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Abstract  Pipeline control systems often incorporate thousands of widely dispersed
sensors and actuators, many of them in remote locations. Information
about the operational aspects (functionality) and integrity (state) of
these field devices is critical because they perform vital measurement
and control functions.

This paper describes a distributed scanner for remotely verifying the
functionality and state of field devices in Modbus networks. The scan-
ner is designed for the Modbus protocol and, therefore, accommodates
the delicate TCP/IP stacks of field devices. Furthermore, field device
scanning and data storage and retrieval operations are scheduled so as
not to impact normal pipeline control operations. Experimental results
and simulations demonstrate that the distributed scanner is scalable,
distributable and operates satisfactorily in low bandwidth networks.
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1. Introduction

The oil and gas industry primarily uses distributed control systems imple-
menting the Modbus protocol [6-8] for midstream and transport activities in
pipeline operations. A typical midstream application may have 10,000 or more
field devices dispersed over several thousand square miles, including offshore
platforms and remote wells. On the other hand, a transport application may
have 1,000 field devices located at various points along a 3,000 mile pipeline.
Many of these devices are sensors that measure key process parameters such as
pressure, temperature, flow and hydrogen sulfide content. Other field devices
are actuators that perform various pipeline control actions.

Pipeline operators need accurate and timely information about the status
and integrity of field devices [4, 5]. Operational and business decisions are
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adversely affected when large numbers of field devices are non-operational or
corrupted; such a situation could also lead to an industrial accident. Most
energy companies employ technicians whose only job is to travel to distant
sites to verify the condition of field devices and service them. Field devices
may be audited once a month, often just once a quarter.

This paper describes the design and implementation of a distributed scanner
that remotely verifies the functionality and state of field devices in Modbus net-
works. The scanner accommodates the delicate TCP /IP stacks of field devices
and scanning activities can be scheduled to minimize the impact on control
operations. Tests on laboratory-scale and virtual environments indicate that
the distributed scanner is scalable, distributable and operates satisfactorily in
low bandwidth environments. These features make it an attractive tool for
providing situational awareness in pipeline control networks, including those
incorporating legacy systems.

2. Modbus Protocol

The Modbus protocol is widely used in the oil and gas sector, especially for
controlling natural gas and liquids pipelines. The original Modbus protocol [6]
was designed in 1979 for serial communications between the control center (mas-
ter unit) and field devices (slaves). The Modbus TCP protocol [7], which was
published in 1999, extends its serial counterpart for use in IP-interconnected
networks. The extended protocol enables a master to have multiple outstanding
transactions, and a slave to engage in concurrent communications with multiple
masters.

2.1 Modbus Serial Protocol

Modbus implements a strict request/response messaging system between a
master unit and slave devices. The master uses unicast or broadcast messages
to communicate with slave devices. In a unicast transaction, the master sends a
request to a single slave device and waits for a response message from the slave.
If a response message is not returned, the master assumes that the request has
failed. In a broadcast transaction, the master sends a request to all the slave
devices in the network; the slaves perform the requested action but do not send
response messages to the master.

A Modbus message has three parts (Figure 1). The first is a header, which
includes the slave’s address and control information for the slave. The second
part contains a protocol data unit (PDU), which specifies an application-level
operation. PDUs have two fields: a function code describing the purpose of the
message and function parameters associated with the request or reply aspect
of the message. The third part of a Modbus message is used for error-checking.

The maximum length of a Modbus message is 256 bytes. The slave address
and function code fields use one byte each and the error checking field uses two
bytes; this leaves 252 bytes for the function parameters.
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Figure 1. Modbus Serial message format.

Function codes are used by the master to perform diagnostic operations,
configure slaves, perform control operations or obtain process data. Three
types of function codes are defined in the Modbus protocol: public, user-defined
and reserved codes. Public codes in the ranges [1, 64], [73, 99] and [111, 127]
correspond to functions documented in the Modbus specification. Because there
is no minimum set of function codes that is required to be implemented, vendors
incorporate function codes in their products as needed. User-defined function
codes in the ranges [65, 72] and [100, 110] are designated for vendors who wish
to implement specialized functions. Reserved codes are used to support legacy
systems; they overlap with public codes but cannot be used in new Modbus
implementations.

Function codes in the [128, 255] range are used to denote error conditions.
Specifically, if an error condition occurs for a function code z € [0, 127] in a
request from a master to a slave, the corresponding error function code in the
slave’s response message is given by y = x + 128. Details about the error
are indicated using an exception response in the data field of the message.
Nine exception codes are specified: 1..6, 8 and 10..11. The exception codes
1..3 are useful when implementing Modbus network scanners. These codes are
generated during the pre-processing of Modbus requests, i.e., before any action
is taken by a slave to execute the master’s request. Thus, malformed messages
may be used by a Modbus scanner to obtain information about slave devices
without affecting their state.

Table 1. Modbus memory table types.

Name Data Size Usage

Discrete Input 1 bit Read-Only; Digital Input
Coil 1 bit Read-Write; Digital Output
Input Register 16 bits Read-Only; Analog Input

Holding Register 16 bits Read-Write; Analog Output

Modbus devices store data in four types of tables: discrete inputs, coils, input
registers and holding registers (Table 1). The maximum memory available for
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Figure 2. Modbus TCP message format.

each table type is 65,536 addressable items. A device may implement the tables
using separate or overlapping memory spaces.

2.2 Modbus TCP Protocol

Modbus TCP extends the serial version of the protocol by wrapping messages
with TCP/IP headers. A master is defined as a “client” because it initiates a
TCP connection while a slave device is a “server” that passively listens for a
connection on port 502 (or other optional ports). The client and server roles
cannot be changed after a TCP connection is established. However, a Modbus
device can establish a new connection in which it may assume a different role.

A Modbus TCP message uses the Modbus application protocol (MBAP)
header instead of the serial message header (Figure 2). The MBAP has four
fields: transaction identifier (2 bytes), protocol identifier (2 bytes), length (2
bytes) and unit identifier (1 byte). Since the MBAP takes up seven bytes, the
maximum size of a Modbus TCP packet is 260 bytes. This length restriction
arises from legacy implementations of the serial protocol.

The transaction identifier uniquely marks each transaction to permit the
matching of paired request and reply messages. The protocol identifier specifies
the protocol used for the message (this is set to zero corresponding to the
protocol identifier for Modbus). The length field gives the size of the remaining
portion of the Modbus message, which includes the unit identifier and the PDU.
The unit identifier is used for addressing a slave located behind a gateway
that bridges an IP network and a legacy serial network. The PDU is largely
unchanged from the serial version. It incorporates the function code and data
fields; however, error-checking is provided by the TCP layer.

3. Distributed Modbus Network Scanner

The distributed Modbus network scanner is designed to gather information
about the functionality and state of field devices. It consists of a master scan-
ner, remote sensors and a database, which stores data gathered during network
scanning for further processing and applications support [10]. The master scan-
ner controls the remote sensors that perform passive and/or active scans of local
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Table 2. Remote sensor actions.

Commands Action

Configure Network Interface  Set network interface for listening to traffic

Configure Database Set IP address, user name and password for
accessing database

Start Passive Scanning Open network interface; Process traffic

Stop Passive Scanning Flush queue of packets; Close network interface

Start Active Scanning Retrieve assigned records; Begin scanning

Stop Active Scanning Finish current scan; Close connections

networks. In addition, the master scanner may passively or actively scan its
own network.

3.1 Master Scanner

The master scanner controls remote sensors, schedules active scans, examines
the network topology and reviews device records. These actions rely heavily
on a relational database, which is ideally located on the same host or subnet
as the master scanner.

The master scanner constantly listens for connections from remote sensors.
After establishing a connection with a sensor, the master scanner sends com-
mands to initiate passive or active scans or to update sensor configuration.

3.2 Remote Sensors

Remote sensors deployed at field sites serve as collectors and filters of Mod-
bus messages. Upon receiving the appropriate command from the master scan-
ner, a remote sensor may configure its network interface or database connection,
start/stop passive scanning or start/stop active scanning. Table 2 summarizes
the actions performed by remote sensors upon receiving commands from the
master scanner.

3.3 Database

A relational database is used to maintain data gathered by the master scan-
ner and remote sensors, and to store system status information. The database
contains tables that model field devices, and store data about device finger-
prints and the status of active scans.

Three tables are used to hold information about Modbus field devices. The
primary table, Modbus Device, stores identifying information about Modbus
devices. The other two tables, Function Codes and Memory Contents, hold
information about the functionality and state of field devices. In particular,
Function Codes maintains records of the implemented function codes and
Memory Contents stores the memory maps of field devices.
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The Device Fingerprint table stores known fingerprints, including the com-
ponents that define the signature. A device signature is based on the im-
plemented function codes (device functionality) and the memory map (device
state). This data enables the comparison of field devices against known finger-
prints. The comparison is done using SQL commands, which offload processing
from the scanner to the database.

The Active Scan State table stores the scanning status of each field device.
An active scan involves several steps and may be performed over several days
to conserve network bandwidth. The Active Scan State table provides infor-
mation about the progress of a scan and enables scanning to resume in the
event of sensor interruption or failure.

4. Modbus Network Scanning

This section describes the passive and active scanning modes used by the
distributed scanner to collect and store information about Modbus devices.

4.1 Passive Scanning

Passive scanning uses a packet parser to examine the contents of Modbus
messages. Messages are analyzed to determine the identity of the master unit
and field devices involved in transactions, and message PDUs are parsed to
discover the state of field devices. Note that traffic generated by the active
scanning process (described in Section 4.2) is ignored to prevent the scanning
process from being designated as a master unit in the database. All the in-
formation gathered is stored in the database tables described in the previous
section.

Eventually, passive scanning discovers all the active devices in a Modbus
network. The database is updated only when a network packet contains new
information. Nevertheless, information retrieval and database updates consume
significant network bandwidth, possibly impacting control system availability.
This problem is alleviated by queuing database updates that involve data trans-
fers exceeding 1 KB per second.

4.2 Active Scanning

Active scanning determines the functionality and state of devices in a Mod-
bus network. In addition, it discovers inactive and disabled devices.

The active scanning algorithm exploits the Modbus protocol to safely de-
termine if function codes are implemented by field devices. In the case of a
function code that implements a read operation, the active scanning process
sends a request message with the function code; a valid response from the ad-
dressed device implies that the function code is implemented by the device. For
a function code corresponding to a write operation, a special malformed packet
is sent so that a response is received without altering device memory.
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Table 3. Sample Active Scan State data.

Device IP Unit Next Next Next Scan Time

Address ID Phase Number Between

192.168.30.1 1 Function 10 2007-03-28 00:05:00
Code 16:40:00

192.168.30.2 3 Coils 0, 32767 2007-03-28 00:09:00
Maximum 11:40:00

A slave device always checks the function code before acting on a Modbus
message [6]. It returns an exception code of 1 if the function code is not
implemented; an exception code of 2 (resp. 3) is returned when the function
code is implemented, but a malformed request with an illegal data address
(resp. illegal data value) was received by the device. The active scanning
process interprets the exception response and updates the corresponding device
record in the database. The function codes implemented by a Modbus device
are determined by systematically querying the device for every function code
in the range [0, 127].

Upon obtaining information about the functionality of a device, the active
scanning process determines the range and size of each memory table in the
device. Read-only requests are used for this purpose and a search is conducted
using the starting and ending addresses to determine the valid addresses in each
memory table. Note that although the Modbus documentation specifies tables
with 65,536 addresses, some devices may not implement such large tables.

Scanning actions are scheduled so as not to interfere with normal operations.
In fact, scanning may be scheduled over several days in the case of a large
Modbus network.

An active scan of a device involves fourteen phases. The first phase tests
whether or not the device implements function codes from 0 to 127. The next
twelve phases determine the minimum, maximum and offset values for each of
the four types of device memory. The final phase tests diagnostic sub-functions
implemented under function code 8.

Table 3 presents two sample entries from the Active Scan State table. The
first entry indicates that the function codes of Device 1 at the IP address
192.168.30.1 are being examined; and function code 10 is the next one to be
tested. The second entry indicates that the maximum value of the coil memory
table of Device 3 at IP address 192.168.30.2 is being identified. The Next
Number field of the table stores the minimum and maximum values of the
memory addresses used in the search. The Next Scan value indicates when the
next scan operation will be performed, and the Time Between value specifies
the interval between successive scan operations.

Our experiments have shown that a complete scan of a device involves an
average of 300 request messages. To reduce bandwidth, consecutive messages
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are sent after a relatively long time interval (e.g., four minutes apart in our
laboratory testbed). The time interval should be increased for networks with
large numbers of field devices.

5. Experimental Results

A major design goal is to ensure that the distributed scanner has minimal im-
pact on normal Modbus network operations. This section evaluates the impact
of the scanner on a laboratory testbed and a virtual environment intended to
model a small-scale industrial environment. Scanner performance is evaluated
with respect to three metrics: scalability, distributability and link utilization.

5.1 Experimental Setup

The distributed Modbus network scanner was evaluated using a laboratory-
scale SCADA testbed as well as a larger virtual environment. The SCADA
testbed incorporated two Allen-Bradley PLCs with Logix 5555 processors [1];
both devices used Prosoft MVI56-MNET Modbus TCP/IP interface modules
for communication [9]. The testbed also incorporated two Direct Logic 205
PLCs with DL260 processors using D2-DCM Ethernet communication modules
2, 3].

The distributed scanner components used with the SCADA testbed were
executed on two computers running Windows XP Service Pack 2. The master
scanner and database were hosted on an Intel Xeon 3 GHz machine with 2 GB
RAM. The remote sensor was hosted on an Intel Pentium IIT 1 GHz machine
with 496 MB RAM.

A virtual experimental facility was created to evaluate the scalability of
the distributed scanner in industrial environments. Figure 3 illustrates the
virtual SCADA environment. Virtual PLCs were created using Jamod Java
libraries [12]. The master and slave devices were located on separate machines;
otherwise, traffic between the master and slaves is transmitted at the operating
system level and is not visible to a scanner. Each group of slaves was placed on
a separate VM Ware guest [11] to ensure that they would only see their network
adapter. Each guest, which was assigned 512 MB RAM, hosted up to 50 slave
devices. The VMWare guests used Windows XP Service Pack 2.

The distributed scanner for the virtual environment incorporated three com-
puters (Table 4). One computer created a virtual router using IMUNES, a
popular network simulator based on Unix FreeBSD [13]. The other two com-
puters, which ran Windows XP Service Pack 2, were configured to communicate
through the virtual router.

The traffic volumes generated during passive and active scanning of the
physical and virtual environments are summarized in Table 5. Passive scan-
ning produces traffic volumes that are within a few hundred bytes for the two
environments. The active scanning results are also similar. The minor dif-
ferences seen for the two environments may be attributed to lost packets and
other network transmission errors. Therefore, it appears that the virtual envi-
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Figure 3. Virtual environment.
Table 4. Virtual environment components.
Host Role Hardware
Computer 1  Master Scanner and Intel Xeon 3 GHz,
Database 2 GB RAM
Computer 2 3 VMWare guests Intel Xeon 3 GHz,
with Remote Sensor, 2 GB RAM
Master and Slaves
Computer 3 IMUNES virtual Pentium III 800 MHz,

router

768 MB RAM

Table 5. Scanning results for the physical and virtual environments.

Subnets Passive Scan Active Scan
KB Sent KB Sent
. 1 15.720 528.191
Physical 2 31.911 1056.350
. 1 15.952 528.511
Virtual 2 31.788 1057.051
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Table 6. Bytes sent during active and passive scanning.

Slave Passive Scan  Active Scan
Devices Traffic (KB) Traffic (KB)

1 15.95 528.51

10 33.23 3674.05

20 52.38 7166.56

30 71.63 10531.38

40 90.82 13928.15

50 107.64 17324.92

Incremental 1.89 342.31

Traffic per Device

ronment closely models the physical environment, and the results of tests on
the virtual environment are applicable to real-world Modbus networks.

5.2 Performance Metrics

The three performance metrics considered in this study were scalability,
distributability and link utilization. The scanner is deemed to be scalable if
the volume of scanning traffic increases linearly with the number of devices
in a subnet. The scanner is distributable if the traffic increases linearly as
the number of subnets grows given that each subnet has the same number of
devices. Link utilization is measured as the fraction of the available bandwidth
used by the scanner, i.e., bytes per second divided by link speed.

Scalability The scalability of the distributed scanner was evaluated using
the virtual environment. Traffic volumes generated during passive and active
scanning were measured for subnets with numbers of devices ranging from 1 to
50.

Table 6 presents the results obtained for passive and active scanning. In both
cases, the traffic volume grows linearly with the number of devices, which shows
that the scanner is scalable. In the case of passive scanning, each additional
device causes an average of 1.89 KB of incremental traffic to be sent from the
remote sensor to the master scanner. For active scanning, each device adds an
average of 342.31 KB of traffic.

Distributability The scanner satisfies the distributability metric when the
volume of traffic it generates grows linearly with the number of subnets. In the
tests, the number of subnets ranged from 1 to 3 and the number of devices per
subnet were 1, 5 and 10.

The results in Tables 7 and 8 show that the traffic volume generated during
passive and active scanning is proportional to the number of subnets. Note
that the relationship holds regardless of the number of devices per subnet.
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Table 7. Traffic generated during passive scanning.

1 Subnet 2 Subnets 3 Subnets
Slaves KB Sent Slaves KB Sent Slaves KB Sent
1 15.952 2 31.788 3 46.992
5 23.817 10 47.320 15 69.645
10 33.360 20 66.140 30 100.930

Table 8. Traffic generated during active scanning.

1 Subnet 2 Subnets 3 Subnets
Slaves KB Sent Slaves KB Sent Slaves KB Sent
1 528.511 2 1057.051 3 1584.456
5 1926.827 10 3855.527 15 5778.640

10 3674.047 20 7347.702 30 11022.781

Link Utilization Link utilization measures the impact of scanner trans-
missions on network bandwidth. In the case of passive scanning, traffic is
generated by three types of events: (i) when the remote sensor establishes a
connection to the master scanner, (ii) when a new device is detected in the
network, and (iii) when the function codes implemented in previously detected
devices are being determined.

Table 9. Link utilization during passive scanning.

Link Speed Connection New Device Update FCs

52 Kbps 25.38% 1.63% 2.54%
128 Kbps 10.31% 0.66% 1.03%
384 Kbps 3.44% 0.22% 0.34%
768 Kbps 1.72% 0.11% 0.17%
1.5 Mbps 0.88% 0.06% 0.09%

10 Mbps 0.13% 0.01% 0.01%

The results in Table 9 show that passive scanning uses only a small fraction
of the available bandwidth after the initial connection phase. Since the initial
connection occurs only during start up, the operator of the distributed scanner
can plan for this situation.

To forestall link flooding, especially during the initial scanning of a network,
the distributed scanner imposes a limit on the number of packets sent per
second. Figure 4 shows a graphic of the number of packets transmitted during



126 CRITICAL INFRASTRUCTURE PROTECTION II

30 T T T T T T T

1 Slave —|3—
%] 10 Slaves —6—
20 Slaves —%¢—
30 Slaves —+— |

20 B

Packets transmitted for all test cases (packets/s)
—
a
T
1

Time (s)

Figure 4. Device discovery with limited transmissions.

passive scanning of a subnet with the number of slaves ranging from 1 to 30.
As expected, there is an initial spike as new devices are detected. However, the
limits imposed on the packet rate soon take effect, helping prevent excessive
link utilization.

Table 10. Link utilization during one active scanning step.

Link Speed % Link Used

52 Kbps 3.32%
128 Kbps 1.35%
384 Kbps 0.45%
768 Kbps 0.22%
1.5 Mbps 0.12%

10 Mbps 0.02%

Unlike passive scanning, the active scanning process executes its scan steps
following a schedule that prevents excessive link utilization. A typical scanning
schedule spreads the active scan over a twenty-four hour period. Measurements
show that a single scan step produces 1,725 bytes of traffic directed at the
master scanner. Table 10 shows link utilization during active scanning with an
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unreasonably high rate of one scan step per second. In fact, active scanning
consumes only 3.32% of the bandwidth even for a slow (52 Kbps) link.

6. Conclusions

Despite the scale, cost and significance of the oil and gas pipeline infrastruc-
ture, asset owners and operators do not currently have the means to remotely
verify the integrity of the thousands of field devices that are vital to pipeline op-
erations. Our distributed scanner addresses this need by remotely conducting
stateful analyses of Modbus devices, verifying their configurations and assessing
their integrity. Tests on a laboratory system and a virtual environment that
models a small-scale industrial facility indicate that the distributed scanner is
scalable, distributable and operates satisfactorily in low bandwidth environ-
ments. Equally important is the fact that the scanner is designed to have
minimal impact on normal pipeline control operations. In particular, the scan-
ner accommodates the delicate TCP/IP stacks of field devices and scanning
activities can be scheduled based on network size and bandwidth.

Our future work will focus on testing the distributed scanner in simulated
moderate-scale and large-scale pipeline control environments. A demonstration
project involving an operating pipeline is also planned. We hope this work
will spur the development of sophisticated situational awareness systems that
provide control center operators with a comprehensive view of network topology
along with detailed information about the configuration, status and integrity
of field devices, communications links and control center software.
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