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Abstract Biological systems are known to be probabilistically self-stabilizing, i.e.
with a high probability they can reach a stable state from any initial state. This
property is very important to computer-based systems, too. However, building self-
stabilizing systems is still very difficult. Proving that any given implementation is
in fact self-stabilizing is even harder. Nature has a big advantage: Any living being
must eventually die and limited energy limits the harm that an error can have on
the system. This greatly simplifies the realization of self-stabilization. To transfer
this concept to computer-based systems, we propose to modify the computational
model on which software is currently being built. We introduce energy-awareness
in Turing Machines (TMs). This will guarantee that any TM program that is correct
in the absence of errors is at the same time self-stabilizing in the presence of errors.

1 Introduction

Today’s software often assumes that errors do not occur. Better software designers
define at least an error model. For example, they assume network errors but no
memory errors. If errors occur which do not fit in the error model, the error is neither
detected nor corrected. If the error fits in the error model, it can be detected and
by default the application is stopped. In the best case, the error is detected and
corrected.

Biological systems are different. They do not feature any error detection and
they don’t throw exceptions. In the physical world all possible states are allowed
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and biological systems have the tendency of developing from most initial states to
a set of preferred states. In these preferred states, living beings exist and reproduce
themselves.

In computer science we divide all possible states in valid and invalid states. Fur-
thermore, computer programs assume a precisely defined initial state. Any state that
can be reached without errors from this initial state is then called a valid state. A
system is called self-stabilizing if it transits from any invalid state to a valid state in
a constant amount of time.

In the related work section we discuss algorithms which are known to be self-
stabilizing. However, the development of such algorithms and the proof of their
self-stabilization property require much time and expertise. In most commercial
applications this is simply too expensive. Furthermore, real-life systems are very
complex which renders theoretical proofs next to impossible.

Obviously, there seems to be a major difference between software development
and biological evolution. In biology, evolution is constantly changing the genes and
up to now every known genetic program either terminated (i.e. the species died) or
it could reach a stable state where it continuously reproduces itself. Furthermore,
no species has been accidentally created that happened to eat up the universe or
bring it to a halt. Unfortunately, this is what we have to expect if we apply arbitrary
mutations on software programs. We will most likely end up with a program that
neither terminates nor reaches a valid state. Even worse, it will consume all CPU
time, disable all interrupts and lock the computer.

We claim that the problem is the automaton which executes the programs. Bio-
logical systems are being executed on a physics engine which follows a set of funda-
mental laws. Computer systems are being executed on machines which are a Turing
Machine or some equivalent. If we want to develop computer software inspired by
biology, we must first fix the computational model, i.e. the machine on which the
software is executed. In this paper we present a modified Turing Machine which
takes fundamental laws of physics into consideration. The result is that applications
running on this machine are automatically self-stabilizing.

2 Application Scenario

Biologically inspired software is not necessarily the best approach for all application
scenarios. In some application domains errors are not part of the normal operation.
Hence, if an error is detected, the system is stopped and the administrator must fix
it. For example, office and enterprise applications belong to this category.

Applications dealing with sensors and actuators are different. Temporary sensing
errors or temporarily broken actuators belong to the normal mode of operation and
there is no system administrator available for fixing every possible problem. Thus,
self-stabilizing systems are preferable, because they can autonomously recover from
a wide range of errors without any intervention by a system administrator.
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Figure 1 Control Loop

The application scenario for our research consists of a wide range of control ap-
plications. The structure of control applications is shown in Figure 1. The controlled
system consists of actuators and sensors and interacts with the physical world. The
controller is implemented in software and communicates with the controlled sys-
tem by exchanging messages. Based on the sensor input and its internal state the
controller sends commands to the actuators. The behaviour of the actuators in turn
influences the sensors. Thus, the system is a software controlled feedback loop. Er-
rors or disturbances can be introduced on the controlled system. If the controller is
self-stabilizing, it can recover from any temporary sensing error and from any tem-
porarily broken actuator in constant time. Thus, for every system exists a constant
time t such that the entire system reaches a consistent state in no more than t seconds
after all temporary errors are gone.

The aim of our research is to create a software development process and tools for
building self-stabilizing controller software. In addition, we believe that the results
of our work can be applied to other application scenarios, for example in the area of
pervasive and ubiquitous computing.

3 Physics versus Turing Machines

The Turing-Church-Thesis claims that every effectively computable function can
be regarded as computable under the definition of the Turing Machine. It does by
no way claim the converse. Not every function that can be computed by a Turing
Machine can be computed by a physical machine. The typical argument is that a
TM has an infinite tape whereas all physical machines are limited. However, the
difference between physics and Turing Machines is not only a matter of tape length.

Our argumentation is that Turing Machines do not obey the second law of ther-
modynamics, which states that ”the total entropy of any isolated thermodynamic
system tends to increase over time, approaching a maximum value.” In contrast, a
Turing Machine can work until eternity on a program that continuously increases
the entropy of the tape. Even if we could build a physical computer with infinite
amount of memory, it would still not be Turing equivalent because it must obey the
second law of thermodynamics.



4 T. Weis and A. Wacker

As a consequence of this observation, we modified the Turing Machine. The
first law of thermodynamics states that ”in a closed system energy can neither be
created nor can it disappear. It can only be transformed in other kinds of energy”
(e.g. thermal energy or work force). Thus, we had to introduce a concept that is
comparable to thermal energy and work force and a transformation between both of
them. The second law of thermodynamics limits the transformation between thermal
energy and work. It implies that it is impossible to construct a process that translates
thermal energy lossless to work force. This is often expressed as: ”Perpetuum Mobili
cannot exist”. Thus, our machine must have a way of transforming thermal energy
to work force in a non-lossless way only.

We do not want to overstress the parallels to physics. However, the laws of ther-
modynamics have been the starting point of our approach and inspired our machine.
Furthermore, these laws describe very well that there are some major differences
between the computational model used by biology (the laws of physics) and the
computation model of computer systems (Turing Machines).

4 Energy-aware Turing Machines

In our approach we assume that the read/write head of the TM has a certain thermal
energy. The tape has the thermal energy 0 and no symbols exist on the tape initially,
i.e. the head is hot and the tape is cold. The thermal energy of the read/write head can
be transformed into work force and it can be transferred to the tape and its symbols.
A read/write head can perform three kinds of work. It can move, read, or write.
Performing any of these actions affects the thermal energies. We assume that the
tape is huge, i.e. we can transfer much thermal energy to the tape without changing
its temperature significantly. The symbols are in contrast tiny. Little energy transfer
is required to heat them up. The head is supposed to be much larger than the symbols
but small compared to the tape. Size matters because it determines how much energy
is required to change the temperature of an entity.

In our machine the head is moving upwards and downwards. Moving the head
upwards transforms thermal energy of the head into potential energy. Moving the
head downwards transforms potential energy back into thermal energy. Because of
the second law of thermodynamics this transformation process must not be lossless.
Therefore, during each movement the read/write head heats up the tape, i.e. transfers
the thermal energy ∆E > 0 from the head to the tape (see Figure 2). As a result no
energy is ever lost or created and a perpetuum mobile (i.e. a head that is moving
forever) is impossible because more and more energy is transferred to the tape.

Over time the symbols exchange thermal energy with the tape. Thus, the symbols
cool down. Eventually the tape and all symbols will have the same temperature and
can no longer exchange thermal energy. A symbol which has the same temperature
as the tape is no longer readable and disappears. Thus, the head must always write
symbols which are at least as hot as the tape. If this is no longer possible, no symbols
can be written any more.
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Figure 2 Operations of an energy-aware Turing Machine

Writing a symbol to the tape transfers thermal energy to the symbol until head
and symbol have the same temperature. This implies that hot heads write hot sym-
bols and cooler heads write cooler symbols. This is in line with the second law of
thermodynamics because the thermal energy flows from a warm entity (the head) to
a cooler entity (the symbol) until both having the same temperature.

If the head is reading a symbol, it cools down until the head and symbol have the
same temperature. The thermal energy lost by the head in this process is transferred
to the tape. Thus, the cooler the symbol that is being read, the cooler the head be-
comes while reading it. This implies that the head cannot read a cold symbol and
write a hot symbol afterwards. The energy of a freshly written symbol is always
higher than the energy of any symbol written afterwards.

The head cannot move until eternity because it constantly looses thermal energy
to the tape. Eventually the only possible movement is downwards because this is the
position with the lowest potential energy and the head cannot spend more thermal
energy on moving upwards. Eventually, the machine will fall back to its initial state.
The head falls down to the lowest position and all symbols disappear once they
reach the same temperature as the tape.

The amount of energy that is lost (i.e. transfered between head or symbols and
tape) determines the stabilization time. This energy loss must always be higher than
0 to avoid a perpetuum mobile. The higher the loss, the faster will the head return
to its initial position and the faster will erroneous symbols disappear. On the other
hand, high energy losses mean that the system will forget fast, i.e. its view on past
sensor values is very narrow, because old values disappear very quickly.

The machine presented so far is in line with the rules of thermodynamics. How-
ever, it is not very useful yet. The machine has simply a limited time for execution.
After this time all parts of the machine have the same temperature and the machine
resets to its initial state. In the next chapter we will therefore extend our machine to
read sensor values and control actuators.
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5 Sensors and Actuators

The rules of thermodynamics cited so far apply to closed systems. However, if we
allow our machine to receive sensor data from outside the machine and to control
actuators outside the machine, the system is no longer closed. We assume that the
machine increases its thermal energy when it receives data (from a sensor) and emits
thermal energy when it sends data (to actuators). As long as sensors continuously
send more data, the machine does not necessarily cool down to the point where it
falls back to its initial state (head at the lowest position and no symbols on the tape).

Our machine is in fact a three tape Turing Machine as shown in Figure 3. The
middle tape is the working tape. The first one is the input tape and the last one the
output tape. A sensor is sending input data as a finite sequence of symbols. If the
machine is in a receiving state (which is the case when the head is at the initial
position) these input symbols are copied on the input tape. The head moves along
all received symbols and they transfer thermal energy to the head. Thus, the energy
level of the machine is increased and it can read and process the data.

Output tape

Persistent tape

Input tapeInput Message

Output Message

Figure 3 3-Tape Turing Machine

The machine can write symbols on the output tape. When the machine falls back
to the initial position, it can receive new input and it sends its output. The symbols
on the output tape are sent to actuators. By doing so these symbols disappear from
the output tape because their thermal energy is sent to the actuators. The machine
looses energy by sending.

The energy limits the number of symbols the machine can send. This shows
already one great advantage of this machine. The damage its output can cause is
limited by the input it receives. As long as sensors are sending only at a limited fre-
quency and with limited thermal energy, the machine cannot run berserk by flooding
the system with bogus symbols. For example, accidental distributed denial of ser-
vice attacks are impossible because of energy restrictions. This argument holds for
all programs executed by this machine.

6 Self-stabilization

The inability of our machine to store data forever (symbols loose energy to the tape)
and its inability to amplify the energy of stored data (cannot read a cold symbol
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and write a hot one) is the key to its self-stabilization property. We assume that the
machine is executing a program that is correct if no errors occur. Possible errors are:

• Tape symbols are accidentally added, removed, or modified
• The head position is accidentally changed
• Sensor data is lost, duplicated, modified or its ordering is changed
• Too much energy is sent to the machine
• The machine has been loosing to much energy

If anything is wrong with the current state of the machine, then a certain thermal
energy is attached to this wrong information. It could be a wrong symbol or a wrong
head position. After a constant time the head must move back to its initial position
and after a constant time all symbols have cooled down and disappear. All informa-
tion disappears after a constant time and it cannot be refreshed, i.e. its energy cannot
be amplified. Furthermore, the energy of derived information cannot be higher than
the energy of the source information, because the head cannot write a symbol that is
hotter than any other symbol read or written before. After a constant time it does not
matter whether some information was wrong or not because the information itself
and all information derived from it disappears. What remains has necessarily a high
energy level and is therefore fresh information that is in no way dependent on the
wrong information and therefore correct. The only source for fresh information is
new sensor readings. Thus, after a constant time all erroneous information is gone
and only fresh and correct information remains in the machine.

Our machine greatly simplifies the development of self-stabilizing algorithms.
The developer does not have to prove that his algorithm can recover from every pos-
sible error. He must prove that the algorithm executes correctly on our machine in
the absence of errors. If this is the case, the self-stabilization property is guaranteed.
This is a great advantage over current coding techniques where the self-stabilization
property requires a manual proof.

However, the proof of correctness is now a bit more complex than with normal
Turing Machines. The proof of correctness must take the energy transfer into ac-
count. In addition, no sane programmer will develop an algorithm for execution
on a Turing Machine. Therefore, we are working on a model-driven development
approach [1]. The developer describes his program on a very high-level program-
ming language [2]. This program is then automatically translated into a program for
our machine. This program can now be tested on a simulated machine. Testing is of
course no proof of correctness, but in practice testing is easier to do than correctness
proofs.

A disadvantage of our machine is that it is even less efficient than normal Turing
Machines. The CPU must calculate the energies whenever the head moves, reads,
or writes. Thus, it is no platform on which you would execute a word processor
or enterprise applications. However, a machine that is inherently forgetful is not
useable for this kind of applications anyway.

For control applications, however, our machine is well suited. A constant per-
formance factor is often tolerable. Furthermore, the forgetfulness of our machine is
no problem here. When a control application receives input, it calculates its output
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Figure 4 Development process

based on the new input and a fixed amount of previous inputs. Very old inputs are
not required, which is good, because our machine has already forgotten these old
inputs and every data derived from them.

7 Implementation and Simplification

So far the energy-aware Turing Machine is a theoretical concept. To turn it into
something useful, we must execute the energy-aware Turing machine programs on
a real machine. Although it would be an interesting challenge to build a thermo-
dynamic machine which adheres to our formal specification, this is of course not a
practical thing to do. Instead, we see two possible options: A software solution and
a silicon hardware solution.

In the first case, the programs are executed in a simulated energy-aware Tur-
ing Machine. This is the easiest thing to do and ensures that the program is self-
stabilizing as long as the underlying software is stable. However, if the simulator
is not working correctly or if the operating system crashes then the entire system
will not be self-stabilizing. The more radical approach is to build hardware in sil-
icon which behaves like an energy-aware Turing Machine. In this case there is no
software layer (simulator or operating system) that could fail. Such a system would
really be self-stabilizing. Since our expertise is not in chip design, we are working
with the simulator approach currently.

In both cases, the energy-aware Turing Machine is hard to implement because it
needs much computation to calculate the energies as floating point numbers. There-
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fore, we simplified the energy-aware Turing Machine without sacrificing its self-
stabilization properties. First of all, energy is quantized to represent energy levels as
integers. Furthermore, the potential energy of the read/write head can be ignored. It
has only been introduced to make sure that the head falls back to the initial position
once it lost too much thermal energy. In an implementation, we simply check after
each step whether the head energy level is too low and move it back to the initial
position.

The symbols are constantly transferring energy to the cooler tape until they dis-
appear. We implement this by storing for each symbol the step in which it has been
written and its energy level at this time. If the head later on reads the symbol, we
subtract one from the energy level for every step that happened in between. If the
resulting energy level is 0 or below, the symbol is erased.

It could happen that a memory error changes the step or energy level stored for
some symbol. This does not harm the self-stabilization property as long as all of
these values are expressed as numbers with a fixed amount of bits. Thus, if a memory
error accidentally increases the energy level of a symbol, the additional energy is
limited by the amount of bits. After a constant time this energy has been transferred
to the tape, the symbol disappears, and the system can stabilize again. The fewer
bits we use, the shorter is the self-stabilization time. However, the forgetfulness of
the machine increases when the number of bits decreases. The best number of bits
to use is therefore a trade-off between stabilization time and forgetfulness.

8 Related Work

In our approach we are extending a three-tape Turing Machine which is known as
Persistent Turing Machine (PTM). PTMs [3, 4] are a minimal extension of Turing
Machines (TMs) [5] that express interactive behaviour providing a natural model
for sequential interactive computing. A PTM has three tapes: a read-only input tape,
a write-only output tape, and a persistent working tape which is preserved among
interactions, i.e., among successive computations of the PTM.

Self-stabilizing algorithms have been introduced by Dijkstra in 1974 in his semi-
nal paper on a self-stabilizing token passing algorithm [6]. A self-stabilizing system
recovers from any transient fault within a bounded number of steps [7] provided
that no further fault occurs until the system is stable again. The maximum number
of steps required to bring the system back into a legitimate state is called stabiliza-
tion time. Self-stabilization is usually proven by showing that the system satisfies
convergence (started from an arbitrary state it reaches a legitimate state within a
bounded number of steps) and closure (once the system has reached a legitimate
state, it stays in the set of legitimate states) if no faults occur.

Many self-stabilizing algorithms utilize soft state, a design pattern which is
known from many network protocols [8]. One possible way to implement soft state
is leasing. In this case, the state of the system is only leased and has to be periodi-
cally refreshed to remain valid. If it is not refreshed in time (i.e., if it expires), it is
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invalidated and usually deleted. For example, we used subscription leasing to realize
self-stabilizing publish/subscribe [9]. A generic implementation of self-stabilization
is possible with a precautionary periodic reset [10]. In this case, all state is regularly
deleted and rebuilt from an initial configuration. This ensures that corrupted state is
eliminated while the correct state is established.

9 Outlook and Conclusions

We presented a modified Turing Machine which features an energy concept which is
based on the laws of thermodynamics. Every program that executes correctly on this
machine in the absence of errors is guaranteed to be self-stabilizing in the presence
of errors. This greatly simplifies the development process since no manual proofs of
the self-stabilization property is required.

They key to the self-stabilization property is that derived information has always
a lower energy than the information it has been derived from. Together with the
inability to amplify the energy of information we get the desired self-stabilization
property. However, here we are more restrictive than the laws of thermodynam-
ics would have required. Perhaps other machines exist which have the same self-
stabilization property, but are less restrictive in some ways.

It is an open question whether the machine presented in this paper is powerful
enough to execute all possible self-stabilizing algorithms. It may be the case that
self-stabilizing algorithms exist which cannot execute correctly on our machine. So
far we can only state the converse: if it executes correctly, then it is self-stabilizing.

Other open problems are related to the software development process. How
can one easily develop applications for this kind of machine? To obtain the self-
stabilization property the programs must always be executed under the control of
this machine. Today’s CPUs would waste much time on this. Perhaps specialized
hardware could significantly improve the speed of execution.

In the future we will work on the software development process to ease the de-
velopment of self-stabilizing control applications. Furthermore, a more formal de-
scription of the machine will be subject to our next publication.
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