can help create a common conceptual model for what has become a
very heterogeneous mix of technology and systems.

3. Ontological Model for Control Systems

This section presents the constructs used to develop the ontology for pro-
cess control systems. Bunge’s ontological principles [2] form the basis for the
constructs. A process control system can be viewed as an information system,
possibly embedded in a larger information system. Although Bunge’s ontology
was not created for information systems, its ontological principles provide a
sound theoretical framework for modeling information systems [15].

Figure 1 presents a schematic diagram of a laboratory-scale distillation col-
umn and its control system. This distillation column system is used to illustrate
the ontological model and fault diagnosis algorithm.

128 CRITICAL INFRASTRUCTURE PROTECTION III

Table 1. Distillation column components and properties.

No. Component Properties Values

3 Accumulator Level ⟨0 . . . 100⟩

5 Reflux Flow Flow Rate ⟨0 . . . 100⟩
Valve Postiion ⟨0 . . . 100⟩

4 Distillate Flow Rate ⟨0 . . . 100⟩
Flow Valve Position ⟨0 . . . 100⟩

6 Steam Flow Flow Rate ⟨0 . . . 100⟩
Valve Position ⟨0 . . . 100⟩

7 Bottom Flow Flow Rate ⟨0 . . . 100⟩
Valve Position ⟨0 . . . 100⟩

1 Feed Flow Flow Rate ⟨0 . . . 100⟩
Valve Position ⟨0 . . . 100⟩

2 Distillation Top Temp ⟨0 . . . 100⟩
Column Bottom Temp ⟨0 . . . 100⟩

Column Level ⟨0 . . . 100⟩

8 RTU 1 Analog Input 1 ⟨0 . . . 100⟩
Analog Input 2 ⟨0 . . . 100⟩
Analog Output 1 ⟨0 . . . 100⟩
Analog Output 2 ⟨0 . . . 100⟩
Digital Input 1 ⟨0 . . . 100⟩
Digital Output 1 ⟨0 . . . 100⟩
Digital Input 2 ⟨0 . . . 100⟩
Digital Output 2 ⟨0 . . . 100⟩

According to Bunge, the world is made up of substantial individuals or
things. Each substantial individual has properties and each property has at
least one attribute. Therefore, a process control system can be modeled as a
collection of components, each component defined as X = (x, p(x)) where x is
the component and p(x) denotes the properties of x. A component can be a
control system element (e.g., master device, field device or RTU), a conceptual
element (e.g., IP network or LAN) that connects control devices, or a SCADA
protocol that facilitates communication between devices. Also, a component
can be a concept related to the “system under control” (e.g., a flow, temperature
or state of a circuit breaker).

Tables 1 and 2 list the components and properties of the distillation column
system. The properties of some components (e.g., MTU/HMI) may depend
more heavily on the specific system being modeled than others; in such cases,
the appropriate properties should be readily identifiable for a given system.

Each component is characterized by a set of state functions, where each state
function corresponds to a property of the component. Let X be a component

Hieb, Graham & Guan 129

Table 2. Distillation column components and properties (cont’d.).

No. Component Properties Values

9 RTU 2 Analog Input 1 ⟨0 . . . 100⟩
Analog Input 2 ⟨0 . . . 100⟩
Analog Output 1 ⟨0 . . . 100⟩
Analog Output 2 ⟨0 . . . 100⟩
Digital Input 1 ⟨0 . . . 100⟩
Digital Output 1 ⟨0 . . . 100⟩
Digital Input 2 ⟨0 . . . 100⟩
Digital Output 2 ⟨0 . . . 100⟩

10 IP-Network Source Address {192.168.1.2, 3, 5, 7}
Destination Address {192.168.1.2, 3, 5, 7}

11 DNP3 Link Source {0x02, 0x03, 0x05}
Link Destination {0x02, 0x03, 0x05}
Link Direction {0, 1}
Link Function {0x02, 0x03, 0x05}
App Control {0x02, 0x03, 0x05}
App Function Code {0x02, 0x03, 0x05}

12 MTU/HMI Refresh Rate ⟨0 . . . 100⟩
User Role {Operator, Engineer,

Tuner, Sys Admin}

of a control system. Then, X can be modeled by the functional schema Xm =
⟨M, F̃ ⟩, where each part of the function F̃ = ⟨F1, . . . , Fn⟩ : M −→ V1 ⊗
· · · ⊗ Vn represents a property of X . In this case, M represents the domain
of time instances. Fi (1..n) denotes the ith state function of X , F̃ is the total
state function of X , and S(X) = ⟨pi, . . . , pn⟩ ∈ V1 ⊗ · · ·⊗ Vn|pi = Fi(M) is the
possible state space of X . Note that the state space of the component Reflux
Flow contains all possible combinations of the values of the properties Flow
Rate and Valve Position.

Lawful states describe the normal operation of a component; this constrains
the values that the properties of a component may take. This construct permits
the model to capture and express valid combinations of property values. For
example, the DNP3 link layer direction bit (indicating whether a master or
outstation sent a particular frame) could be combined with known information
about the DNP3 address of the master or outstation, and expressed using laws.

Let SL(X) ⊆ S(X) be the lawful state space of a component X and let
GL(X) be the set of lawful transformations. Then, a lawful event in X is the
ordered pair ⟨s, s⟩ where s, s′ ∈ SL(X) and s′ = g(s), g ∈ GL(X). For example,
for the Distillation Column component, a lawful event resulting from the Feed
Flow valve being opened might be: (⟨90, 190, 70⟩, ⟨85, 150, 88⟩).

130 CRITICAL INFRASTRUCTURE PROTECTION III

Obviously, an event in one component can affect or act on another compo-
nent. This relationship is referred to as “coupling,” which is defined in terms
of the “histories” of the coupled components. The history of a component is
simply the set of states that the component has held over time. Let X be a
component modeled by a function schema XM = ⟨M, F̃ ⟩ and let t ∈ M, t > 0 be
a time instant. Then, a history of X is the set of ordered pairs: h(x) = ⟨t, F̃ (t)⟩
that can be written as h(X) = ⟨t, (p1(t), . . . , pn(t))⟩. For example the history
of the Distillation Column component for two time instances t0 and t1 can be
expressed as: h(Distillation Column) = ⟨t0, (90, 190, 100)⟩, ⟨t1, (85, 150, 200)⟩.

The history notion is used to define when two or more elements interact.
A component X acts on component Y if their histories are not independent;
this is denoted by X ◃ Y if h(Y |X) ̸= h(Y). Two components X and Y are
coupled (written as B(X, Y)) if (X ◃ Y) ∨ (Y ◃ X). For example, Feed Flow
and Distillation Column are coupled because a change in Feed Flow affects the
bottom temperature property (Bottom Temp) of Distillation Column.

4. Fault Diagnosis

Fault diagnosis seeks to identify the components that have led to a failure in
a process control system or part of a process control system. Diagnosing a fault
presents a challenge because it is often the case that when a system fails, the
components where the failures are observed are not the failure sources, but the
victims of faults that have propagated from other parts of the system [9, 13].
The problem is further complicated by the cyber component of process control
systems. A cyber intrusion could cause a fault on its own, requiring plant
operators to consider if the fault had a conventional source or was the result of
a cyber event. Note that process faults are not necessarily catastrophic; more
often than not they simply give rise to abnormal process behavior.

Identifying the source of an observed abnormality helps operators quickly
isolate and fix the fault source. In the case of faults induced by a cyber intru-
sion, identifying that the faults have a common ancestor component that can
be targeted by a cyber intrusion could warn operators that a cyber attack may
be underway. Thus, operators have more time to react to the problem and,
hopefully, direct their efforts appropriately.

Before specifying the fault diagnosis algorithm, we provide some terminology
related to fault diagnosis and briefly describe the fault diagnosis process [7].

Process Fault: This manifests itself as a difference between the observed
behavior and the desired behavior of a process.

Fault Detection: This involves the determination that abnormal be-
havior has occurred.

Fault Isolation/Diagnosis: This involves the determination of the
cause of a fault.

Fault Recovery: This involves the restoration of the system to its proper
operating state.

Hieb, Graham & Guan 131

Feed Flow
1

Bottoms Flow
7

Distillation Column
2

Steam Flow
6

Accumulator
3

Distillate Flow
4

Reflux Flow
5

RTU_1
8

RTU_2
9

IP_NETWORK
10

MTU
12

DNP3 Communication
11

Figure 2. Digraph representation of the distillation column system.

Process Monitoring: This involves the observation of process activity
to detect faults and other abnormalities.

Faults must be detected before they can be diagnosed. Every process system
has process variables. Manipulated variables are used to control the process;
observed variables indicate the status of the process. A mathematical model of
the process may be constructed using data gathered from the running system.
After the mathematical model is constructed, the values of the current process
variables can be compared with the model (process monitoring). Any deviation
is considered to be a process fault (fault detection). Readers are referred to
[7, 11] for a comprehensive discussion of process monitoring and fault detection.

The ontological constructs defined in the previous section allow the precise
and formal representation of key aspects of a process control system. We now
demonstrate the utility of the ontological model in fault diagnosis by adapting
the Guan-Graham fault diagnosis algorithm [9] to the ontological model for
diagnosing faults in a control system.

Let C = {X1, . . . , Xn} be the set of components in a control system. Then,
an impact relation R can be defined on C such that XiRXj means that com-
ponent Xi acts on component Xj , i.e., Xi ◃Xj . An impact digraph G = (V, E)
is then used to represent this relation where V = {Xi|Xi ∈ C} is the vertex
set and E = {(Xi, Xj)|Xi ◃ Xj and i ̸= j} is the edge set. Figure 2 shows the
diagraph G for the distillation column example.

Let A = (aij) be the adjacency matrix representing the impact digraph such
that aij = 1 if (Xi, Xj) ∈ R and aij = 0 if (Xi, Xj) /∈ R. If there is a path

132 CRITICAL INFRASTRUCTURE PROTECTION III

in G from Xi to Xj , Xj is said to be reachable from Xi. For completeness,
every vertex in G is defined to be reachable from itself by a path of length 0.
As defined above, reachability is transitive. For convenience, the components
in the distillation column example are numbered from 1 through 12 as shown
in Tables 1 and 2.

The history h(X) for each component can be obtained from data gathered
when the system is operating and can be used to develop the impact relation
R. For the laboratory-scale distillation column system, the impact relation R
is based on input from operators familiar with similar distillation columns.

The adjacency matrix A for the laboratory-scale distillation column system
is generated by assigning 1 to every aij if there is an arrow from element i to
element j in G; all the other elements in A are assigned a value of 0. The
reachability matrix P may be defined as P = (A + I)r = (A + I)(r−1) ̸=
(A + I)(r−2) where I is the identity matrix. P can be generated in O(n3)
time using Warshall’s algorithm. The adjacency matrix A and the reachability
matrix P for the digraph in Figure 2 are given by:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

A = 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0

P = 0 1 1 1 0 1 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The reachability matrix can be processed to extract important properties
[9, 13]. Two partitions may be defined on the reachability matrix P , the level

Hieb, Graham & Guan 133

Accumulator
3

Level 1

Distillation Column
2

Distillate Flow
4

Level 2

Feed Flow
1

Bottoms Flow
7

Steam Flow
6

Reflux Flow
5 Level 3

RTU_1
8

RTU_2
9 Level 4

IP_NETWORK
10

DNP3 Communication
11

Level 5

MTU
12

Level 6

Figure 3. Level partitions for the distillation column.

partition and the separate parts partition. We define the reachability set R(pi)
as the set of vertices reachable from pi, and the antecedent set A(pi) as the
set of vertices that reach pi. Then, the level partition L(P) is defined as
L(P) = [L1, L2, . . . , Ll] where l is the number of levels. If the 0th level is
defined as the empty set, the level partitions of P , L0 = ⊘, can be found
iteratively as follows:

Lj = {pi ∈ P − L0 − L1 − · · ·− Lj−1 | Rj−1(pi) = Rj−1(pi) ∩ Aj−1(pi)}

where j = 1..l and i = 1..n.
The levels have three properties: (i) ∪Li = V for i = 1..l, (ii) Li ∩ Lj = ⊘

for i ̸= j, and (iii) edges leaving vertices in level Li can only go to ver-
tices in levels Lj such that i ≤ j. Therefore, there are six levels for the
distillation column example and the corresponding level partitions are: L =
(3), (2, 4), (1, 5, 6, 7), (8, 9), (10, 11), (12) (Figure 3).

134 CRITICAL INFRASTRUCTURE PROTECTION III

It is possible that some of the components of P constitute a smaller digraph
that is separate (i.e., disjoint) from the remainder of the digraph. The separate
parts partition is used to identify any disjoint parts of the process control
system. A set of bottom-level components is required to define the separate
parts partition.

B is a set of bottom-level components if and only if for all pi ∈ B, A(pi) =
R(pi) ∩ A(pi). Given the reachability matrix P for a process control system, a
separate parts partition S(P) is defined as S(P) = [D1; D2 . . . ; Dm] where m
is the number of disjoint digraphs in the digraph represented by A.

In order to find S(P), the set of bottom-level components B is found as
B = pi ∈ P |R(pi) ∩ A(pi) and two elements pi, pj ∈ B are placed in the same
block if and only if R(pi) ∩ R(pj) ̸= ⊘. Once the components of B have been
assigned to blocks, the remaining components of the reachability sets for each
block are appended to the block.

The diagnostic process begins with the computation of the reachability ma-
trix and the partitions described above. Let F be the set of components in
which a fault has been identified. Adhering strictly to the ontological model, a
component has a fault if it is in an unlawful state.

If the ontological model is used to model the system in real time, then an
unlawful event indicates that there is at least one component in an unlawful
state and these components would be added to F . Since some of the ontological
elements have process variables as their properties, a statistical model of process
variables can be used to partition S(X) into lawful and unlawful state spaces
SL(X) and (SL(X), respectively.

Process variable values can be monitored and unlawful events can be easily
detected, at least for components that have process variables as their properties.
This is similar to the methods described in [7, 11]. The important difference is
linking the information to the ontological model, which includes elements that
are not in a purely statistical process model. Using this approach, it is not
possible to detect all the faulty components in the ontological model because
not all components have process variables as properties. Fortunately, this does
not prevent the fault source search algorithm (Algorithm 1) from identifying
these components as potential fault sources. Approaches for detecting faults in
other components are discussed later in this paper.

After the faulty components have been identified, the fault source search
algorithm can be used to identify candidate fault sources to be sequentially
tested by process operators. The algorithm uses the directed graph G, level
partition of G and separate parts partition of G to find the common ancestors
of abnormal components and checks the ancestors that are farthest upstream
first.

The algorithm starts with all potential error sources. These potential fault
sources are the ancestors of the set of components F observed to have failed.
According to Step 2, the algorithm terminates when the number of fault source
candidates has been reduced to one. If there is more than one ancestor for
all the observed faulty components, the testing begins with the ancestor(s)

Hieb, Graham & Guan 135

Algorithm 1 : Fault Source Search Algorithm (adapted from [9]).

Compute the reachability matrix P of G.
Compute the level partition of G.
Compute the separate parts partition of G.

1. Find the set of potential error sources Q where Q = ∩P (xi) for xi ∈ F .

2. If |Q| = 1, then return Q as the error source.

3. If |Q| = 0 or the number of disjoint graphs > 1, multiple sources of error exist.
Apply the algorithm to each disjoint digraph that contains at least one observed
error.

4. Let Σ = {v|v ∈ Q ∧ level(v) = min{level(vi) ∀vi ∈ Q}}.
5. If |Σ| = 1 and A(v) = ⊘ for v ∈ Σ, then Q = Σ and return Q.

6. If |Σ| = 1, then Σ = {immediate ancestor(v)|v ∈ Σ} and Q = Q − Σ; Go to
Step 3.

7. Select a node q ∈ Σ and test the component represented by q.

8. If q is normal, then Σ = Σ − {q} and F = F − {q}.

9. F = F ∪ {q}; Go to Step 1.

closest to the observed faulty components or ancestors with the lowest level
in the level partition (Step 4). The algorithm also terminates if it reaches a
component without any ancestor; in this case, the component is returned as
the fault source (Step 5). Steps 6 through 9 attempt to reduce the candidate
set Q. Step 7 could be improved by using a heuristic method to decide which
component should be tested next.

Past experience often plays a role in determining the likely paths along
which faults propagate. This could be included in the model by defining error
propagation probabilities for each edge in G. For any component X , an error
may have propagated to the component from any of the upstream components
(ancestors of X). In some cases, there may be several immediate ancestors of
X and the fault could have propagated from any of these ancestors or any of
the error propagation paths headed by these ancestors. Obviously, for a given
component, a fault is more likely to propagate from some of its ancestors instead
of other components. This information can be captured using a propagation
probability and added to the digraph G by associating with each edge the
probability pij that a fault will propagate from Xi to Xj . The probability values
may be obtained from experienced operators. If the information is not available,
equal probability values may be assigned to each pij and the probability for
pij can be gradually acquired through use of the system [9]. For each element

Xj , pij is defined such that
∑2

i=1 pij = 1 where n is the in-degree of the vertex
corresponding to the component Xj . For example, Figure 4 shows a simple node
Xj that has three nodes that could propagate an error to it. The propagation
probabilities are used in Step 7 to determine which component to test.

136 CRITICAL INFRASTRUCTURE PROTECTION III

X1 X2 X3

Xj

P1 j=0.2
P2,j=0.3

P3,j=0.5,

Figure 4. Fault propagation probability.

The benefits of combining the ontological model with the fault diagnosis al-
gorithm can be clarified using a simple example. Consider a situation where the
distillate flow valve is stuck. Process monitoring combined with the ontologi-
cal model identifies two nodes (Accumulator and Distillate Flow) as entering
unlawful states. The fault diagnosis algorithm would identify Distillate Flow
as the first component to test, followed by Accumulator.

Now consider a more challenging situation. A hacker penetrates the corpo-
rate network and discovers a path through the control gateway that enables him
to inject SCADA traffic into the control network. The hacker has no knowledge
of the distillation column system, but is able to discover that DNP3 traffic is
flowing in the network. To disrupt the process, the hacker injects DNP3 traffic
into the control network using different link layer addresses, random sequence
numbers and the Direct Operate function code to set Analog Outputs 1, 2 and
3 to their largest possible values (100%). As a result, the reflux flow valve pe-
riodically opens to 100% before returning to the target valve position setting,
and the steam flow valve periodically opens to 100% and then returns to the
target steam valve position setting. This causes the steam flow and reflux flow
to become elevated and the bottom temperature to increase, all of which could
cause the distillation column to flood. The process monitoring system indicates
that Elements 2, 6 and 5 enter unlawful states. The fault diagnosis algorithm
identifies the Elements 10 and 11 (IP Network and DNP3) as the elements to
test first. While these elements may not be testable in the same way as a flow
valve, the algorithm alerts operators that the process faults may be (in this case
are) induced by cyber intrusions, enabling them to take appropriate actions.

5. Conclusions

Plant operators need sophisticated models for understanding and reasoning
about possible cyber intrusions in process control systems. The ontological
model described in this paper permits formal and explicit representations of
process control systems, including elements of the process being controlled and
the process control system itself. The benefits of the ontological model are
made apparent by the fault diagnosis algorithm developed using the model. In

Hieb, Graham & Guan 137

particular, the fault diagnosis algorithm leverages the ontological model to fuse
cyber security relevant components with traditional process control elements
to provide plant operators with valuable synthesized information related to
process operation and potential cyber intrusions.

Because faults are manifested by anomalous behavior, the fault diagnosis al-
gorithm can be viewed as an anomaly-based intrusion detection system. How-
ever, instead of looking for traditional IT anomalies, this intrusion detection
system identifies process anomalies and maps them to a traditional fault source
or a control system element subject to cyber intrusions.

Several avenues exist for further research. Fault detection is currently limited
to process variables. However, the algorithm can be extended because the
ontological model is broad enough to include elements that do not have process
variables as properties. Another research task is to explore the possibility of
extending process monitoring to process control monitoring by adding inputs
from traditional IT security appliances such as firewalls and network intrusion
detection systems. The ontological model could then be used to aggregate and
interpret the heterogeneous information, all of which is relevant to the security
(and safety) of a process control system. Finally, it would be interesting to
explore the use of forward propagation instead of backward propagation to
identify the impact of a cyber intrusion on a specific process control element
such as an RTU. This information would be invaluable to risk assessment and
risk management efforts.

References

[1] M. Brandle and M. Naedele, Security for process control systems: An
overview, IEEE Security and Privacy, vol. 6(6), pp. 24–29, 2008.

[2] M. Bunge, Ontology I: The Furniture of the World; Treatise on Basic
Philosophy (Volume 3), Reidel, Boston, Massachusetts, 1977.

[3] A. Burton-Jones and P. Meso, Conceptualizing systems for understanding:
An empirical test of decomposition principles in object-oriented analysis,
Information Systems Research, vol. 17(1), pp. 38–60, 2006.

[4] R. Esposito, Hackers penetrate water system computers, ABC News, New
York (blogs.abcnews.com/theblotter/2006/10/hackers penetra.html), Oc-
tober 30, 2006.

[5] J. Evermann and Y. Wand, Toward formalizing domain modeling seman-
tics in language syntax, IEEE Transactions on Software Engineering, vol.
31(1), pp. 21–37, 2005.

[6] M. Fickes, Cyber terror, Government Security, July 1, 2008.

[7] J. Graham and P. Ralston, Intelligent computer-based monitoring and
fault isolation for industrial processes, International Journal of Computers
and Their Applications, vol. 9(3), pp. 147–157, 2002.

[8] T. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition, vol. 5(2), pp. 199–220, 1993.

138 CRITICAL INFRASTRUCTURE PROTECTION III

[9] J. Guan and J. Graham, Diagnostic reasoning with fault propagation di-
graph and sequential testing, IEEE Transactions on Systems, Man and
Cybernetics, vol. 24(10), pp. 1552–1558, 1994.

[10] V. Igure, S. Laughter and R. Williams, Security issues in SCADA networks,
Computers and Security, vol. 25(7), pp. 498–506, 2006.

[11] R. Isermann, Supervision, fault-detection and fault-diagnosis methods –
An introduction, Control Engineering Practice, vol. 5(5), pp. 639–652,
1997.

[12] M. Naedele and O. Biderbost, Human-assisted intrusion detection for pro-
cess control systems, Proceedings of the Second International Conference
on Applied Cryptography and Network Security, pp. 216–225, 2004.

[13] N. Narayanan and N. Viswanadham, A methodology for knowledge acqui-
sition and reasoning in failure analysis of systems, IEEE Transactions on
Systems, Man and Cybernetics, vol. 17(2), pp. 274–288, 1987.

[14] A. Opdahl and B. Henderson-Sellers, Ontological evaluation of the UML
using the Bunge-Wand-Weber model, Software and Systems Modeling, vol.
1(1), pp. 43–67, 2002.

[15] Y. Wand and R. Weber, An ontological model of an information system,
IEEE Transactions on Software Engineering, vol. 16(11), pp. 1282–1292,
1990.

[16] Y. Wand and R. Weber, Research commentary: Information systems and
conceptual modeling – A research agenda, Information Systems Research,
vol. 13(4), pp. 363–376, 2002.

