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Nils Svendsen and Stephen Wolthusen

Abstract The identification and mitigation of interdependencies among critical
infrastructure elements such as telecommunications, energy and trans-
portation are important steps in any protection strategy and are appli-
cable in preventive and operative settings. This paper presents a graph-
theoretical model and framework for analyzing dependencies based on a
multigraph approach and discusses algorithms for automatically identi-
fying critical dependencies. These algorithms are applied to dependency
structures that simulate the scale-free structures found in many infras-
tructure networks as well as to networks augmented by random graphs.
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1. Introduction

One of the defining characteristics of critical infrastructures is the level of
interdependence among individual infrastructure components such as energy,
telecommunications and financial services. While the interdependencies act
on different timescales and may exhibit buffering characteristics (e.g., in the
case of emergency power supplies) or delays in the effects (e.g., an inability to
schedule transportation services after a communication system failure), direct
and transitive (often also circular interdependencies) can be identified in a large
number of cases.

An area of particular interest in critical infrastructure protection research is
the avoidance and analysis of widespread effects on large parts of the popula-
tion and economies, which may, for example, result from cascading and circular
effects among infrastructure components – as exemplified by the August 2003
power outages in the northeastern U.S. and Canada and the November 2006
power outages throughout much of continental Europe. While elaborate mod-
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els, also incorporating physical characteristics and effects and with predictive
capabilities exist for many of the individual critical infrastructure services (e.g.,
for electrical power grids at the national and transnational levels), it is desir-
able to also investigate larger-scale interactions among multiple infrastructure
sectors. Specific questions include cascading effects that would occur if one
infrastructure component becomes unavailable for an extended period, along
with possible circular effects that might inhibit or at least severely impede
the resumption of regular infrastructure services. This, however, requires the
development of models that exhibit acceptable computational complexity and
at the same time provide adequate modeling capabilities. The level of detail
that can be incorporated in such models is of necessity a limited one compared
to sector-specific models. However, in many cases the basic identification of
the existence of interdependencies and critical dependency paths among in-
frastructure components already provides valuable information, which may be
investigated further using more refined modeling processes.

This paper presents a model framework based on a simple graph-theoretic
model that forms the basis of several models of increasing capabilities (and
computational complexity) in which additional constraints are introduced and
infrastructure characteristics such as the ability to buffer resources are added.
Connectivity-based interdependency models, however, can provide important
insights into the vulnerabilities introduced by interlinking infrastructure com-
ponents, particularly if the interdependency characteristics differ significantly
as in the case of power and telecommunication networks discussed in this paper.

The remainder of this paper is structured as follows: Section 2 summarizes
the basic multigraph model, which forms the foundation for a family of models
with increasing expressiveness and computational complexity. Section 3 pro-
vides several simplified case studies, which are intended to be illustrative and
hence represent abstractions, not actual network structures. These model in-
stances are further illustrated through simulation results described in Section 4.
Section 5 briefly reviews related research. Section 6 provides conclusions and
an outlook on current and future research.

2. Multigraph Model

Interactions among infrastructure components and infrastructure users are
modeled in the form of directed multigraphs, which can be further augmented
by response functions defining interactions between components. In the model,
the vertices V = {v1 , . . . , vk} are interpreted as producers and consumers of m
different types of services. A single vertex can act as a producer and consumer
at the same time. If a node is not able to generate a needed type, the node
is dependent on some other node delivering this service. Such a dependability
has the dependability type dj , which is chosen from the set D = {d1, . . . , dm}.

Pairwise dependencies between nodes are represented with directed edges,
where the head node is dependent on the tail node. The edges of a given infras-
tructure are defined by a subset E of E = {e1
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}, where
n1, . . . , nm are the numbers of dependencies of type d1, . . . , dm, respectively,



Svendsen & Wolthusen 339

and ej
i is the edge number i of dependency type j in the network. A depen-

dency between nodes va and vb is uniquely determined by ej
i (va, vb). In addition

to the type, two predicates CMax(e
j
i (va, vb)) ∈ N0 and CMin(ej

i (va, vb)) ∈ N0

are defined for each edge. These values represent the maximum capacity of the
edge ej

i (va, vb) and the lower threshold for flow through the edge, respectively.
The first studies of large complex networks evaluated the robustness of in-

frastructure attacks based on static failures [6, 9]. This is accomplished by
removing a certain percentage of nodes in the network and estimating how the
performance or connectivity of the network is affected by the induced failure.
In dependency networks, such as the power distribution network and the tele-
phony transport network, the breakdown of a node may cause cascading failures
and have other time-dependent effects on the networks that are only detectable
via a dynamic approach. We assume a discrete time model with the system
in an initial state at time t = 0. Let rj

a(t) ∈ Z be the amount of resource j
produced in node va at time t. We define D(t) to be a k ×m matrix over Z

describing the amount of resources of dependency type j available at the node
va at time t. It follows that the initial state of D is given by

Daj(0) = rj
a(0). (1)

For every edge in E a response function

Rj
i (va, vb, t) = f(Da1(t− 1), . . . , Dam(t− 1),

CMax(e
j
i (va, vb)), CMin(ej

i )(va, vb)) (2)

is defined, which determines the i-th flow of type j between the nodes va and
vb. The function f w.l.o.g. is defined as a linear function mapping Z× · · ·×Z×
N0×N0 to N0 (see below for a rationale for limiting f to linear functions), and
may contain some prioritizing scheme over i and vb. As seen from Equation 2,
a single-step model with one state memory has been chosen, as we are currently
not concerned with long-term feedback, although the model naturally extends
to longer-term state retention.

Given the responses at time t, the available resources in a node va at time t
in any node are given by

Daj(t) =
∑

i,s|ej
i (vs,va)∈E

Rj
i (vs, va, t). (3)

A node va is said to be functional at time t if it receives or generates the
resources needed to satisfy its internal needs, i.e., Daj(t) > 0 for all dependency
types j which are such that ej

i (vb, va) ∈ E , where b ∈ {1, . . . , a− 1, a+ 1, . . . k}.
If this is the case for only some of the dependency types the node is said to
be partially functional; if no requirements are satisfied the node is said to be
dysfunctional.

The implemented model investigates how high-level network effects (func-
tionality of nodes) and interrelations (connectivity of nodes) in interconnected
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infrastructures react to different attack scenarios. The presented model can be
used to represent any topology given a set of infrastructures and their inter-
connections. The model cannot achieve the level of accuracy found in devoted
network simulators (described in Section 5), but it has the advantage of be-
ing able to estimate the consequences of cascading failures in interconnected
infrastructures.

By constraining the response function to a linear function and discrete val-
ues for both time steps and resources, linear programming approaches can be
employed for optimization of the relevant parameters. Interior point methods
such as [18] can achieve computational complexity on the order of O(n3.5),
making the analysis of large graphs feasible.

3. Dependency Analysis

This section explores how two interconnected networks influence each other.
Two clearly interdependent networks are the electrical power distribution net-
work and the telephony transport layer network. The analysis is based on
several abstractions and represents an approximation to actual network topolo-
gies. The motivation for choosing these two infrastructure elements as the first
subject of investigation is primarily due to their key enabling role in modern
society. The BAS study [16], carried out by the Norwegian Defense Research
Establishment in 1997, established the criticality of power supply and telecom-
munications to Norwegian society. In addition, the networks are interesting
candidates for model verification as there is a fundamental difference in how
service deliveries flow through the networks. In the power distribution network
all the power originates from a small number of power plants or generators.
A transportation network, which may well interconnect several power plants,
delivers power to a large number of transformers that serve the low voltage dis-
tribution network. As a consequence, the resulting graph is a directed network
where multiple edges of different orientation between two nodes rarely occur.

Traditionally, the telephony transport layer has been a hierarchical network
(see, e.g., [14]). Although there has been a decided trend away from this due to
progress in transmission and switching technology since the early 1990s, we have
chosen to use this model because it is representative of much of the currently-
deployed telecommunications infrastructure. The telephony transport layer
may be idealized as an onion structure with a very low diameter. The signal
always starts from the outer layer; depending on the range of the connection,
it goes through the core of the network before retuning to a local switch in the
outer layer of the network. All edges are bidirectional, thus all connected nodes
are connected by an edge in each direction.

3.1 Electrical Power Distribution Network

One of the early studies of power distribution networks was the analysis of
the Western (U.S.) States Power Grid carried out by Watts and Strogatz [27] in
1998. The degree distribution of the network was found to be exponential-like,
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but the clustering coefficients were too large for the network to be a classical
random graph. The observed network consisted of approximately 3,500 nodes,
a number which might be too small for being conclusive regarding the catego-
rization of the network [12]. For the purposes of the present study, however,
an exact representation of the power distribution grid is not necessary as we
are primarily interested in topological characteristics. To this end, a network
topology generator was implemented based on the assumptions that the num-
ber of source nodes is small compared to the number of transport and sink
nodes, power generating nodes are not directly interconnected, the network
is constructed to cover a topological area as efficiently as possible, and some
links are forced on the network to interconnect distribution networks and create
redundancy. Based on these assumptions, a tree-like model for the power dis-
tribution network is a reasonable approximation, although binary and k-trees
are much too regular to represent the topology. The basic Barabási-Albert
(BA) model [1] with some modifications provides a tree-like structure together
with the level of irregularity found in real networks. The original BA model is
initiated with a connected graph. In the power distribution network case, the
source nodes are not interconnected. This is solved by simply providing the
originating nodes with an initial degree kInit ≥ 1 that does not represent any
real edges, just the centrality of the node in the network.

Given that one node is added at each time step in the BA model, as many
disconnected trees as there are initial nodes in the network are generated. A
sparse random graph is placed on top of the scale-free networks to connect
lower-level nodes with each other. Since the network is very sparse, its sta-
tistical properties are not affected, but there is a major influence on network
connectivity and the possible generation of feedback loops. The procedure used
to generate the power distribution network topology involves network proper-
ties such as growth (a new node, defining the head of a new edge, is added to
the network at every time step), preferential attachment (the tail of the edge is
selected among the existing nodes with probability proportional to the degree
of the node), and redundant connections (after the final time step a sparse
random graph is placed on top of the network). As the network grows large,
the influence of the sparse random graph becomes small and the probability of
a node having k edges follows a power law with exponent γ = 3 [12].

Finally, a response function is defined for each edge. In the case of quanti-
tative analysis of service delivery this function should be an implementation of
Kirchhoff’s first law, ensuring that the flow into a node along with the flow gen-
erated by the node equals the output and the consumption of the node. Such a
detailed approach is not necessary to explore the model, as the model focuses
on the functionality of the node. The principal issue is that electricity is con-
sumed as it propagates through the networks and cannot be stored e.g., using
subgraph cycles. Thus, the implemented response function only illustrates a
resource which is being consumed as it flows through the network. Introducing
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a threshold function T (x, c) = δ(x− c)x, where

δ(x) =

{

0, x < 0
1, x ≥ 0.

(4)

The implemented response function is of the form

Ri(va, vb, t)) = T (
1

2
Da(t), CMin(ei(va, vb))), (5)

where Da is the current available in node a at time t. Equation 5 indicates
that two units of input current to the node are required to produce one unit of
output current along an outgoing edge. The dependency type is not specified
because there is only one dependency in the network. We assume that only
one power dependency exists between two nodes and no prioritization scheme
is defined for the outgoing edges.

A node in the power distribution network is defined to be functional if it
has incoming current or generates current. The given response function can
provide information on whether a node is functional or not, but it does not
provide any physical representation of the level of functionality of a node in
the network, which provides a sufficient level of detail for the purpose of this
study.

3.2 Telephony Transport Layer Network

Compared with the electric grid, Internet and autonomous system net-
works [21], the telephony transport layer network has received relatively lit-
tle attention by the critical infrastructure modeling community. In this work,
we assume the telephony transport layer has a traditional hierarchical network
structure. The network is optimized locally for complete connectivity and glob-
ally to minimize the number of switches in an average connection circuit. In
order to be functional, a switch must be connected to other switches and to a
power supply, which is the focus of our analysis.

The network, which is modeled as a number of disconnected trees, is con-
nected to a fully-connected transportation network through their root nodes.
The response function of the telephony network depends on whether or not the
node has power as input. If no power is available, circuit switching cannot take
place and no communication is possible. The response function for edges in the
telephony transport layer is thus a threshold function given by

Ri(va, vb, t) = δ(Da(t)− CMin(ei(va, vb))), (6)

where Da is the current available in node a at time t and δ is as defined in
Equation 4. It follows from Equation 2 that a directed edge between nodes va

and vb is defined if power is available to node va. Again, no redundant links
are defined between two nodes and no prioritization scheme is defined for the
edges. As mentioned earlier, each connection in the telephony transport layer
is bidirectional (one-way communications are of no interest). The functionality
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of a node thus depends on whether the node and the node it is connected to
have power supply (i.e., the switch can deliver the two-way service it is meant
to deliver).

3.3 Network Interconnections

The dependency between the electrical power distribution network and the
telephony transport layer is assumed to be one-way. The power distribution
network is fully functional when switches in the telephony transport layer are
not functional. Conversely, the flow along an edge in the telecommunications
network will halt if either the head node or the tail node lose power. The
connection of the telephony transport layer to the power grid is randomized in
the present model (i.e., it does not take into account geospatial proximity and
other factors that result in functional clustering). However, this is deemed to
be adequate for the purpose of our analysis. Readers are referred to [25] for
an extension of the theoretical model with two-way dependencies between the
electrical power distribution network and the telephony transport layer.

Telephony transportation layer nodes have two inputs (current and informa-
tion) and produce one output (information). At every time step, the response
functions for power distribution and telephony transportation edges can be
computed given the network state in the previous time step. The functionality
of the telephony transport layer follows directly from this. Since a one-way
dependency is defined, failure can only propagate from the power distribution
network into the telephony transportation layer.

3.4 Attack Scenarios

Studies of complex networks frequently conclude that many man-made and
natural networks are scale-free in nature, and thus possess the well-known
Achilles heel of robustness against random breakdown and vulnerability to
targeted attacks [2]. The first item investigated in Section 4 is whether the
introduction of a very sparse random graph on top of a scale-free infrastructure
will reduce some of the vulnerability to targeted attacks.

Several possible scenarios may cause the failure of a node in an infrastruc-
ture. The cause may be an intentional or unintentional act by a human, or a
change in the network environment (e.g., flooding), or a technical error. We
consider three attack scenarios in our analysis: single node removal (conse-
quence of a targeted terrorist attack or a single technical failure), removal of
a small connected component (non-localized failure such as flooding or some
other natural disaster), and removal of disconnected components (result of a
coordinated terrorist attack).

4. Simulation Study

Small topologies were generated artificially to illustrate the properties of
the model. A power distribution topology based on two power sources and 28
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power distribution nodes was connected to a telephony transport network with
21 total switches, including three core switches. The switches were connected
to randomly selected lower-level power distribution nodes (i.e., no power gener-
ating nodes were connected directly to the telephony transport layer). None of
the nodes of the telephony transport layer were assumed to have an independent
power supply.

The attacks involve the removal of one or two nodes with the following steps:
(i) remove a node from the network, (ii) run the response function until the
number of functional nodes in the network stabilizes, (iii) count the number of
functional nodes in the network, and (iv) reinsert the node. This procedure is
repeated for all nodes in the network. The pairwise removal of nodes follows a
similar procedure, except that two nodes are removed at a time.

The results are presented as the fraction of functional nodes that remain
after removing one or two nodes from the network. The results are presented
as histograms in Figures 1, 2 and 3. The x-axis represents the fraction of
functional nodes in a run, and the y-axis represents number of runs of the
algorithm. The results are deduced from one topology generated as described
in Section 3. A single topology is not sufficient to draw general conclusions
about the properties of the proposed topologies, but it illustrates the ability
and flexibility of the model.

4.1 Coordinated Failures in a Single Domain

This scenario considers the single, non-buffered power distribution network.
While atypical of the interdependencies existing between real-world critical
infrastructures, the network permits the exposition of core elements of the
model and the simulation environment.

4.1.1 Scale-Free Power Distribution Network. This sce-
nario illustrates the well-known vulnerability of scale-free networks to targeted
attacks. The electrical power distribution network is represented as a scale-free
network and two scenarios are considered: (i) removal of one node, and (ii)
removal of two random-selected power nodes.

Figure 1a shows that removing one node has limited influence on the net-
work. Specifically, in almost 50% of the cases, more than 95% of the nodes
are functional, which is very high as the simulated power distribution network
has 28 nodes. We also note the high influence of removing one particular node
– the generator in the largest sub-distribution network. As the distribution
networks of the two generators are not interconnected due to the BA construc-
tion, removing the generator takes out the entire subgraph. The gap observed
between 0.85% and 0.90% of functional nodes is most likely due to the small
size of the network.

The results of the attacks are shown in Figure 1, which nicely illustrates the
properties of a scale-free network.

Figure 1b shows that removing two nodes from the network also has a limited
effect on the network – more than 70% of the nodes are functional in the
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ter random removal of two nodes (378
runs).

Figure 1. Consequences of node removal on a scale-free topology.
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(b) Fraction of functional nodes after
random removal of two nodes (1,275
runs).

Figure 2. Consequences of node removal on a scale-free network with redundancy.

majority of the cases. Obviously, taking out both generators paralyzes the
network. The peak observed around 30% is due to the removal of the largest
generator plus a central node in the second power distribution network.

4.1.2 Scale-Free Network with Added Redundancy. In
this scenario, a sparse random graph is placed on top of the scale-free graph to
provide redundancy. The results of the simulation are presented in Figure 2.
Figure 2a shows that the introduced redundancy improves the robustness of
the network considerably. When one node is removed, the functionality of
the network rarely drops below 90%, and never below 50%. Thus, the cost of
adding redundant edges may pay off in terms of robustness. The same holds for
the scenario involving the removal of two nodes (Figure 2b). The functionality
rarely drops below 80% and the peak that was formerly located around 30%
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(a) Fraction of functional telecommuni-
cation nodes after random removal of
one power node (51 runs).
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(b) Fraction of functional telecommuni-
cation nodes after random removal of
two power nodes (1,275 runs).

Figure 3. Consequences of node removal from two networks.

has now moved to 60%. Of course, the removal of both generators still takes
out the entire network.

An interesting observation can be made related to the second attack scenario
described in Section 3.4. In each of the 15 most critical two-node removals, there
was no pair of connected nodes. Consequently, removing any connected com-
ponent of size two, still results in more than 50% of nodes remaining functional.
This shows that well-targeted attacks on a critical infrastructure are likely to
be more effective than an extensive attack against connected components.

4.2 Multi-Domain Dependencies

The final simulation illustrates how failures in the electrical power distri-
bution network propagate into the telephony transport layer. Each node of
the telephony transport layer is connected to a node in the power distribution
network, and its functionality depends on the power supplied to itself and its
neighbors. Figure 3 shows the fraction of functional telecommunication nodes
as one or two nodes are removed from the power distribution network.

The results clearly illustrate the dependency between the two networks and
validates the basics of the model. In our future work, we will explore more exit-
ing features such as circular dependencies, multiple network interdependencies
and metrics for identifying critical network components.

4.3 Discussion

In our opinion, pure scale-free topologies are not suitable for representing
for real-world infrastructures. Unlike most man-made infrastructures, the pure
BA topology contains very few redundant links. Imposing random connections
on top of the BA structure makes the model more realistic; at the same time,
the vulnerability of the network is reduced. As illustrated in our simulation
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study, when redundancy is introduced, the network is less sensitive to removing
single nodes.

Future analyses should consider the removal of random nodes and random
pairs of nodes from the network, and observe failure propagation throughout the
network. This will identify the nodes that are central to network functionality
and help determine where resources should be invested to increase operational
reliability and infrastructure security.

5. Related Work

Research activities related to the monitoring and simulation of critical infras-
tructures are being conducted worldwide, although generally at a qualitative
level. One of the earliest and most widespread methodologies involves the ap-
plication of a control systems approach [24], including hybrid mechanisms [17].
Other approaches for modeling infrastructures include agent-based systems [4,
20, 26]. Such qualitative efforts also include the Critical Infrastructure Model-
ing and Assessment Program (CIMAP) and the European Project ACIP [23].
Additional approaches (e.g., [3, 22]) vary considerably in the level of detail
considered, ranging from simple dependency analysis to elaborate models con-
taining continuous physical submodels (e.g., for pipelines and electrical power
grids) as well as behavioral models.

For the more constrained case of individual infrastructures such as pipelines
and power grids, however, rich modeling and simulation environments already
exist including the PSIcontrol system and proprietary mechanisms employed
by operators. However, interconnections and interdependencies can only be
modeled to a limited extent in such environments. Several properties are imme-
diately derivable from interconnection characteristics alone as shown for power
grid and Internet connectivity [5, 8, 13, 28]. Frequently, the underlying struc-
ture of the networks can be identified as being wholly or partially scale-free [7,
11, 15, 19]. This has significant implications for the vulnerability of intercon-
nected and interdependent networks of critical infrastructure components to
random failure [6, 9] as well as to targeted attacks [10].

6. Conclusions

This paper has presented the foundational elements of a family of models
for investigating interdependencies among heterogeneous critical infrastructures
in abstract topologies. To this end, we have provided an extensible graph-
theoretical model, which incorporates a flexible response function for modeling
vertex behavior, including activities internal to vertices and the provision of
buffered and unbuffered infrastructure services.

With the help of simplified abstract models, we have demonstrated how the
addition of random components to an otherwise scale-free network can influence
the overall robustness of the network to vertex removal. The observations are
verified by a simulation study involving a simple interconnection model for
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two unbuffered networks, an electrical power distribution grid and a fixed-line
telephony network.

Our future research will focus on validating the model using simulations of
large-scale power and telephony network topologies. We will also work on ex-
tensions to the model, including the ability to store dependency types within
nodes, incorporating cyclic interdependencies between infrastructures, prior-
itizing resources within nodes, and introducing component failure as known
from reliability theory. Furthermore, we will attempt to refine our analytic ap-
proach by using graph-theoretical and combinatorial optimization techniques
to identify critical interdependencies and effective mechanisms for enhancing
the robustness of critical infrastructures.
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