
Chapter 20

DETECTING NON-DISCOVERABLE
BLUETOOTH DEVICES

Daniel Cross, Justin Hoeckle, Michael Lavine, Jason Rubin and
Kevin Snow

Abstract Mobile communication technologies such as Bluetooth are becoming
ubiquitous, but they must provide satisfactory levels of security and
privacy. Concerns about Bluetooth device security have led the spec-
ification of the “non-discoverable” mode, which prevents devices from
being listed during a Bluetooth device search process. However, a non-
discoverable Bluetooth device is visible to devices that know its ad-
dress or can discover its address. This paper discusses the detection
of non-discoverable Bluetooth devices using an enhanced brute force
search attack. Our results indicate that the average time to attack
a non-discoverable Bluetooth device using multiple search devices and
condensed packet timing can be reduced to well under 24 hours.

Keywords: Bluetooth security, device discovery, non-discoverable mode

1. Introduction

Bluetooth devices are growing in popularity, despite security concerns. A
Bluetooth device in the “discoverable” mode is easily scanned using a com-
puter; moreover, private information can be downloaded from the device. This
technique has been used in high profile attacks against celebrities whose devices
were operating in the discoverable mode.

To address some of these concerns, the Bluetooth Special Interest Group
(SIG) recommends that devices be placed in the non-discoverable mode, which
prevents them from being listed during a Bluetooth device search process. How-
ever, a non-discoverable Bluetooth device can still be attacked if its address is
already known or is determined by brute force. Most brute force methods take
about a week, which alleviates the security concerns to some extent. However,
a brute force search for non-discoverable Bluetooth devices can be sped up
significantly using certain details about device operation.



282 CRITICAL INFRASTRUCTURE PROTECTION

This paper presents a novel technique for detecting non-discoverable Blue-
tooth devices. It leverages the constraints imposed on the connection process
and uses multiple search devices to enhance the brute force search for device
addresses. Results indicate that the average time to successfully attack a non-
discoverable Bluetooth device using 79 search devices and condensed packet
timing is well under 24 hours.

2. Background

The Bluetooth specification [1] establishes certain constraints and parame-
ters to ensure the interoperability of Bluetooth devices. Our method for accel-
erating the search for non-discoverable devices leverages the constraints on the
Bluetooth connection process.

2.1 Bluetooth State Transitions

The Bluetooth specification defines a state transition sequence for Bluetooth
devices. A device in the Standby state can enter the Inquiry, Inquiry Scan,
Page or Page Scan states. A Bluetooth device enters the Inquiry state when
it sends inquiry packets. A device enters the Inquiry Scan state to listen for
and respond to inquiry messages broadcast by other devices. The Inquiry and
Inquiry Scan states are used for device discovery. The Page and Page Scan
states are reached when a connection is being established between two devices.
A Bluetooth device enters the Page state when it transmits page packets; it
enters the Page Scan state to listen for and respond to page packets with its
address. The Master Response and Slave Response states are entered when
packets are exchanged as a connection is being established. Upon successfully
completing a connection, a Bluetooth device enters the Connection state.

2.2 MAC Address Components

Every Bluetooth device is assigned a unique 48-bit MAC address. The 48-
bit address has three segments. The sixteen most significant bits are dedicated
to the non-significant address part (NAP). The upper address part (UAP)
constitutes the next eight bits of the address. The NAP and UAP are assigned
to companies that manufacture Bluetooth devices. The last 24 bits of the
address make up the lower address part (LAP), which is designated by the
manufacturer. The addressing of page packets is based on the 24-bit LAP.

2.3 Discoverable and Non-Discoverable Modes

Bluetooth devices discover and connect to each other using inquiry and pag-
ing procedures, respectively. An inquiry procedure is initiated by an inquiring
device. Discoverable Bluetooth devices send responses to inquiry packets, mak-
ing the inquiring device aware of its presence. Bluetooth devices in the non-
discoverable mode do not reply to inquiry packets and, thus, remain invisible
to the inquiring device.



Cross, Hoeckle, Lavine, Rubin & Snow 283

Figure 1. Hop selection kernel for page, page scan and response.

2.4 Connection Process

The paging procedure uses the address of a nearby Bluetooth device. Two
devices are involved in a paging procedure: the device that seeks a connection
by issuing a paging packet and the device that listens for a paging packet
using a page scan. Only the device with the correct address responds to a
paging packet. The channel used by the paging procedure is dependent on the
characteristics of the connectable device.

The paging device attempts to approximate the clock of the connectable
device by estimating its offset and adding the offset to its own clock. This ap-
proximation determines the timing of the page scan channel of the connectable
device. The hopping sequence is determined by the address of the connectable
device. The page hopping sequence and page response hopping sequence both
utilize only 32 of the 79 available frequencies. The frequencies used by the two
sequences are in one-to-one correspondence with each other.

2.5 Hop Channel Calculation

A Bluetooth device calculates a hop channel on-the-fly as it is dependent on
the time and the address of the device with which it is communicating. The
set of channels and the order in which they are used are determined by the hop
selection kernel (Figure 1). According to the Bluetooth specification, the order
and phase are determined by portions of the lower 28 bits of the slave’s MAC
address and the paging device’s clock. The lower seven odd bits of the MAC
address are used to determine the channels in the set. The inputs X, Y1 and
Y2 vary depending on the current mode (page scan, inquiry scan, page, inquiry,
responses, etc.). Inputs A–F remain constant for the majority of modes.

2.6 Page Packets

A page packet is 68 bits in length. Unlike other packets, it has no header,
payload or trailer, only a device access code (DAC). The DAC consists of a 4-



284 CRITICAL INFRASTRUCTURE PROTECTION

Figure 2. Paging process (first packet).

bit preamble and a 64-bit sync word. The preamble is an alternating sequence
of 0s and 1s based on the least significant bit of the sync word. The sync word
is created by appending six bits to the end of the LAP. If the most significant
bit of the LAP is 0, then 001101 is appended to the LAC; otherwise, 110010 is
appended. The thirty bits are then XORed with a pseudo-random noise (PN)
sequence. The result is then XORed with a previously generated codeword to
create the 64-bit sync word.

2.7 Paging Process

The paging process hops channels 3,200 times per second. Two page packets
are sent in every transmission (TX) slot, each on a different channel. A single
TX slot covers 625 µs. Since there are two packets, 312.5 µs are used for each
frequency. Out of the 312.5 µs, 68 µs are spent sending a packet.

Following every TX slot is a reception (RX) slot, which also lasts 625 µs.
The RX slot is used by a paging device to receive the first page slave response
packet from a connectable device. The paging response procedure used by the
connectable device hops the same channels as the paging procedure and at the
same rate. Upon receiving the page packet in the RX slot, the connectable
device waits until it receives the corresponding packet in the next TX slot. If
the connectable device receives the page packet in the second 312.5 µs half of its
RX slot, then the first page slave response packet is sent in the second 312.5 µs
half of the next TX slot. Thus, there is a consistent 625 µs between when the
page packet is sent and when the first page slave response is received by the
paging device.

Figures 2 and 3 illustrate the initial packet exchange in the paging process.
The diagrams show that a reply to a page packet is sent 625 µs after the page
packet. As shown in Figure 2, a page packet transmitted by a paging device as
the first page packet in the TX slot results in a page reply 625 µs later in the



Cross, Hoeckle, Lavine, Rubin & Snow 285

Figure 3. Paging process (second packet).

paging device’s RX slot (also the first TX slot of the paged device). Similarly,
a page packet transmitted as the second page packet in the TX slot results in a
page reply 625 µs later in the paging device’s RX slot (Figure 3). The paging
process involves additional packet exchanges, but they are not relevant because
our goal is to discover devices, not to establish connections with them.

3. Related Work

While a variety of ad hoc tools have been developed for brute force searches
of non-discoverable Bluetooth devices, little research exists on enhancing brute
force techniques. One exception is the work of Haataja [4]. Haataja reasons
that the address space to be searched can be reduced by assuming that the
manufacturer is known; this assumption yields a reduced search space of 224

addresses. Haataja used a Bluetooth-compatible radio unit and a protocol
analyzer to attempt ACL link connections to remote devices for each address.
In one experiment, 2,000 addresses were scanned in 174 minutes. Based on
these results, it is estimated that, on the average, 1.4 years of scanning would
be required to discover a single device. Using 25 scanning devices would reduce
the average time to 20.3 days.

However, some of Haataja’s assumptions are problematic. First, it is not
reasonable to assume that the device manufacturer is known. It should be
possible to detect devices from any manufacturer. Therefore, the approach
requires at least 20.3 days for each manufacturer. Our methodology, on the
other hand, is faster and makes no assumptions about the device manufacturer.

The second problem is that the 20.3 day estimate relies on 25 devices scan-
ning in parallel. Bluetooth operates on 79 unique frequencies and a reliable
brute force search of one address requires connection attempts over 32 unique
frequencies within a short time period. Parallel scanning offers no guarantees
that the devices will not concurrently send requests on identical frequencies,



286 CRITICAL INFRASTRUCTURE PROTECTION

which results in collisions. Thus, using 25 or more scanning devices in par-
allel is very unreliable due to the large number of collisions. In contrast, our
methodology can employ up to 79 parallel devices while guaranteeing that no
collisions will occur.

The security of Bluetooth devices in the non-discoverable mode is a serious
issue. Wong and Stajano [10] have investigated the paging process and the
security impact on Bluetooth devices operating in the non-discoverable mode.
Their work is particularly relevant because the non-discoverable mode is the
principal defense against tracking, monitoring and exploiting Bluetooth devices.
Wong and Stajano also propose an enhanced anonymity method for connecting
to devices using paging packets. Their Protected Pseudonyms method employ-
ing authentication and cryptography is one of a few proposals that enhances
the security of the paging process and the non-discoverable mode.

A white paper by Gehrmann [3] focuses on the encryption and authentica-
tion architectures built in the baseband layer of Bluetooth devices. The paper
discusses the need to keep a Bluetooth device in a secure environment when
pairing. But it does not discuss the use of the non-discoverable mode as a
security function, nor does it provide recommendations for using the mode to
secure devices.

A more recent document released by the Bluetooth SIG [2] addresses sev-
eral security exploits and concerns. The document explicitly cites the non-
discoverable mode as the chief security mechanism and advocates its use to
protect against a number of exploits and attacks against Bluetooth-enabled de-
vices. It even states that the non-discoverable mode can protect devices from
viruses and worms. Unfortunately, this premise is based on the assumption
that a non-discoverable Bluetooth device cannot be detected and will not re-
spond to an attacking device. Our methodology, which is capable of detecting
Bluetooth devices in the non-discoverable mode, shatters this assumption.

4. Detection Methodology

A straightforward brute force search of the address space based on the Blue-
tooth specification is trivial, but incredibly time consuming. The best brute
force approach [4] is estimated to take an average of 1.4 years using one search
device, and just under a week with 79 devices (the maximum number of devices
used in our methodology). Our methodology is faster because it: (i) reduces
the number of addresses to be searched, and (ii) decreases the time taken to
search addresses. Searching one address entails sending the correct page packet
on each page scan frequency with the appropriate timing. Therefore, a brute
force technique involves not only searching for all possible addresses, but also
each of their corresponding paging channels.

The following sections describe our address space and search time reduction
techniques. The results obtained using the reduction techniques are presented
along with some practical considerations.



Cross, Hoeckle, Lavine, Rubin & Snow 287

4.1 Address Space Reduction

The number of addresses to be searched is determined by the DAC sent in
a page packet and the address inputs into the channel hop selection kernel.
As mentioned above, one component of the DAC is the 24-bit LAP, which is
the only portion of the address included in a page packet. Since there are
224 unique LAPs, only 224 addresses instead of all 248 addresses need to be
searched. Unfortunately, this also means that the number of addresses to be
searched is at least 224 without detailed address space profiling. However,
paging a single address involves transmitting the page packet at the correct
time on the appropriate channel.

As mentioned in Section 2, 28 bits of the address are used for hop channel
selection. Using a brute force technique to identify the address corresponding
to a channel set increases the search space from 224 to 228. However, this
increase is avoided because only certain bits of an address are used to select the
channels in the page scan channel set. Specifically, the lower seven odd address
bits 13, 11, 9, 7, 5, 3 and 1 are used to determine the channel set. Some of the
remaining address bits determine the order of the channels selected, but this is
not relevant to our methodology.

Since the address bits mentioned above are contained in the LAP, the size
of the search space is still 224. Assuming a uniform distribution of address
assignments, an average of 223 addresses need to be searched before a response
is received.

4.2 Search Time Reduction

Search time reduction is achieved through two approaches: condensed packet
timing, which increases the rate at which page packets are sent; and parallelized
paging, which enables simultaneous page requests over each page channel in one
TX slot.

Condensed Packet Timing To decrease the amount of time taken to
search an address, the number of packets sent per page scan window (Npw) can
be increased from the value in the Bluetooth specification. Npw is computed
using the following equation:

Npw =

⌊

Tw page scan

Tpage + Tdelay

⌋

.

Figure 4 presents the timing diagram represented by the equation. Since the
page scan window (Tw page scan) and the paging packet transmit time (Tpage)
are variables outside the scope of a paging device’s control, the delay between
page packets (Tdelay) is the only controllable factor for determining the number
of packets that can be sent in a single page scan window. In a standard page
sequence, packets are sent at a rate corresponding to a Tdelay of 244.5 µs. This
allows the sending device enough time to change channels if needed. However,



288 CRITICAL INFRASTRUCTURE PROTECTION

Figure 4. Page packet timing diagram.

our modified approach does not require a paging device to change channels;
this permits the use of a lower Tdelay.

Certain restrictions are imposed on Tdelay. One is that Tdelay must be large
enough to allow a response packet to be received without colliding with other
page packets. Since a page packet takes 68 µs to transmit, the lower bound on
Tdelay is 68 µs.

Another restriction is that the period during which a page response is re-
turned (and no transmission is allowed) must be 625 µs after the respective
page packet is sent to ensure that the packet is received. Therefore, a targeted
device must not transmit during periods when a response page packet might
be sent.

The minimum Tdelay is 68 µs because a page packet must fit in the reception
window. This yields 82 packets per page scan window. Unfortunately, trans-
mitting and receiving packets during these intervals causes packet collisions.
Since the number of packets must be reduced in increments of one, the number
of packets per page scan window is reduced from 82 to 81, yielding a Tdelay of
70.88 µs, which does not cause packet collisions.

Thus, a Tdelay value of 70.88 µs is selected. It satisfies all the constraints and
is significantly smaller than the value in the Bluetooth specification (244.5 µs).
The result is that condensed timing allows more page packets to be sent in a
single page scan window. Since we use the default page scan window value of
11.25 ms, Npw is computed as:

Npw =

⌊

11.25 ms

68 µs + 70.88 µs

⌋

= 81 pages/window.

Note that there is no way to control when a target device starts its page
scan. This can occur while a packet is being transmitted, which would cause
the device to miss a packet addressed to it. If the first and last packets sent in
a single window are the same, then all unique packets (Nupw) could be received



Cross, Hoeckle, Lavine, Rubin & Snow 289

by the target device, but this comes at the expense of an additional packet per
page scan window:

Nupw = Npw − 1

= 81 pages/window − 1 redundant page/window

= 80 pages/window.

Parallelized Paging In addition to increasing the number of packets that
are transmitted per page scan window via condensed timing, multiple page
packets may be sent in parallel during a single TX slot. A device may be
listening on any of the 79 possible page scan channels depending on its ad-
dress, each of which can be transmitted simultaneously using multiple devices.
Previous approaches have failed to address the fact that collisions increase as
more devices are added to increase the scanning speed. Collisions decrease
the reliability of address space scanning, which ultimately increases the search
time.

These problems can be overcome using a simple matrix representation that
models more complex timing and channel selection issues. Based on the as-
sumption that 79 devices are being used and that each is transmitting in
blocks of Nupw, matrices of size Nupw × 79 can be created with <address,
channel> pairs as their elements. Each column of a matrix is deemed to be
a “transmission slot.” The task is to fill the matrices as densely as possible.
The next two sections describe how matrix elements are generated and how the
elements are placed in matrices.

Paging Channel Set Generation A formula for generating the 32 pag-
ing channels for each address is a prerequisite for packet scheduling. We have
previously described the main aspects of hop channel selection. Recall that it
requires the set of channels, not the specific order of the set. Inputs E and F
in Figure 1 are the only inputs that determine the unordered set of channels.
Since input F is used in the Connection state, not in any of the paging sequence
states, this leaves input E and the 5-bit output of a permutation to determine
the channel set. A simple iteration from 0 to 31 (representing the 32 possible
permutation values) added to E gives the 32 indices into a channel mapping
register. Therefore, the formula for calculating the paging channel set given
i ∈ 0..31 is:

Channeli = (((E + i) mod 79)× 2) mod 79.

(E + i) mod 79 generates the output of the final addition of the selection box.
The modulo 79 computation maps the output of the addition (channel index)
to the mapping register, producing the actual channel number.

A set of <address, channel> pairs is generated for each address. Since
each 7-bit E value corresponds to a set of 32 channels, 128 groups with 32
channels each are created. Some of these sets are identical because of the
modulo 79 computation. Each LAP address therefore belongs to one of the 128



290 CRITICAL INFRASTRUCTURE PROTECTION

groups. Thus, 224/128 or 217addresses belong to each group, which must then
be scheduled into matrices.

Packet Scheduling The goal is to fill all the matrices as densely as pos-
sible, where each matrix element corresponds to an <address, channel> pair.
Two restrictions apply: (i) channels must be unique within a transmission slot
(matrix column), and (ii) <address, channel> pairs for an address must fit in
one matrix or be divided among matrices in multiples of 32.

The first restriction guarantees that no collisions occur between targeted
devices. The second ensures that the listening device can successfully receive
a page packet for each address. Since a device could be listening on any of
its 32 paging channels during each page scan window (matrix window), each
channel must be tried. However, the listening device increments the channel it
listens on for each new matrix window. If half the channels for an address are
tried in a matrix, the second half cannot be tried in a second matrix because
nothing is known about the channel set order or phase. The only assumption
that can be made is that 32 matrices later, the listening device will be on the
same channel. This is because a listening device repeatedly scans the same 32
channel sequence.

A matrix can be created by scheduling the 32 channels of each of the 128
groups mentioned above into one matrix. Each element of the matrix contains
the group number (0–127). This fills most of the first 64 of 80 slots, leaving the
remaining 16 slots unused. The result is convenient because 16 is one quarter of
64: one of the 64-slot matrices can be split up into quarters, which can fill the
remaining 16 slots of 4 sequential matrices. Thus, five 64-slot matrices fit into
four 80-slot (full) matrices. The four full matrices may be used as a template by
replacing the group number in each element with an <address, channel> pair
from the respective group.

Unfortunately, this does satisfy the restriction that an address split across
matrices must be 32 matrices apart. Therefore, instead of splitting one 64-slot
matrix among four sequential full matrices, 32 64-slot matrices are split among
128 full matrices. The first quarters of the 32 64-slot matrices are split among
the first 32 sequential full matrices, the 32 second quarters are split among
the second 32 sequential full matrices, and so on (see Figure 5). This forces
the matrices to be generated in blocks of 128, which cover 20,480 addresses.
The generation of 128 matrix blocks is performed until all the addresses are
scheduled. In total, 104,863 matrices are generated.

4.3 Results

Given that the page channels are known, but not their order or phase, page
packets must be sent in a redundant manner to guarantee reception within the
page scan interval. Therefore, if the phase of a targeted device is not known,
the timing of a page scan window occurrence is completely unknown to the
sending device. Thus, it is necessary to transmit the same sequence of Nupw

packets for a duration equal to T page scan to guarantee that regardless of when



Cross, Hoeckle, Lavine, Rubin & Snow 291

Figure 5. 128 matrix block.

the listening device wakes up it will receive all Nupw packets required for a
successful brute force search.

The average time taken for a brute force search of an address (Tbf ) can be
calculated as:

Tbf =
Tpage scan × f(Na, Nd, Nupw)

2
.

Na represents the number of addresses to be guessed and Nd is the number of
devices used in the brute force search. The function f is determined by the
packet schedule and represents the number of matrices needed to search for all
the addresses. The denser the matrices, the lower the f value and the lower
the Tbf value.

Table 1. Average time required for brute force search.

Mode Tpage scan Tbf

R0 11.25 ms 19.66 min
R1 1.28 s 18.64 hrs
R2 2.56 s 37.28 hrs

The Bluetooth specification defines three page scan modes, R0, R1 and R2,
which differ only in their page scan intervals. Table 1 lists the average times to
find addresses for the three modes of operation. In the best case (mode R0),
an address is found in under 10 minutes. However, the majority of Bluetooth
devices operate in mode R1. A sample calculation for mode R1 is given by:

Tbf =
1.28 s× f(224, 79, 80)

2

=
1.28 s× 104, 863 matrices

2
= 18.64 hours.



292 CRITICAL INFRASTRUCTURE PROTECTION

4.4 Practical Considerations

The theoretical results presented above must be considered in the context
of real-world implementations. The principal issues relate to the target’s pro-
cessing speed, channel interference and overall scalability.

The target’s ability to process page packets may not be fast enough to keep
up with the speed at which it receives packets from the brute forcing devices.
This is a consequence of Tdelay being significantly shortened. Currently, it
is unknown if most Bluetooth devices can process packets rapidly enough to
accommodate the new Tdelay. Of course, Tdelay can be increased as required,
but the overall time required for a brute force search is also increased.

Channel interference can be quite significant in real-world environments.
The interference could come from the brute forcing devices themselves or from
environmental noise (including other Bluetooth devices). Packet scheduling
ensures that the brute forcing devices do not interfere with each other because
each device transmits on its own channel. Environmental noise is more difficult
to mitigate; future research should attempt to properly model the noise and
identify possible mitigation strategies. Since packet scheduling is never able
to completely fill all the packet matrices, the potential exists to utilize unused
matrix slots for redundant address searches. A trade-off procedure could be
developed that balances the number of unique guesses (and total search time)
with the number of redundant guesses that could be adjusted based on the
noise model.

Finally, with respect to scalability, it may be feasible to use 79 devices,
but this may not be practical. It is essential that the model be capable of
scaling down to fewer than 79 devices. The time required for a brute force
search scales linearly with the number of devices used. When one device is
available, everything is done the same way as with 79 devices, except that only
one channel is transmitted per address space search. Page packets would then
be sent for all addresses on channel 1, then channel 2, etc. Similarly, in the
case of two devices, two channels could be utilized simultaneously (and so on).

5. Conclusions

Mobile phones, PDAs, input devices, smart card readers, computers and
automobiles have all become Bluetooth-enabled devices. More than 1 billion
Bluetooth devices are in use worldwide, and another 13 million devices are
shipped each week [9]. The ability to glean information from the devices is
a serious concern; due to the ubiquity of Bluetooth devices, this represents a
threat to the critical infrastructure.

The non-discoverable mode is intended to serve as a protection mechanism
for Bluetooth devices. However, the ability to detect non-discoverable devices
threatens security and privacy. Detecting a device is a precursor to tracking its
location; once the device is located, other exploits can be launched.

The methodology presented in this paper drastically reduces the time needed
for a brute force attack on Bluetooth devices. The combination of collision



Cross, Hoeckle, Lavine, Rubin & Snow 293

avoidance, multiple scanning devices and condensed packet timing enables the
average device discovery time to be reduced to a mere 20 minutes.

This work opens several avenues for future research. One extension is to ver-
ify the theoretical results via a software simulation using a coded extension to
IBM’s BlueHoc 2.0 [8]. Other extensions include designing a hardware solution
for adjusting detection parameters based on environmental variables, refining
the packet scheduling technique, and reducing the address search space via a
statistical analysis of assigned MAC addresses. Of course, the most pressing re-
search issue is to devise mitigation strategies that will render Bluetooth devices
immune to brute force attacks.

Acknowledgements

The authors gratefully acknowledge the support of Professor Gerald Masson
and the suggestions provided by Jeff Cua.

References

[1] Bluetooth Special Interest Group, Bluetooth core specification v2.0 + EDR
(bluetooth.com/Bluetooth/Learn/Technology/Specifications), 2004.

[2] Bluetooth Special Interest Group, Wireless security (www.bluetooth.com
/Bluetooth/Learn/Security), 2007.

[3] C. Gehrmann, Bluetooth security white paper, Bluetooth SIG Secu-
rity Expert Group (grouper.ieee.org/groups/1451/5/Comparison%20of%
20PHY/Bluetooth 24Security Paper.pdf), 2002.

[4] K. Haataja, Two practical attacks against Bluetooth security using new
enhanced implementations of security analysis tools, Proceedings of the
IASTED International Conference on Communication, Network and In-
formation Security, pp. 13–18, 2005.

[5] J. Hallberg, M. Nilsson and K. Synnes, Bluetooth positioning, Proceed-
ings of the Third Annual Symposium on Computer Science and Electrical
Engineering, 2002.

[6] M. Herfurt, and C. Mulliner, Remote device identification based on Blue-
tooth fingerprinting techniques, White Paper (version 0.3) (trifinite.org
/Downloads/Blueprinting.pdf), 2004.

[7] IEEE Registration Authority, Public OUI listing (standards.ieee.org/reg
auth/oui/index.shtml), 2006.

[8] A. Kumar, BlueHoc: Bluetooth performance evaluation tool (bluehoc.sou
rceforge.net).

[9] M. Lev-Ram, Bluetooth’s amazing makeover, Business 2.0, June 14, 2007.

[10] F. Wong and F. Stajano, Location privacy in Bluetooth, Proceedings of
the Second European Workshop on Security and Privacy in Ad Hoc and
Sensor Networks (LNCS 3813), R. Molva, G. Tsudik and D. Westhoff
(Eds.), Springer-Verlag, Berlin-Heidelberg, pp. 176–188, 2005.


