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Abstract In this paper we study the problem of congestion in system where
agents move according to simple ant inspired movement rules. It is assumed
that the agents have to visit a service station to refill their energy storage.
After visiting the service station the ants can move randomly and fast. The
less energy an agent has the slower it becomes and the more it moves in di-
rection of the service station. Different methods for self-organized congestion
control are proposed in this paper where the behavior of the agents compared
to the original is not changed or is changed only slightly without the need to
use any global information and without using additional sensory information.
The proposed systems are investigated with

1 Introduction

The (movement) behavior of social insects is an inspiring source of ideas
for the design of methods for solving various problems in computer science
and related fields. Examples are the well-known Ant Colony Optimization
method as introduced in [1] (for an overview see [2]), algorithms for the
movement behavior of robots [3], ant inspired clustering methods (for an
overview see [4]), or the self-organized behavior of the compounds in Organic
Computing (OC) [5, 6] systems (for an overview see [7]). Emergent pattern
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that might arise when groups of animals move have been deeply investigated
in biology (e.g., [8, 9, 10, 11]). In [12] the so called sorting behavior in the
brood chambers of the ant Leptothorax unifasciatus has been investigated.
In the brood chambers the youngest brood items (eggs and microlarvae) are
placed in the chambers center, larger larvae are arranged in concentric rings
around the center, and the largest and oldest brood (pupae and prepupae) is
placed in an intermediate area between the peripheral larvae and the larvae
of medium size. One explanation why this sorting occurred is that the brood
distribution pattern helps to organize the brood care in the nest. It has been
shown by simulation studies that a system with very simple behavioral rules
for the movement of agents can show an emergent sorting behavior. The
sorting behavior of ants has inspired the design of methods that are used by
robots to solve sorting problems [13].

In [14] movement models that are inspired by the ant Leptothorax uni-

fasciatus ants have been applied to OC systems with moving agents. In the
studied OC systems the agents have one (or several) service stations which
they have to visit from time to time (e.g., to recharge their batteries or to
drop items they have collected). It was shown that emergent patterns that oc-
cur within the distribution of the agents with respect to the different service
stations can occur even when only very slight behavioral differences between
the agents exist. It was also shown that a problem with the ant inspired move-
ment models is that unwanted congestion can emerge at the service stations
unless there is only a small number of agents in the system.

In this paper we propose and study some methods to reduce and control
the emergent congestion in ant like moving agent systems. The aim is to
develop methods where the behavior of the agents is not changed or is changed
only slightly without the need to use any global information and without
using additional sensory information. While reducing congestion (and thereby
increasing the performance of the system) it is important that the fairness of
the system is not reduced. Fairness is measured here as the variance of the
waiting times of the agents before they can visit the service station.

The paper is structured as follows. In the next Section 2 the agent model
and the movement behaviour are introduced. The methods for congestion
control are introduced in Section 3. The experiments are described in Section
4. Results are presented in Section 5. Conclusions are given in Section 6

2 Agent Model

Different models for the movement of ants within a nest have been introduced
in [12]. It was shown that small differences in the movement behavior of the
ants can lead to spatial sorting of the ants (i.e., on average over time ants with
different behaviour can be found in different areas of the nest). The degree
of the sorting depends on the particular movement model. In principle each



Congestion Control in Ant Like Moving Agent Systems 3

(a) (b)

Fig. 1 (a) Every agent is modeled as a disc; ρ - radius; O - centre of the body (x, y); α

- direction of movement; H - centre of the head; σ - sensing range. (b) Effect of different

values of the parameter µi on the turning behavior when unobstructed; Z is the service
point; (upper) for large µi there is only a slight difference between moving from or to the
service point; (bottom) for small µi the turning angle becomes significantly smaller the
smaller the angle between actual moving direction and the vector to the service point is

of the defined movement models consists of the following two actions for an
ant: “turning” the movement direction and “moving” straight forward.

In [14] some of the movement models of [12] have been changed slightly to
avoid an unnatural blocking effect that was observed and also to adapt the
models to fit the requirements of OC systems. It was shown that emergent
spatial sorting patterns for groups of randomly moving ant like agents can
depend on slight differences in the movement models. It was observed that
the movement of ants can depend on the CO2 gradient which typically points
to the center of a brood chamber ([15, 16]). It was argued in [14] that the
movement behaviour of agents in OC systems might similarly depend on their
movement direction with respect to the direction of a service station. But,
different from the natural systems in the OC system there might be several
service points that influence the movement of the agents. It was shown that
the relative size of the influence area of the service points can lead to an
interesting and strong emergent pattern within the spatial distribution of
agents with slightly different moving behavior.

The movement models of the agents that are used in this paper correspond
to the repulsive ant model from [14]. This model which is a mixture of the
centripedal ant model and the avoiding ant model from [12]. This mixed
movement model was introduced to overcome the problem that agents get
stuck near the focal point (see [14] for details). The behavioural differences
between the agents were modeled in the way that each agent i has a parameter
0 ≤ µi ≤ 1 that influences its moving behaviour. Fixed values µi = i/(n + 1)
for agent i ∈ 1, . . . , n were used for the experiments in [12] and [14]. In this
paper we investigate a movement model where the parameter µi can vary over
time for every agent. The movement behaviour is described in the following.
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Shape of the Agents. Similar as in [12] the shape of an agent is modeled
as a disc with radius ρ. The centre of the disc (xi, yi) represents the position
of agent i. Each agent has an actual direction of movement αi, which is
measured as the angle relative to the lower border of the simulation area.
The point at position (xi + ρ cos αi, yi + ρ sin αi) models the centre of the
agents head. From the centre of the head every agent can sense obstacles
within a range of distance σ, called sensing range (see Figure 1). Agent i
collides with agent j if agent j is within the sensing range of agent i, i.e.,
when the distance between the centre of the head of agent i and the centre
of the body of agent j is smaller than σ + ρ. Similarly, an agent collides with
the nest wall when the euclidian distance between the centre of its head and
the wall is less than the sensing distance.

Movement when unobstructed. If there is no obstacle (wall or other
agent) within its sensing range an agent will move and turn at each time
step. The agent moves distance νi in direction αi, i.e., xi ← xi +νi cos αi and
yi ← yi + νi sin αi. The different values νi represent different velocities of the
agents. The parameter value νi dependents on the internal parameter µi of
the agents as follows: νi = (1 − µi)νs + µiνf where parameters νs and νf ,
0 < νs < νf < 1 denote the slowest and the fastest velocity. Within the same
time step the agent also makes a turn by changing its movement direction
by αi = αi + θi, where θi depends on the internal parameter µi of the agent
and φi is the angle between the actual moving direction αi and the vector
towards the service point. For the calculation the clinotaxis model from [17]
is used: θi ← pu(1 − µi)χ + pbµiτ · (1 − cos(φi))/2 where χ = 15◦, τ = 30◦.
The values of pu and pb are randomly chosen from {−1, 1} and determine
the direction of turning. The turning behavior depends on φi and the larger
this angle is the stronger the agent will turn. Agents with larger value µi will
be less affected by their φi as agent with small µi (see Fig. 1 b). Therefore,
for agents with small value µi the attraction to the service point is stronger
than for agents with large value µi.

Movement when obstructed. If the wall or another agent is within the
sensing range of an agent, the agent will not move, but only make a turn. It
avoids the obstacle explicitly by turning into one direction until it can move
again. To define the turning direction assume that agent i collides with agent
j. The sign of the scalar product between the vector that is perpendicular
to the vector of the moving direction of agent i and the vector from the
centre of agent i to the centre of agent j determines the direction of turning:
θi ← sign((− sin αi, cos αi) · (xj − xi, yj − yi))U(0, Θi). A collision with the
nest wall is handled analogously.

In our model we use the parameter µi to model the state of an agent.
The higher the value of µi is the faster can the agent move. Therefore, if an
agent has visited the service area the value of µi is increased. The motivation
behind this is that in applications the agents might get new power at the
service station or has been unloaded at the service station. During movement
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of an agent its value µi decreases. The motivation is that in applications the
agent might use power or pick up items.

3 Congestion Control

To resolve possible congestion of the agents at the service point we introduce
three different congestion control methods. The goal of these methods is to
resolve the congestion either by leaving the behaviour of the agents unchanged
or by changing the behaviour of the agents only slightly but without need for
introducing any new type of sensory information or global knowledge. The
first two control methods CP and CW do not change the agent behaviour
and the third method CD changes only the sensing range of the agents.

The idea of control method CP is to introduce two parallel walls next to
the service station that form a pipe. The idea of this method is that agents
that have visited the service station and have a hight value µi might be able
to move away from the service station through the pipe whereas only few
of the agents that have a small value µi might use the pipe to move to the
service station. An example of a pipe can be seen in the left of Figure 3.

Control method CW is to introduce two additional walls on two sides of
the service station. Each wall has an small opening in the middle that is next
to the service station. The idea of this method is that slow agents with small
value of µi might be forced to wait behind a wall and therefore do not block
the service station. Hence, the agents that have visited the service station
can move away from it. An example for this control method CW can be seen
in the middle of Figure 3.

The third control method CD is to change the behavior of the agents
slightly. Here the sensing range σi of agent i depends on the internal param-
eter µi. The sensing range is calculated as follows: σi = 2ρ−1.4µiρ. The idea
behind this method is that agents with a small value of µi that move to the
service station have a larger sensing range and therefore leave some space
between them when they come next to the service station. This space can be
used by the agents that have visited the service station and therefore have a
large value µi can to move away from the service station.

4 Experiments

The simulation area is a quadratic field with side length 1. At the start of
a simulation run the positions of the agents are distributed randomly with
uniform distribution over this area. Also the values of the internal parameters
µi are chosen randomly with uniform distribution between 0 and 1. In the
centre of the field there is a circular service area with radius 0.04. The centre
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of this area is the service point. If an agents position (i.e., the centre of its
body) is within the service area its internal parameter µi is set to 1. If agent
i moves (e.g. the agent is unobstructed) the value of µi is decreased by a
fixed value 0.001 until µi = 0. Observe that the smaller the value of µi is
the slower moves the agent and also the higher is the attraction force to the
service point.

For the experiments the body of an agent has radius ρ = 0.01, the radius of
the head is σ = 0.006. Parameters νs and νf that denote the slowest and the
fastest velocity are set νs = 0.0006 and νf = 0.006. Per time step parameter
µi of agent i reduced by 0.001. Different numbers of agents have been used
and for each number of agents and each congestion control method each run
was repeated 20 times over 10000 time steps each.

5 Results

Figure 2 shows the distribution of the agents after 2000 time steps for different
number of agents. It can be seen that a system with 90 agents works without
strong congestion at the service station. It can also be seen that agents with
small value µi (bright color) tend to be close to the service station. Agents
with large value µi are nearly randomly distributed over the whole field. This
is different for a system with 150 agents. Here most nearly all agents can be
found close to the service station. The agents with large value µi can be found
or very near to the service station. They cannot move away because the way
is blocked by the agents with small value µi that try to move into the service
area. As shown later, for this system the agents cannot do much useful work
(if that means that the agents should ideally move over the whole field).
Altogether, the observed congestion is an unwanted effect of the system that
depends on colony size.

Figure 3 shows the distribution of the agents for a system with 150 agents
after 2000 time steps using one of the congestion methods CP and method
CW. It can be seen that there is much less congestion by slow agents with
small value µi within the pipe for method CP than outside of the pipe next
to the service area. It can also be seen that the agents with high value µi can
move through the pipe.

For method CW it can be seen that the congestion around the service area
is much less compared to the system without congestion control. Agents with
high value µi can be found in different parts of the filed and not only next
to the service area (as it was the case when no congestion control is used.

For method CD the distribution of the 150 agents after 2000 time steps is
show in Figure 4. The figure shows that at least some agents with high value
µi that have visited the service station can move away from it because the
agents with small value µi leave some space between each other.
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Fig. 2 Distribution of the agents for different number of agents after 2000 time steps;
(left) 90 agents; (right) 150 agents; the smaller the value µi of an agent the brighter is its

color; the service area is the white circle in the middle

Fig. 3 Distribution of agents for a system with 150 agents after 2000 time steps using
congestion method CP (left), method CW (right)

To compare the performances of the control methods with system that
uses no control method the following measure for the performance of the
system is used. If an agent reaches the service area its value µi is increased
by adding the value 1−µi so that µi = 1 holds afterwards. Summing up over
all values 1−µi for all i and every time when the value µi is increased can be
seen as measure for the performance the system. This value is called the total
energy consumption of the system and is denoted PT when measured over
the first T time steps. Since agents that move use energy whereas agents that
can not move do not use energy the total energy consumption is a measure
how freely the agents can move on average.

Figure 5 shows the total energy consumption PT for a system without
congestion control and systems with congestion control. It can be seen that
for a small number of agents when no congestion occurs the system without
congestion control has the highest performance. This is no surprise because
the congestion control methods slightly hinder the agents to move freely
within the field when there is no congestion. But when the number of agents
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Fig. 4 Distribution of agents for a system with 150 agents after 2000 time steps using a
congestion method CD

becomes larger than 100 the performance of the system without congestion
control decreases very fast. For more than 130 agents this system has the
worst performance. For a medium number of agents the system with method
CW is the best. But for a large number of agents this method is not much
better than a system without congestion control. For a larger number of
agents (more than 210) the system with method CD is clearly the best.
Method CP is better than the system without congestion control for more
than 135 agents but it is worse than the other two methods. One reason might
be that it is not so easy for the agents that have visited the service station
to move away from it through the pipe because they move randomly in the
considered model (and do not actively move away from the service station).

Besides the reduction of congestion, fairness for service is another impor-
tant measure for the collective behavior of agents. In the considered system,
e.g., the waiting times for service have to be similar. We measured the fairness
of the system in two different ways. Firstly, at the end of a given time interval
of length T for every agent the total amount of values that have been added
to µi for all its visits of the service station is measured. Then the relative
standard deviation (RSD) of these values for all agents has been taken as
a measure for the fairness of the system (the lower the variance means the
more fair the system is).

The behavior of the systems with respect to this fairness measure is shown
in the left part of Figure 6. It can be seen that the system without congestion
control is most fair for a small number of agents (less than 110 agents). For
a larger number of agents the system with the CD method is the best.

The second measure of fairness is defined as follows. Let τ(T ) be the mean
waiting time of the agents where the waiting time of an agent is defined as
the length of the time interval from the time when its internal parameter (µi)
becomes zero until the time when it reached the service area (measured over
a simulation run over T time steps). Let σ(T ) be the standard deviation of
these waiting times. A dimensionless measure for the fairness is then defined
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Fig. 5 Total energy consumption PT for different number of agents measured over 10000
time steps for a system without congestion control and systems with the different congestion
control methods
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Fig. 6 Fairness for different number of agents measured over 10000 time steps for a system
without congestion control and systems with the different congestion control methods; first

fairness measure RSD (left), second fairness measure σ∗ (right)

similarly as in [?] by σ∗(T ) = σ(T )/τ(T ). Note, that for this measure only
the waiting times of the agents that reached the service point are considered.
Hence, a congested system may still be fair, if there is only a small subset of
agents that are served and these agents have similar waiting times.
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The behavior of the systems with respect to the second fairness measure
is shown in the right part of Figure 6. It can be seen that the system the
CD method is most fair (independently of the number of agents). For small
number of agents (less than 110) the system without congestion control is
the second most fair system. For larger number of agents the system with
method CP is the second best.

6 Conclusions

In this paper we have studied the problem of congestion control agent sys-
tems with ant inspired movement rules. In the studied systems the agents
have to visit a service station to refill their energy storage. Three methods
for self-organized congestion control have been proposed. It was shown exper-
imentally that the proposed methods can significantly reduce the congestion
and are also fair for systems with a larger number of agents. Differences
between the behavior of the systems have been discussed.
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2. M. Dorigo, T. Stützle: Ant Colony Optimization. MIT Press, 2004.

3. J.-L. Deneubourg, S. Goss, N. Franks, A.B. Sendova-Franks, C. Detrain, L. Chretien:
The dynamics of collective sorting: Robot-like ants and ant-like robots. In Proc. of

the 1st Int. Conf on Simulation of Adaptive Behavior, 356–363, 1991.
4. J. Handl, B. Meyer: Ant-based and swarm-based clustering. 1(2), 95-113, 2007

5. H. Schmeck: Organic Computing – A New Vision for Distributed Embedded Systems.
Proc. of the Eighth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2005), 201-203, 2005.
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