
Chapter 13

AUTOMATED ASSESSMENT OF
COMPLIANCE WITH SECURITY
BEST PRACTICES

Zahid Anwar and Roy Campbell

Abstract Several standards and best practices have been proposed for critical in-
frastructure protection. However, the scale and complexity of critical
infrastructure assets renders manual compliance checking difficult, if not
impossible. This paper focuses on the automated assessment of secu-
rity compliance of electrical power grid assets. A security model based
on predicate calculus is used to express infrastructure elements (e.g.,
devices, services, protocols, access control implementations) as “facts”
and security standards and best practices as “rules” that specify con-
straints on the facts. A tool chain is applied to automatically generate
the security model from specifications and to check compliance with
standards and best practices. The tool chain also supports the visu-
alization of network topology and security assessment results to reveal
possible points of attack.

Keywords: Security best practices, compliance assessment, first order logic

1. Introduction

The Industrial Security Incident Database (ISID) [4] reveals an alarming
number of attacks on cyber infrastructures, more than half of them originating
from external sites. The electrical power grid is especially vulnerable to attack.
An experimental cyber attack on an electrical power plant generator made
headlines in September 2007 [14]. While the details of the attack have not been
released, it is clear that researchers were able to hack into the SCADA network
and change its configuration to cause significant damage to the generator.

To address security problems, the Federal Energy Regulatory Commission
(FERC) has approved eight cyber security and critical infrastructure protection
standards proposed by NERC [9, 20]. However, there is considerable flexibility

174 CRITICAL INFRASTRUCTURE PROTECTION II

with regard to their implementation. For example, CIP-005 Requirement 4
(R4) states:

“The responsible entity shall perform a cyber vulnerability assessment of
the electronic access points to the electronic security perimeter(s) at least
annually.”

Obviously, there are several ways of securing the electronic perimeter. Two of
the most popular techniques are firewall deployment and access control.

Similarly, CIP-009 Requirement 2 (R2) discusses the security implications
of operating procedures and disaster recovery procedures, their relative order-
ings, timeframes and requirements. While the NERC standards do not discuss
implementation, several entities have published guidelines for implementing se-
curity best practices for SCADA systems [3, 7, 11, 15, 17]. Most of these
guidelines are informal English descriptions of SCADA infrastructure configu-
rations, firewall rules, allowable services and security protocols. Our strategy
is to formalize these best practices and to use them in automated conformance
checking of SCADA network configurations.

We use predicate logic to model SCADA and enterprise networks along with
their security properties. The model creates a comprehensive network depen-
dency graph containing information about physical connections (e.g., links)
and logical connections (e.g., service dependencies). This information is auto-
matically obtained from SCADA specification languages such as the Common
Information Model (CIM) [8]. Best practices modeled as rules defined in terms
of facts are used to determine whether or not the dependency graph satisfies
the security constraints.

2. Related Work

A survey of SCADA security implementations reveals a lack of authentica-
tion mechanisms, limited patch protection and uncontrolled Internet connec-
tions [13]. This situation exposes SCADA systems to a variety of exploits,
including simple SQL injection attacks. However, even when the vulnerabili-
ties of individual components are known, no adequate tools are available for
reasoning about the overall security of a system.

The SINTEF CORAS Project [19] has developed a risk analysis method-
ology that models threats as unwanted system features. The system and its
associated threats are modeled using Unified Modeling Language (UML) di-
agrams that support security risk assessments. An XML schema is available
for communicating risk and vulnerability assessment data in a standardized
format.

Masera and Nai Fovino [12] have proposed a service-oriented architecture
for conducting security assessments. A service-oriented description of a system
(where components and subsystems are interconnected by “service chains”) is
used to identify attacks and reason about the propagation of faults and failures.
Our model is not limited to checking for particular attacks; instead, it allows
for conformance checking against security standards and best practices that
defend against a variety of attacks simultaneously.

Anwar & Campbell 175

Chandia and colleagues [5] have proposed a standards-based security ser-
vices suite that provides security functionality at different levels of the network
infrastructure. Their approach involves message monitoring, protocol-based
solutions, tunneling services, middleware components and cryptographic key
management, along with a network forensic system for analyzing attacks. Our
approach is different in that it involves the static analysis of security confor-
mance of implementations instead of implementing security solutions.

While the use of attack graph models to identify vulnerabilities in large-scale
networks is fairly mature, little work has focused on the automated generation
of these models, especially for cyber infrastructures. Also, few researchers have
investigated the use of dependency graphs for vulnerability assessment and
automated checking against security standards and best practices.

3. Security Model

Our security model captures the static aspects of SCADA systems, includ-
ing network topology, devices, services, connectivity and security properties.
A SCADA system is expressed as a dependency graph G and a set of rules
expressing security standards and best practices.

3.1 Dependency Graph

A dependency graph G is defined as a tuple (D, E, S, V, ST , DT , Sp) where
D is the set of devices, E ⊆ D × D is the set of edges between two physically
connected devices, S is the set of services, V is the set of vulnerabilities, ST

is the set of service types, DT is the set of device types and Sp is the set of
security protocols.

The following functions provide attribute mappings to the various devices
and dependencies:

devof : S → D maps a service to the device that hosts it.
hostedsvs : D → P{S} s.t. devof (S) = D maps a device to the services it
hosts.
defsvs : D → S maps a device to its default service.
depdtsvs : S → P{S} maps a service to the set of services on which it
depends.
trusteddevs : D → P{D} maps a device to a set of trusted devices.
secprots : S → P{Sp} maps a service to a set of security protocols it uses.
typeofsvs : S → stype where stype ∈ ST maps a service to its type.
typeofdvs : D → dtype where dtype ∈ DT maps a device to its type.
knownvuls : stype → P{V } maps a service to its set of known vulnerabil-
ities.
priv : S → privlvl where privlvl ∈ {none ≤ user ≤ root} maps a service
to its privilege level.
exploitability : V → likelihood where likelihood ∈ R (0 ≤ n ≤ 1) maps a
vulnerability to the likelihood it will be exploited.

176 CRITICAL INFRASTRUCTURE PROTECTION II

The dependency graph G is modeled as facts in first order predicate logic.

3.2 Security Standards and Best Practices

Security standards and best practices are expressed as rules whose terms are
constraints on G.

Intranet Services. Services between a process control network (PCN), an
enterprise network (EN) and the Internet should be allowed strictly on a need
basis. IAONA’s template for protocol access in industrial environments states
that incoming DNS, HTTP, FTP, telnet and SMTP traffic to a PCN should be
discouraged unless absolutely required [10].

We express this best practice as:

∀d1 , ∀d2 ∈ D [typeof (d1 ,EN) ∧ typeof (d2 ,PCN) ∧
∀s1 , ∀s2 ∈ S [devof (s1 , d1) ∧ devof (s2 , d2) ∧ depends(s1 , s2)
⇒ s2 ̸∈ {dns , http, ftp, telnet , smtp}]]

with the auxiliary functions:

typeof : ∀d ∈ D , ∀x ∈ DT (typeofdvs(d) = x) ⇒ typeof (d , x)
devof : ∀s ∈ S , ∀d ∈ D(devof (s) == d) ⇒ devof (s , d)
depends : ∀d1 , ∀d2 ∈ D , ∃s1 , ∃s2 ∈ S [devof (s1 , d1) ∧
devof (s2 , d2) ∧ depdtsvs(s1 , s2) ⇒ depends(d1 , d2)].

The rule checks if a service dependency exists from an EN device to a PCN
device, where both devices are in a substation. If a dependency exists, then it
should not be of the type DNS, HTTP, FTP, telnet or SMTP.

Access Control Implementation. The American Gas Association’s
document on cryptographic protection of SCADA communications [1] states
that in a proper access control implementation, a service should provide an
authentication scheme and also use communication protocols that guarantee
confidentiality and integrity.

We express this best practice as:

∀dalice , ∀di , ∀dj , ∀dbob ∈ D [depends(dalice , dbob) ∧
di ∈ path(dalice , dbob) ∧ dj ∈ path(dalice , dbob) ∧ (di , dj) ∈ E
⇒ (secprots(defsvs(di)) ∩ secprots(defsvs(dj))) ̸= ∅ ∧
(keys(dalice) ∩ keys(dbob)) ̸= ∅]

with the auxiliary functions:

path : path(d1 , dk) = d1 , d2 ,dk−1 , dk s.t. ∀1≤i<k−1 (di , di+1 ∈ E)
keys : D → P{K}

where path is a mapping from a pair of devices to the set of paths between
them and keys is a mapping from a device to the set of pre-shared keys it has
with other devices.

Anwar & Campbell 177

Table 1. Firewall architectures.

Type (Rating) Description

Dual-Homed Server
(1)

This design installs two network interface cards on devices
requiring access to both networks, which violates the prin-
ciple of no direct Internet access from the PCN. This con-
figuration was severely affected by the Slammer worm in
January 2003.

Dual-Homed Host
Firewall (2)

The host-based firewall on a dual-homed machine prevents
traffic from traversing the PCN-EN boundary. However,
it offers low granularity with multiple shared servers when
remote PCN management is required.

Packet Filtering
Router (2)

This design uses a Layer 3 switch with basic filters to block
unwanted traffic. It offers limited protection because it is
not stateful and assumes that the EN is highly secure.

Two-Port Dedi-
cated Firewall (3)

This aggressively configured stateful firewall provides con-
siderable security. The shared device is positioned in the
PCN or EN and the firewall is configured with the appro-
priate rules.

Two-Zone Firewall-
Based DMZ (4)

This design positions shared devices in their own DMZs,
which eliminates direct communication between the plant
floor and the EN. Multiple DMZs ensure that only desired
traffic is forwarded between zones. However, compromised
entities in the DMZs may be used as staging points for at-
tacks against PCN devices.

Firewall and
VLAN Design (4.5)

This design partitions PCNs into subnets so that devices
that require little or no communication are placed in sepa-
rate networks and only communicate via Layer 3 switches.

The best practice predicate checks if a service si implements access control,
confidentiality and integrity correctly. It does this by checking if all its depen-
dent services have a common shared-key mechanism. The helper function path
checks if the default service on each pair of devices along the path from the
queried service to the dependent services share common security properties.
Function keys checks if all the dependent services use a pre-shared key.

Firewall Deployment. NISCC’s document on SCADA firewall deploy-
ment [3] states that traffic from an enterprise LAN must be separated from an
industrial control LAN by a firewall. Table 1 presents five firewall architectures
and their security ratings. We express the firewall best practices as:

178 CRITICAL INFRASTRUCTURE PROTECTION II

∀de , ∀dp , ∀ds ∈ D [typeof (de ,EN) ∧ typeof (dp ,PCN) ∧
depends(de , ds) ∧ depends(dp , ds) ∧ (ds ∈ path(de , dp)) ∧
∃sf ∈ S [devof (sf , ds) ∧ typeof (sf ,firewall) ⇒ dualhomedfirewalled]]
∀de , ∀dp , ∀ds ∈ D [typeof (de ,EN) ∧ typeof (dp ,PCN) ∧
depends(de , ds) ∧ depends(dp , ds) ∧
∃df1 , ∃df2 , ∃df3 ∈ D [(df1 ∈ path(de , ds)) ∧ (df2 ∈ path(dp , ds)) ∧
(df3 ∈ path(de , dp)) ∧ typeof (df1 ,firewall) ∧ typeof (df2 ,firewall) ∧
typeof (df3 ,firewall) ⇒ dmz

with the auxiliary predicate:

typeof : ∀s ∈ S , ∀x ∈ ST (typeofsvs(s) = x) ⇒ typeof (s , x).

This predicate identifies the shared network devices (e.g., historians, aggrega-
tors and access points). Servers accessed by dependent services running on
devices in the PCN and EN are characterized as shared. The proper placement
of these devices with respect to firewalls determines the architecture to be used.
The first predicate states that if all the paths between the two dependent PCN
and EN devices pass through the shared device and the shared device is run-
ning a personal firewall service, then a dual-homed host firewall with a security
rating of 2 should be used. The second predicate checks if all possible paths
between PCN and ECN devices dp and de, dp and the shared device ds, and
de and ds pass through firewalls, in which case, the shared device should be
placed in a isolated DMZ with a security rating of 4. Predicates for the other
four firewall architectures are specified along the same lines.

4. Tool Chain Architecture and Implementation

This section discusses the architecture and implementation of the security
assessment tool chain (Figure 1).

4.1 Parsing Specification Files

The dependency graph of the SCADA network is generated from annotated
specifications written in CIM [8] with the help of a parser tool and stored in
a Prolog database. CIM is an object-oriented cyber infrastructure modeling
language developed by EPRI for representing objects encountered in electric
utilities. The objects are represented as classes that have attributes and rela-
tionships (with other classes). The CIM RDF schema, which is documented as
IEC Standard 61970-501, is self-describing because it is based on XML.

CIM RDF classes are mapped to entities in our security model. Figure 2
shows the XML description and the Prolog version of an actuator for a discon-
nect switch (DS3). The XML attributes provide detailed information about
switch functions and the SCADA elements that control it.

The parser begins by identifying the principal entities such as devices, con-
nections and services, and populates their attributes based on the proper-
ties and relationships of CIM objects. Some attributes (e.g., inter-service

Anwar & Campbell 179

Figure 1. Security assessment tool chain.

data dependencies and security protocols used by services) are not covered by
CIM. These attributes are incorporated by parsing the firewall configuration
logs, manually annotating the CIM XML or looking-up a services-to-security-
properties table when a services entity is encountered. Services running on a
device may be determined by running nmap port scans; communicating services
are identified by parsing firewall logs.

Discovering service dependencies from firewall logs is not a new technique.
Several open source tools are available for traffic analysis and network depen-
dency visualization based on firewall logs (e.g., psad [16] and afterglow [18]).

4.2 Predicate Calculus Implementation

The predicate calculus security model is implemented as a form of Horn
Clause Logic using SWI-Prolog (version 5.6). The devices, services, connec-
tivity and dependencies identified by the parser are asserted as Prolog facts.
Table 2 lists the Prolog facts that describe the interconnections and service
dependencies of a sensor, which reports readings to a historian and an ad-
ministrator’s computer through a firewall. The connected predicate shows a
bidirectional link between two devices.

4.3 Rules Implementation

The rules and helper functions were implemented to check for conformance
with best practices. Prolog rules are essentially goals that check for other
subgoals to hold true; subgoals are other rules or primitive facts.

Table 3 summarizes the Prolog implementation of an American Gas Associa-
tion access control best practice. We explain the Prolog listing from the bottom
up. The ck ConformanceTo CIP002-08 rule (Line 32) takes three arguments:

180 CRITICAL INFRASTRUCTURE PROTECTION II

CIM XML Specification

<!-- Describes our Substation Architecture -->
<SubstationArchitecture>
<class name="CIM_LogicalSwitch"
Superclass="CIM_LogicalDevice">
<cim:CIM_LogicalSwitch ID="ActDS3"
cim:type="DisconnectSwitch" cim:State="Closed"
cim:PowerSystemResourceName=

"Disconnect Switch No 3 Actuator"
cim:Manufacturer="General Electric"
cim:Controllerforresource="#DS3">

<class name="CIM_SerialLink" Superclass="CIM_Link">
<cim:CIM_SerialLink ID="SlinkActDS3" cim:source="PLC2"
cim:dest="ActDS3"/> </class>

<class name="CIM_Firmware" Superclass="CIM_Service">
<cim:CIM_Firmware ID="F.wareActDS3"
cim:ver="1.0" cim:type="ModbusSlave"
cim:PowerSystemResourceName=

"Actuator Service for ActDS3"
cim:secprops="TLS" cim:dependsupon="PLC2Master"
cim:port="502"/> </class>
</cim:CIM_LogicalSwitch>
</class>
.
.
</SubstationArchitecture>

Prolog Primitive Facts

device(ActDS3, //ID
DisconnectSwitch, //Type
Closed, //State
FwareActDS3 //Services
).

connected(PLC2, //Start Node
ActDS //End Node
).

service(FwareActDS3,//Service ID
1.0, //Version Number
ModbusSlave, //Service Type
[PLC2Master], //Dependent Upon
[TLS], //Security Protocols
502 //Connecting Port
).

Figure 2. CIM XML and Prolog specifications of a substation.

two communicating devices and a Path variable. It then calls a helper rule path
(Line 1), which finds a path (list of nodes) from A to B. This is accomplished
using a recursive travel rule: a path from A to B is obtained if A and B are
connected (Line 5) and a path from A to B is obtained provided that A is
connected to a node C different from B that is not on the previously visited

Anwar & Campbell 181

Table 2. SCADA device models described as Prolog facts.

1 % dev i c e (ID ,TYPE,GROUP, SERVICES LIST ,COORDX,COORDY)
2 d ev i c e (adminpc , pc , en , [ssh1 , s q l c l i e n t 1] , 1 0 , 2 0) .
3 d ev i c e (h i s t o r i a n , pc , en , [r l o g i n d 1 , p o s t g r e s q l d] , 1 0 , 3 0) .
4 d ev i c e (s en so r , pc , pcn , [r l o g i n 2 , s q l c l i e n t 2] , 3 0 , 1 0) .
5 d ev i c e (s e r v i c e p r o x y , rou te r , f i r e w a l l , [f i r e w a l l d] , 1 0 , 1 0) .
6

7 % s e r v i c e (ID ,TYPE,VER, PRIV LEVEL ,PROTOCOL,ACL)
8 s e r v i c e (s q l c l i e n t 1 , d a t a b a s e c l i e n t , 2003 , user , odbc ,) .
9 s e r v i c e (s q l c l i e n t 2 , d a t a b a s e c l i e n t , 2000 , user , odbc ,) .

10 s e r v i c e (p o s t g r e s q l d , d a t a b a s e s e r v e r , 1998 , root , odbc , [←↩
s q l c l i e n t 1 , s q l c l i e n t 2]) .

11

12 % b y d i r e c t i o n l i n k (SRC ,DEST)
13 connected (adminpc , s e r v i c e p r o x y) .
14 connected (h i s t o r i a n , s e r v i c e p r o x y) .
15 connected (s en so r , s e r v i c e p r o x y) .

Table 3. Access control implementation.

1 path (A ,B , Path) :−
2 t r a v e l (A,B , [A] ,Q) ,
3 r e v e r s e (Q, Path) .
4

5 t r a v e l (A ,B ,P , [B |P]) :−
6 connected (A,B) .
7

8 t r a v e l (A ,B , V i s i t e d , Path) :−
9 connected (A,C) ,

10 C \== B,
11 \+member (C , V i s i t e d) ,
12 t r a v e l (C ,B , [C | V i s i t e d] , Path) .
13

14 i s a c c e s s c o n t r o l (DevA , DevB) :−
15 keys (DevA , AuthMechA) ,
16 keys (DevB , AuthMechB) ,
17 match (AuthMechA , AuthMechB) .
18

19 i s e n d 2 e n d c o n f i n t e g (SecPropsL i s t , [Head]) :−
20 d e f s v s (Head , d s e r v i c e) ,
21 s e c p r o t s (d s e r v i c e , SPL i s t) ,
22 SecP r op s L i s t = SPL i s t .
23

24 i s e n d 2 e n d c o n f i n t e g (SecPropsL i s t , [Head | Ta i l]) :−
25 d e f s v s (Head , d s e r v i c e) ,
26 s e c p r o t s (d s e r v i c e , SPL i s t1) ,
27 i s e n d 2 e n d c o n f i n t e g (SPL i s t2 , Ta i l) ,
28 i n t e r s e c t i o n (SPL i s t1 , SPL i s t2 , CommonSPList) ,
29 nth0 (0 , CommonSPList ,) ,
30 SecP r op s L i s t=SPL i s t1 .
31

32 ck ConformanceTo CIP002−08(DevA , DevB , Path) :−
33 path (DevA , DevB , Path) ,
34 i s a c c e s s c o n t r o l (DevA , DevB) ,
35 i s e n d 2 e n d c o n f i n t e g (Path) .

part of the path, and a path is found from C to B (Line 8). Avoiding repeated
nodes ensures that the program halts. Once the path is known, checking access
control (Line 14) is a matter of comparing if both the communicating nodes use

182 CRITICAL INFRASTRUCTURE PROTECTION II

Table 4. Java-JPL code for querying and importing path information.

1 Va r i a b l e X = new Va r i a b l e (”X”) ;
2 Va r i a b l e Y = new Va r i a b l e (”Y”) ;
3 Va r i a b l e P = new Va r i a b l e (”P”) ;
4 Term arg [] = { X,Y,P } ;
5 Query q = new Query (” path ” , a rg) ;
6

7 wh i l e (q . hasMoreElements ()) {
8 Term bound to x = (Term) ((Hash tab l e) q . nextE lement ()) . g e t (←↩

”P”) ;
9 S t r i n g [] s t r a r r a y = j p l . U t i l . a tomL i s tToSt r i ngAr ra y (←↩

bound to x) ;
10 f o r (i n t i =0; i<s t r a r r a y . l e n g t h ; i++) {
11 System . out . p r i n t l n (s t r a r r a y [i]) ;
12 }
13 }

a pre-shared key or PKI authentication. Checking confidentiality and integrity
(Lines 19 and 24) amounts to checking if every pair of consecutive nodes on a
path share an encryption channel (e.g., IPSec or TLS).

4.4 Graphical User Interface

A Java-based GUI front-end to Prolog facilitates user interaction with the
system. The implementation leverages JPL, a set of Java classes and C func-
tions, which provides a Java-Prolog interface by embedding a Prolog engine
in Java VM. Annotating each device in a CIM specification with (x, y) coor-
dinates enables SCADA network data to be imported and viewed in a Java
grid panel. This approach allows for more user interaction than other network
visualization tools (e.g., Graphviz [2] and CAIDA [6]). For example, a user can
hover over a device icon to see a detailed listing of its security attributes or click
on devices of interest and formulate a query. Table 4 presents JPL code that
imports information about all possible paths between two devices in the form
of Prolog lists for display (Table 3 describes the predicate implementation).

Three JPL variables (Lines 1–3) are created to hold the two devices and the
list of possible paths between them. A query is then formulated and sent to
the Prolog engine, which populates these values. The JPL library provides sev-
eral utility functions such as atomListToStringArray to perform conversions
between Java and Prolog types.

5. Evaluation

Our implementation involves approximately 1,620 lines of Prolog code (not
including network and workflow encodings) and 3,500 lines of Java code. The
twelve best practices rules took roughly 30 hours to encode in Prolog. The
implementation was tested with several substation network-level scenarios (in-
volving less than 100 machines). Each scenario executed in a few seconds on

Anwar & Campbell 183

Figure 3. SCADA architecture with two ENs and three PCNs.

an Intel Core2Duo 2.0 GHz machine running Ubuntu Linux 7.10. This section
presents the results of access control and firewall deployment evaluations for
one of these scenarios.

Figure 3 presents a typical SCADA architecture containing two subnets (EN1
and EN2) with several enterprise machines and devices, and three subnets
(PCN1, PCN2 and PCN3) with process control devices. EN1 has two impor-
tant devices, the Wireless AP (access point) and Data Historian. The data
relationships are as follows. The Data Historian is a shared device that logs
events in several SCADA devices. It is accessed by local and remote users
for supervisory purposes. The Data Historian connects directly to devices in
PCN1 via a proxy server; this configuration enables the vendor to maintain the
machine remotely via the Internet. The Data Historian also logs events from
Relay1 in PCN2 and is accessed by the Admin PC and NFS File Server in EN3.
Sensor1 and Sensor2 in PCN3 are managed by the Controller in EN3 and their
events are logged by the Data Historian. Services provided by the Controller
are accessed by the Admin PC.

5.1 Test 1: Access Control Implementation

Figure 4 shows the dependency graph of the two sensors in PCN3 that report
their readings to two enterprise devices (Controller and Data Historian) through
several proxy servers and PLCs, not all of which support IPSec or TLS stacks
for confidentiality.

Table 5 summarizes the results of running a “correct implementation of
access control” query for confidentiality and integrity (C/I), authentication
(Auth) and CIP conformance (Conf) on the sensors.

184 CRITICAL INFRASTRUCTURE PROTECTION II

Figure 4. Access control conformance of the SCADA architecture.

Table 5. Access control implementation results.

Source Sink Path C/I Auth Conf

S1 C S1 → PLC → P1 → C Yes Yes Yes
S1 DH S1 → PLC → P1 → P2 → DH4 No No No
S2 C S2 → PLC → P1 → C No Yes No
S2 DH S2 → PLC → P1 → P2 → DH No No No

The invocation ck ConformanceTo CIP002(sensors,sinks,Paths) reveals
that the data association channel between the sensors and controller enforces
integrity because of an end-to-end pre-shared key. However the channel between
sensor S2 and the controller does not have confidentiality because the hop
between S2 and the PLC does not support a confidentiality protocol. A similar
problem occurs along the paths between the sensors and the data historian
where the hop between the two proxies is not confidential. The only channel
that passes the test successfully is between S1 and the controller because the
sensor supports IPSec as an encryption protocol.

5.2 Test 2: Firewall Deployment

Firewall deployment was evaluated by starting with the original configura-
tion, identifying the offending link, incorporating the appropriate firewall, and
repeating the conformance checking of the new configuration. Table 6 presents
the results. The original configuration has a security rating of 2 due to the
direct historian-PCN1 link that was incorporated for vendor convenience. This

Anwar & Campbell 185

Table 6. Firewall deployment results.

Num Substation Architecture Rating Offending Link

1 Original configuration (Fig-
ure 3)

2 DH-PCN1

2 Same as 1 with DH-PCN1
link removed

2 S2-PacketFilteringRouter-C

3 Same as 2 with router re-
placed with a stateful fire-
wall

3 C-AdminPC

4 Same as 3 with C moved to
the DH subnet

4 None

link poses a serious threat to the substation as it potentially allows direct In-
ternet access to the plant floor. Note that the security rating of the entire
substation is dependent on the security rating of the weakest link. Removing
this link (by incorporating a new firewall or relocating PCN devices) and re-
peating the analysis produces a security rating of 2. This is due to the presence
of a packet filtering router that separates devices in PCN3 from the controller
in EN3. Upon replacing the router with a stateful firewall, the new configura-
tion has a security rating of 3 with all the shared devices positioned behind the
proper firewalls. Finally, moving the shared controller to same subnet as the
historian produces a DMZ configuration (security rating 4) with all the shared
devices located in a separate subnet.

6. Conclusions

The predicate-calculus-based security model described in this paper ex-
presses infrastructure elements as facts and security standards and best prac-
tices as rules that specify constraints on the facts. The implemented tool chain
automatically generates a security model from SCADA infrastructure specifi-
cations and checks it for compliance with security standards and best practices.
The tool chain provides a rich front-end to the predicate logic engine, which
enables security administrators to compose their own queries during security
assessments. It also supports the visualization of network topology and security
assessment results to reveal possible points of attack.

Although the approach has been tested on infrastructures with less than 100
nodes, it is scalable to large infrastructures because best practices are typi-
cally specified at the substation level. Moreover, checking system conformance
against best practices is a static process that is typically performed offline.

The model allows the implementation of checks against other standards and
best practices with minimal changes; however, the generation of the security
model from CIM specifications could be improved. Our future work will focus
on integrating security tools such as Nessus that automatically provide details of

186 CRITICAL INFRASTRUCTURE PROTECTION II

services running on devices along with device dependencies and vulnerabilities.
Also, the security model will be extended to include SCADA infrastructures
that are complementary to the power grid (e.g., water supply and telecommu-
nications systems).

References

[1] American Gas Association, Cryptographic Protection of SCADA Com-
munications; Part 1: Background, Policies and Test Plan, AGA Report
No. 12 (Part 1), Draft 5, Washington, DC (www.gtiservices.org/security
/AGA12Draft5r3.pdf), 2005.

[2] AT&T Research, Graphviz – Graph Visualization Software, Florham Park,
New Jersey (www.graphviz.org).

[3] British Columbia Institute of Technology, Good Practice Guide on Firewall
Deployment for SCADA and Process Control Networks, National Infras-
tructure Security Co-ordination Centre, London, United Kingdom, 2005.

[4] British Columbia Institute of Technology, Industrial Security Incident
Database, Burnaby, Canada.

[5] R. Chandia, J. Gonzalez, T. Kilpatrick, M. Papa and S. Shenoi, Security
strategies for SCADA networks, in Critical Infrastructure Protection, E.
Goetz and S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 117–131,
2007.

[6] Cooperative Association for Internet Data Analysis, The CAIDA web site,
La Jolla, California (www.caida.org).

[7] R. Dacey, Critical Infrastructure Protection: Challenges in Securing Con-
trol Systems, Report GAO-04-140T, United States General Accounting
Office, Washington, DC (www.gao.gov/new.items/d04140t.pdf), 2004.

[8] Distributed Management Task Force, Common Information Model
(CIM) Infrastructure Specification, Document DSP0004 Version 2.3
Final, Portland, Oregon (www.dmtf.org/standards/published documents
/DSP0004V2.3 final.pdf), 2005.

[9] Federal Energy Regulatory Commission, Mandatory Reliability Standards
for Critical Infrastructure Protection, Docket No. RM06-22-000; Order No.
706, Washington, DC (ferc.gov/whats-new/comm-meet/2008/011708/E-2
.pdf), 2008.

[10] Industrial Automation Open Networking Association, The IAONA
Handbook for Network Security, Version 1.3, Magdeburg, Germany
(www.iaona.org/pictures/files/1122888138–IAONA HNS 1 3-reduced 050
725.pdf), 2005.

[11] Instrumentation Systems and Automation Society, Security Technologies
for Manufacturing and Control Systems (ANSI/ISA-TR99.00.01-2004),
Research Triangle Park, North Carolina, 2004.

Anwar & Campbell 187

[12] M. Masera and I. Nai Fovino, A service-oriented approach for assessing
infrastructure security, in Critical Infrastructure Protection, E. Goetz and
S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 367–379, 2007.

[13] D. Maynor and R. Graham, SCADA security and terrorism: We’re not
crying wolf! presented at the Black Hat Federal Conference, 2006.

[14] J. Meserve, Sources: Staged cyber attack reveals vulnerability in power
grid, Cable News Network, Atlanta, Georgia (www.cnn.com/2007/US /09
/26/power.at.risk), September 26, 2007.

[15] National Institute of Standards and Technology, Standards for Security
Categorization of Federal Information and Information Systems, FIPS
Publication 199, Gaithersburg, Maryland, 2004.

[16] M. Rash, psad: Intrusion detection for iptables (www.cipherdyne.com
/psad).

[17] R. Ross, A. Johnson, S. Katzke, P. Toth, G. Stoneburner and G. Rogers,
Guide for Assessing the Security Controls in Federal Information Systems,
NIST Special Publication 800-53A, National Institute of Standards and
Technology, Gaithersburg, Maryland, 2008.

[18] SourceForge.net, AfterGlow (afterglow.sourceforge.net).

[19] Y. Stamatiou, E. Skipenes, E. Henriksen, N. Stathiakis, A. Sikianakis,
E. Charalambous, N. Antonakis, K. Stolen, F. den Braber, M. Sodal Lund,
K. Papadaki and G. Valvis, The CORAS approach for model-based risk
management applied to a telemedicine service, Proceedings of the European
Medical Informatics Conference, pp. 206–211, 2003.

[20] K. Ziegler, NERC cyber security standards to become mandatory in United
States, Electric Energy Industry News, January 21, 2008.

