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PASSIVE SCANNING IN
MODBUS NETWORKS

Jesus Gonzalez and Mauricio Papa

Abstract This paper describes the design and implementation of a passive scanner
for Modbus networks. The tool integrates packet parsing and passive
scanning functionality to interpret Modbus transactions and provide
accurate network representations. In particular, the scanner monitors
Modbus messages to maintain and update state table entries associ-
ated with field devices. Entries in the state tables record important
information including function codes, transaction state, memory access
and memory contents. The performance and reporting capabilities of
the passive scanner make it an attractive network troubleshooting and
security tool for process control environments.
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1. Introduction

Industrial processes are increasingly relying on sophisticated process control
systems (PCSs) – also known as SCADA systems – for supervisory control and
data acquisition. PCSs control industrial processes using networks of sensors
and actuators. Sensors provide data about process variables as input to the
PCS. Actuators make adjustments to the process variables based on output
signals received from the PCS. The PCS control algorithm defines how PCS
inputs are used to compute the output signals that drive the industrial process
to the desired state.

In many industrial environments, sensors, actuators and controllers are de-
ployed in widely dispersed locations, requiring a communication infrastructure
and protocols to support supervisory control and data acquisition. The com-
munication protocols have traditionally favored operational requirements over
security because the field equipment and communications infrastructure were
physically and logically isolated from other networks. However, the specifica-
tions for most major industrial protocols, e.g., Modbus [7, 8] and DNP3 [15, 16],
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Figure 1. Master-slave transaction.

now include mechanisms to transport control data using TCP/IP stacks. The
use of TCP/IP as a transport mechanism in industrial control networks raises
serious issues, largely because it promotes the trend to interconnect with corpo-
rate IT networks. It is, therefore, extremely important to deploy security tools
that are designed specifically for industrial control networks that use TCP/IP
stacks [1, 3–5, 12].

This paper describes the design and implementation of a passive scanning
tool for Modbus networks, which are commonly used for pipeline operations in
the oil and gas sector. The scanning tool monitors Modbus protocol commu-
nications to obtain detailed information about network topology and control
device configurations and status. As such, the tool is valuable to security ad-
ministrators for event logging, troubleshooting, intrusion detection and forensic
investigations [6, 13, 14].

2. Modbus Protocol

Modbus is a communication protocol for industrial control systems. Devel-
oped by Modicon (now Schneider Automation) in 1979, the Modbus protocol
specifications and standards are currently maintained by the independent group
Modbus IDA. Three documents are at the core of the Modbus standard: the
protocol specification [7] and implementation guides for use in serial lines [10]
and TCP/IP networks [8].

2.1 Function Codes

The Modbus protocol was designed as a simple request/reply communication
mechanism between a master unit and slave devices. Figure 1 illustrates a Mod-
bus transaction. Communication may occur over serial lines or, more recently,
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Figure 2. Modbus serial message.

using TCP/IP as a transport mechanism for Modbus messages. A function
code included in a Modbus message describes the purpose of the message.

The simple, yet functional, structure of the Modbus protocol has contributed
to its implementation by several vendors, enabling seamless interconnection
of devices in multiplatform environments. The open nature of the Modbus
specifications has led to its current standing as the de facto industry standard
for process control system communications in the oil and gas sector.

Modbus messages have two major parts, a header with address and control
information (possibly spanning multiple network layers) and a protocol data
unit (PDU) specifying application-level operations. When the protocol is used
in serial lines, messages also include error checking data as a trailer (Figure 2).
PDUs comprise two fields [7]: (i) a function code part describing the purpose
of the message, and (ii) a function parameters part associated with function
invocation (for a request message) or function results (for a reply message).
The function code is important because it specifies the operation requested by
the master unit; also, it conveys error information in cases where an exception
has occurred in a slave device.

The Modbus function code length is 8 bits and the maximum length of
the PDU is 253 bytes, providing a maximum of 252 bytes for use as func-
tion parameters (Figure 2). The limit on PDU length originates from legacy
implementations of Modbus on serial lines.

Modbus has three types of function codes: (i) public codes, (ii) user-defined
codes, and (iii) reserved codes. Public codes correspond to functions whose se-
mantics are completely defined or will be defined in the standard. Public code
values fall in the non-contiguous ranges {1–64, 73–99, 111–127}. User-defined
codes in the ranges {65–72, 100–110} support functions that are not considered
in the standard. The implementation of user-defined codes is left to the vendor
and there are no guarantees of functional compatibility in heterogeneous envi-
ronments. Reserved function codes overlap with the space assigned to public
codes; they correspond to public codes that are not available for public use
to ensure compatibility with legacy systems [7]. Function codes in the range
{128–255} are used to denote error conditions. If an error condition occurs for
a function code x ∈ {1–127} in a request from a master to a slave, the error
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Table 1. Public codes for diagnostic functions.

Function Code

Read Exception Status 7
Diagnostic 8
Get Communication Event Counter 11
Get Communication Event Log 12
Report Slave ID/Status 17
Report Device Identification 43

situation is indicated by the function code x + 128 in the reply message from
the slave to the master.

Public function codes are used for diagnostics, and for data access and ma-
nipulation in slave devices. Most diagnostic codes are defined for obtaining
status information from slave devices in serial lines (Table 1).

Data access functions are designed to read/write data objects from/to pri-
mary tables. Modbus defines four types of primary tables: discrete inputs,
coils, input registers and holding registers. The first two types of tables con-
tain single-bit objects that are read-only and read-write, respectively. The
other two types of tables contain 16-bit objects that are read-only and read-
write, respectively. Table 2 summarizes the public codes corresponding to data
access functions for the four types of primary tables.

Single-bit discrete inputs and coils are normally associated with discrete I/O
systems. On the other hand, input registers and holding registers are generally
associated with analog systems, i.e., analog inputs and outputs, respectively.
Any of the four primary data objects may also be used as program variables
for implementing control logic.

The Modbus standard also permits files to be used to read and write device
data (process-related data and configuration data). In this case, the data ob-
jects are called “records” and each file contains 10,000 records. The length of a
record is file-dependent and is specified using a 16-bit word. It is important to
note that the Modbus standard allows memory allocations for primary tables
and files to overlap.

2.2 Transactions

A Modbus transaction involves the exchange of a request message from a
master and a reply message from the addressed slave (except for broadcast
messages, which have no reply messages). The master communicates using
the unicast address associated with the slave device (i.e., its network ID) as
the destination address of the request, or by sending a request message to the
broadcast address [10, 11]. Note that if the broadcast address is used by the
master, the request is received and processed by all listening slaves, but no
response messages are provided by the slaves. When the unicast address of a
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Table 2. Public codes for data access functions.

Function Code Type Size (Bits)

Read Discrete Inputs 2 Read Only 1
Read Coils 1 Read/Write 1
Write Single Coil 5 Read/Write 1
Write Multiple Coils 15 Read/Write 1
Read Input Registers 4 Read Only 16
Write Single Register 6 Read/Write 16
Read Holding Registers 3 Read/Write 16
Write Multiple Registers 16 Read/Write 16
Read File Records 20 Read/Write 16
Write File Records 21 Read/Write 16
Mask Write Register 22 Read/Write 16
Read/Write Multiple Registers 23 Read/Write 16
Read FIFO Queue 24 Read/Write 16

slave is used, the addressed slave is required to send a response message back
to the master.

Frame headers for Modbus messages in serial lines (Figure 2) only include
the address of the intended slave recipient (for requests and replies). In a
request message, this address identifies the recipient; in a response message,
the address is used by the master to identify the responding slave. The address
field is 8 bits long. The broadcast address is 0 (zero); values in the range {1–
247} are used for individual slave addresses and values in the range {248–255}
are reserved. Note that the maximum size of a Modbus frame in serial line is
256 bytes (including two trailer bytes used for error detection).

As described above, an error condition is indicated by sending a different
function code in the reply message. Also, an exception code is included in the
function parameter section of the PDU.

2.3 TCP/IP Services

Modbus TCP transactions are functionally equivalent to those specified in
the serial version, i.e., master and slave devices exchange PDUs, except that
transactions are encapsulated in TCP messages. Modbus TCP extends the
functionality offered by the serial version by enabling slave devices to engage
in concurrent communications with more than one master. Also, the master
can have multiple outstanding transactions.

The implementation guide for Modbus messaging over TCP/IP [8] speci-
fies that slave devices must listen for incoming TCP connections on port 502
(IANA assigned port) and may optionally listen on additional ports. The slave
device that performs the passive open operation on TCP is designated as the
“server.” On the other hand, the master device that performs the active open
operation on TCP is designated as the “client.” Note that Modbus roles cannot
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Figure 3. Modbus TCP message.

be changed on a TCP communication channel once it is established; however,
multiple outstanding transactions may exist on the channel. A new communi-
cation channel is established when a device needs to assume a different role.

A Modbus TCP PDU includes an extra header to handle the additional
capabilities. This Modbus Application Protocol (MBAP) header has four fields
(Figure 3): (i) transaction identifier, (ii) protocol identifier, (iii) length, and
(iv) unit identifier. The transaction identifier enables a device to pair matching
requests and replies belonging to the same transaction. The protocol identifier
indicates what application protocol is encapsulated by the MBAP header (zero
for Modbus). The length field indicates the length in bytes of the remaining
fields (unit identifier and PDU). Finally, the unit identifier indicates the slave
device associated with the transaction.

The Modbus TCP specification requires that only one application PDU be
transported in the payload of a TCP packet [8]. Since application PDUs have
a maximum size of 253 bytes (see Figure 2) and the length of the MBAP is
fixed at seven bytes, the maximum length of a Modbus TCP data unit is 260
bytes.

3. Architecture

This section describes the architecture of the passive Modbus scanner that
monitors Modbus messages to identify and extract information about master
and slave devices in an industrial control network. The information is useful
for monitoring network status and troubleshooting device configurations and
connections. Given an appropriate amount of time, the tool can discover each
communicating Modbus device and the set of function codes used on the device.
Also, the tool can monitor the status of Modbus transactions, i.e., whether they
result in positive or negative responses.

To support security evaluations, the passive scanner can be used to detect
and log the presence of rogue devices, monitor memory transfer operations
and detect variations in network use in real time. Note that the monitoring
and logging of memory transfer operations help detect anomalous activity and
support forensic investigations.
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Figure 4. Modbus message structure for memory access operations.

3.1 Design and Features

The passive scanning tool has three main components: (i) a network scanner,
(ii) a Modbus transaction checker, and (iii) an incremental network mapper.
The network scanner passively captures and parses Modbus messages. Infor-
mation captured by the scanner is passed to the transaction checker to pair
matching sets of messages. The incremental network mapper uses the collected
information to populate dynamic data structures that store network topology
and status information.

Messages in a SCADA network tend to follow repetitive, often predictable
communication patterns. Based on this assumption, we use an incremental
network mapping algorithm that only updates its data structures when a new
pattern, feature or device is identified. In most cases, the rate at which new
information is added decreases over time; depending on the network traffic, no
new information may be added for a relatively long period of time. Abrupt
changes to the expected trend may indicate anomalous activity and could be
used as a metric for anomaly detection.

Data access messages (Figure 4) provide valuable information associated
with a slave device such as memory addresses, types and contents. Further-
more, since function parameters in Modbus messages always contain slave de-
vice information, i.e., a message is a request directed at a slave or a response
from a slave, Modbus communications tend to reveal more information about
slave devices than the master unit. Consequently, the reports produced by the
passive scanner concentrate mainly on slave devices.

Whenever a Modbus message captured by the scanner is matched by the
transaction checker, the network mapper inspects the transaction and updates
the state of the data structure. The following information is extracted and
stored: master id, slave id, function code and transaction status. In addition,
for each operation that involves memory manipulation, the data type associated
with the operation, access type (read/write), memory contents (accessed from
or written to the slave device), and memory addresses associated with the data
transfer are recorded.
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Algorithm 1 : Passive Network Scanning.

Input: Network traffic
Output: Queue of Modbus messages (MQueue)

Process command line options
Set exit condition
while exit condition not satisfied do

m← packet captured from network
if m is Modbus then

MQueue.add(m)
end if

end while

3.2 Algorithms

This section describes the algorithms used for passive scanning of Modbus
networks. Data input is provided by a simple packet capture utility that parses
and filters Modbus messages (Algorithm 1). The algorithms use three key data
structures:

MQueue: This FIFO queue stores unprocessed Modbus messages. The
network scanner inserts elements in the queue and the transaction checker
removes elements from the queue during processing.

MTReq: This hash table stores pending Modbus requests. Hash value i
for MTReq[i] is computed from Modbus message fields, i.e., i = hash(x1,
x2, · · · , xn). For example, a hash value could be computed using x1 =
slaveIP , x2 = masterIP , x3 = slavePort, x4 = masterPort, and x5

= TransactionID. Note that slave devices listen on TCP port 502 by
default, thus, x3 = 502 in most cases. The hash table is primarily used by
the transaction checker to generate matching request and reply messages
for Modbus transactions, which enable the incremental network mapper
to collect device information.

MDev: This hash table stores objects associated with a specific Mod-
bus device. Hash value j for MDev[j] is computed from Modbus mes-
sage fields, i.e., j = hash(y1, y2, · · · , ym). In this case, the set of fields
uniquely identify a Modbus device on the network, i.e., y1 = slaveIP ,
y2 = slave MAC address, y3 = unitID. Individual entries in the table
store device-specific information such as the addresses associated with
the slave device, addresses of master devices that communicated with the
slave device, and the function codes and parameters seen in transactions
associated with the device.

The transaction checker is responsible for matching request and reply Mod-
bus messages that belong to the same transaction, i.e., it is a stateful trans-
action monitor (Algorithm 2). Note that only request messages are stored in



Gonzalez & Papa 183

Algorithm 2 : Modbus Transaction Checking.

Input: Queue of unprocessed Modbus messages (MQueue)
Output: Queue of Modbus transactions (TQueue)

while exit condition not satisfied do
m←MQueue.next()
i ← hash(x1, x2, · · · , xn)
if m is a request then

if MTReq[i] ̸= ∅ then
log(“Multiple identical requests”)

end if
MTReq[i] ← m

else // Message m is a response
if MTReq[i] = ∅ then

log(“No matching request found”)
else

valid transaction = check transaction(MTReq[i], m)
if valid transaction = false then

log(“Invalid transaction - (invalid request/reply parameters)”)
else // MTReq[i] and m constitute a valid transaction

TQueue.add({MTReq[i], m})
MTReq[i] ← ∅

end if
end if

end if
end while

MTReq. Reply messages for which there are no matching requests are imme-
diately logged to indicate the anomaly and MTReq remains unchanged. If a
matching reply is received and validated, an entry is added to the transaction
queue TQueue (an auxiliary data structure) and the request is removed from
MTReq. On the other hand, if a matching reply is not validated, a log entry
is produced and the request message remains in MTReq in case a matching
reply is received later.

Transactions in TQueue are the input for the incremental network map-
ping algorithm (Algorithm 3). This algorithm records information about all
Modbus devices MDev detected in network communications. First, the algo-
rithm determines whether a transaction involves a new Modbus device; if this
is the case, an entry associated with the new device is added to MDev. Next,
the algorithm stores relevant transaction information, including the master ID,
function codes and function parameters. Note that transaction information is
considered relevant (and logged) only if it provides new information about the
network.

Modbus transactions may involve memory access/updates on the remote
devices as well as diagnostic operations. When operations manipulate device
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Algorithm 3 : Incremental Network Mapping.

Input: Queue of Modbus transactions (TQueue)
Output: Hash table of Modbus device objects (MDev)

while exit condition not satisfied do
trans← TQueue.next()
j ← hash(y1, y2, · · · , ym)
if MDev[j] = ∅ then // Handle new observed devices

MDev[j]← newMDev(trans.slave)
end if
if trans.master /∈MDev[j] then // Process master information

MDev[j]←MDev[j]
⋃

trans.master
end if
if trans.fcode /∈MDev[j] then // Process function code

MDev[j]←MDev[j]
⋃

trans.fcode
end if
if trans.fparameters /∈MDev[j] then // Process function parameters

MDev[j]←MDev[j]
⋃

trans.fparameters
end if

end while

memory, each operation and the corresponding memory contents are logged.
These logs are useful for system monitoring, troubleshooting problems with
devices, detecting system anomalies and reconstructing network events.

4. Experimental Results

A prototype implementation of the passive Modbus scanner was tested in a
laboratory environment using two programmable logic controllers (PLCs), one
master and one slave, in an Ethernet segment. Two experiments were con-
ducted. The first experiment involved normal Modbus TCP communications
between both devices. The second involved a rogue master. Modbus traffic
was generated by having the master read two coils (associated with two PLC
inputs) and then write a coil (associated with a PLC output) in a continuous
loop.

The two input coils were located at memory addresses 3088 and 3152; the
output coil was located at address 3104. The slave device was assigned the IP
address 192.168.37.12 and was configured to respond to 192.168.37.11, the
IP address of a master.

In the first experiment, Modbus traffic was captured over a sufficiently long
period of time to obtain most of the descriptive features of the network. The
passive scanner then created a report based on the captured traffic (Figure 5a).

The report describing the network has four sections (for each slave device).
The first section provides slave device ID information, i.e., the unit identi-
fier, MAC address and IP address. The second section provides information
about the master devices (IP and MAC addresses) that communicated with
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(a) (b)

Figure 5. Experimental results: (a) Normal operation; (b) Rogue master.

the slave device. The third section describes all the function codes associated
with requests sent to the slave device and whether or not the associated replies
indicated error conditions. The fourth section provides detailed information
associated with memory access/update operations and diagnostics. For exam-
ple, in Figure 5a, the report lists the values read from input coils at addresses
3088 and 3152, and the values written to output coil at address 3104.

The second experiment involved a rogue master unit, which was assigned
the IP address 192.168.37.199. Network traffic was captured for a shorter
period of time than in the first experiment (resulting in a shorter report) but
long enough to reveal the existence of the second master. The report in Fig-
ure 5b shows the presence of two masters. The report also shows that the
rogue master attempted to execute function code 43 (encapsulated interface
transport) with sub-code 14, a diagnostic function used to obtain (read) slave
device identification information. Note that a negative response was obtained,
i.e., the operation could not be completed.

5. Conclusions

The use of TCP/IP as a carrier protocol for SCADA systems and the inter-
connection of SCADA networks with IT networks opens pathways for remote
access to industrial control systems. Security tools specifically designed for
the SCADA networks are required because traditional IT security tools are
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generally not appropriate for industrial control systems. The passive scanner
described in this paper provides valuable information about the state of Mod-
bus networks, which are commonly used for pipeline operations in the oil and
gas sector. The scanner is invaluable for tracking normal system operations
as well as detecting anomalous events such as those caused by a rogue master
device.
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