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Abstract Robots have a powerful means to drastically cut down the exploration
space with imitation. However, as existing imitation approaches usually require
repetitive demonstrations of the skill to learn in order to be useful, those are typ-
ically not applicable in groups of robots. In these settings usually each robot has its
own task to accomplish and should not be disturbed by teaching others. As a result
an imitating robot most of the time has only one observation of a specific skill from
which it can learn.

We present an approach that allows an individually learning robot to make use
of such cases of sporadic imitation which is the normal case in groups of robots.
Thereby, a robot can use imitation in order to guide its exploration efforts towards
more rewarding areas in the exploration space. This is inspired by imitation often
found in nature where animals or humans try to map observations into their own
capability space. We show the feasibility by realistic simulation of Pioneer robots.

1 Introduction

With the benefits of drastically cutting down the exploration space imitation is one
of the most powerful learning techniques one can find in nature [5, 6, 8]. This
has been acknowledged also by robotics researchers when they embraced different
methods to apply imitation to learn tennis swings or drumming movements [10] or
e.g. to forage [9]. However, except for the work on imitating skill sequences in all
these experiments the demonstrator is always determined (often the human) and the
time frame where the imitation has to pay attention is provided beforehand. The
task to be learned by imitation is then repeated several times and the robot after-
wards has to derive a generalized representation of the imitated task and be able to
replay it. Up to now no research has been carried out regarding sporadic imitation,
which is apparently very important when robots in groups should benefit from each
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Fig. 1 Procedure of interpreting another robot’s performance in order to imitate it

others learning efforts. Typically, the imitation process should not interrupt the ob-
served robot, so that the imitating robot often has only one example of the same
type of interesting behavior to learn from. As this usually does not provide enough
information for learning a generalized version of the observed action, it can help the
observer to narrow the learning exploration space. This is the aim of our paper.

With the presented approach comprising the strategy and low-level skill layers
an observing robot can benefit from the imitation process

1. by observing new state sequences for which it could spent more exploration ef-
forts,

2. by observing new behaviors for already known state transitions, and

3. by incorporating other robot’s transition data condensed into its own strategy.

In Fig. 1 an example is shown in which the robot (imitator) tries to understand the
observed behavior episode of another robot (demonstrator). The observed episode
consists of the recorded perception and the demonstrator’s visible “well-being”, a
kind of emotional state that comprises its overall state in form of a set of drives.
Therefore the imitator first translates the observations into its own perception to see
what it would perceive if itself would have been in the demonstrator’s situation. It
then scans the subjective perception and allows its low-level skill to give so-called
votes about how well each skill could have achieved the perception changes. Using
an algorithm inspired by Viterbi those votes are then used together with the likeli-
ness of the demonstrator’s state space to find the most likely path corresponding to
the observations. In this paper we will focus at the skill and strategy layer, as they
are most important to the understanding of the observed behavior.



Guiding exploration by combining individual learning and imitation in MAS 3

2 Related Work

Most approaches regarding imitation of robotic behavior are based on Hidden
Markov Models (HMM) and use the Viterbi algorithm to synthesize behavior
thereof. Billard et al. [4] use e.g. the Viterbi algorithm to let the upper part of a robot
replay a limited set of arm movements that move colored objects. In their work the
demonstrator-imitator roles are known and fixed. Also the start and end points of
the behavior to imitate is known to the robot. They split the imitation task into the
observation and imitation processes, having the goal to minimize the discrepancy
between the demonstrated and imitated data sets. In their approach the robot is only
able to learn low-level behavior and this can only be done from scratch. In contrast
to Billard we do not aim to imitate for the sake of copying another robot’s low-level
behavior, but to gather new inspiration for the imitating robot to drive its learning
efforts to. This will have to include all levels of abstraction, not only low-level be-
havior.

Closest to our approach come Inamura et al. [11, 12] with their Mimesis Loop ap-
proach. Thereby they are able to symbolize observed low-level behavior traces. This
is used as top-down teaching from the user’s side in combination with the bottom-up
learning from the robot’s side. As this is useful to decrease the programming effort
it is an exclusive solution, not allowing to be used with other learning techniques
like e.g. Reinforcement Learning. Also their approach is not able to use already
existing abstract states of the imitator in the recognition process. Once a robot has
extracted enough information to construct a HMM based on the recognized low-
level behaviors it is fixed to that HMM — no exploratory actions on the abstract
states are possible any more. Furthermore, the segmentation process that splits the
continuous movement trajectories into basic movements uses a fixed scheme. With
that it is not possible to allow for ambiguities at the recognition phase.

In our approach we assume that the robot has already decent self-learning ca-
pabilities. Imitation is used to guide the robot to the “salient” points in exploration
space. With more experience the robot will have collected better skills and a more
realistic strategy representation. This in turn will enable it to extract more knowl-
edge from its observation efforts.

3 Imitation supporting architecture

The desired outcome of the observation and recognition phase in an imitation pro-
cess is a state-action-trace that results in a performance similar to the observations.
For this the robot has to find abstract states in its own strategy that should play a
role when replaying the imitated behavior. Furthermore, it should only regard states
that can be connected via actions the imitating robot is capable of. This leads to a
tight coupling of the strategy and skill component in the system architecture, ac-
complishing the recognition of other robots in terms of its own strategy and skill
capabilities. Therefore, the strategy and skill layers will be described before. The
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strategy is modelled with a Semi-Markov Decision Process (SMDP) that has a dy-
namically adjustable state space (Sec. 3.1) and uses self-developed skills as actions,
which are triggered in terms of goal functions on the perception (Sec. 3.2).

3.1 Learning strategies

The strategy layer is inspired by the AMPS approach [13]. It uses a domain-
dependent abstraction method to generalize actual state realizations into abstract
regions (in our work we use nearest neighbor [7]). The Reinforcement Learning al-
gorithm is then applied onto these regions which simplifies and speeds up the whole
process significantly. As the regions can be merged and split at run-time we use
Value Iteration [15] to determine the best policy. AMPS, however, applies the split-
ting and merging also to the action space, which works fine in artificial domains
but will not cope with the domain dependency one is typically faced with in real
environments. Here, we use as the strategy’s actions goal functions which have to
be realized by a separate skill learning layer.

In contrast to the pure AMPS method, which by the nature of Reinforcement
Learning always learns one strategy to reach one goal, self-adapting systems often
have to fulfill several goals — sometimes contradictory ones. Take for example a
system that has to fulfill a task while paying attention to its diminishing resources.
If it accomplishes the task the resources might get exhausted. On the other hand,
if it always stays near the fuel station, the task won’t be accomplished. As already
described we use abstract drives which the designer has to specify. These drives
may also contain competing goals. The big advantage of our approach is that the
robot can learn a separate strategy for each drive. Depending on how big the actual
motivation is for every drive it has now a means to choose the right strategy for the
actual perception and drive state.

3.2 Learning low-level skills

The input of the skill-learning algorithm is given by the strategy layer (Sec. 3.1) in
terms of an error function e. Fig. 3 shows a camera image that has been taken from
the robot used in the experiments (cf. Sec. 5). The ball that is recognized by a vision
algorithm has the properties width and the 2D coordinates of the image. Let d be the
euclidean distance of the ball to the image center and Ar the difference between the
maximum size of the vision image and the size of the ball in it. The error function
that formulates the goal to maximize the ball in the middle of the camera image e.g.

would be:
e(d,Ar) =/ d>+Ar? (1)
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The first step is then to get a set of training examples that will later be generalized.
During this initial exploration the algorithms gathers information about the relation-
ship between the actuators and the effects. The changing of the actuators is called
an action A. An effect is the perceived result of an action. The actions are generated
randomly and are applied for some time. In this phase we call the actuator values the
input / and the perceived effect the output O, as they are seen from the skill learning
algorithm’s perspective. This information are the components of a trace T with the
length : T = (A,{(lo, 00),...,(l—1,0,1)}). Several traces are recorded. Now the
error function e is used to extract the good traces forming the training set. To get
as many traces as possible, every trace is cut at the position i (0 <i <7 —1) of the
lowest error ¢(O;). Then every trace not leading to an improvement in terms of e is
discarded.

Previous to the generalization, the number of traces and the dimensions have to
be refined to reduce the generalization complexity. The most important attributes of
atrace are A, Ip, Og and O,_1. If the actuator configuration Iy and the sensor vector
Oy, which describe the current situation, are given, A has to be used to reach the
effect O;_;. To reduce the number of traces, we do an agglomerative hierarchical
clustering. Only the mentioned attributes of a trace are used. The distance measure
between two traces is the euclidean distance of the attribute values. The distance
between two clusters is defined by average-linkage. The dimensions of I and Og
depend on the number of actuators and effect properties. Actuators that don’t influ-
ence the effect can be ignored in the generalization step. Another side-effect of the
dimension reduction is the noise reduction, because also the data dimensions with
no significant effect to the action-effect can be ignored. We use PCA [1] for this and
specify the number of principal components to be kept by the fraction of variance
to be explained. In our experiments we were able to reduce the dimensions from six
to two while maintaining 95 percent of the data’s accuracy.

The last two steps reduce the trace data to the basic properties. In the PCA step
a mapping from the data into a new artificial space is done. To generalize the data,
a mapping from the principal components. xy,...,x, to the individual actor ele-
ments a; € A is calculated. We use a polynomial regression for every a;. To get the
simplest polynomial of Zflzo H;!:o Dijx ji that fits the data sufficiently the algorithm
starts with d = 0 and increments it until the prediction error drops below a prede-
fined error threshold. This process can be seen in Fig. 2. There is also a threshold
for the complexity’s degree. To avoid over-fitting a maximal possible degree can
be specified. Finally, a function f;(xo,...,x,) = a; is calculated for each a;. When
applying the learned skill Iy and Og are known as the current parameter values of
the actuators and sensors. A mapping to the PCA space has then to be done before
using the calculated f;s to build the next action A. With this approach the robot can
reach maximal adaptivity and robustness with regard to sudden breaks or graceful
degradation [14].
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Fig. 2 Finding the simplest reasonable hypothesis for the first actor element in PCA space. The
graphs show the fitted function for one actor dimension dependent on the two calculated PCA
dimensions. The degree of the polynomial is incremented from d = 0 up to d = 3. In Fig. 2(d) the
final function can be seen. The increase of d has been stopped because the fitting error falls below
a defined threshold.

4 Sporadic Imitation

With the described means for strategy and skill learning we can now adapt the
Viterbi algorithm which is often used to imitate using HMMs. Before we explain
the core of our imitation algorithm, we will therefor give a short overview of the
Viterbi algorithm following the notation of Bengio [3].

4.1 Viterbi

The Viterbi algorithm [16] tries to find the most likely hidden state sequence slr

(Viterbi path) that explains the observation sequence olT. This can be done by max-
imizing the following constraints:
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s1* = argmax P(s] | o] ) = argmax P(s] , o1 ) )
T T

51 51
Using Bellman’s dynamic programming algorithm [2] the Viterbi algorithm de-
termines the maximum efficiently in time O(Tn) where n is the number of non-zero
transition probabilities. It recursively calculates the probability

V(s,1) = max P(o,s7"' 5t = 5) 3)

S
that s is the hidden state at time  given the observations o/ for all s € S:

V(s,t) = P(o;|s; = s)maxP(s, = s|s;_1 =5 )V(s',t — 1) 4)
S/

V is initialised with V (s,1) = max,, P(o1|s1 = s)P(s1 =) Vs € S. The most likely
path can now be extracted using

@(s,t) = argmax P(s; = s|s,_1 =)V (s',t — 1), (5)

N

which determines the best predecessor of state s at time 7.

4.2 Understanding observed behavior

The imitation approaches usually found in literature calculate the Viterbi path to find
the state sequence the imitator should realize in order to exactly copy the observed
behavior. This is done using the state space (assumed to be fix) of the inferred HMM,
which is assumed to reflect the demonstrator’s state space. In contrast to those meth-
ods it is important to see that we use a method similar to the calculated Viterbi path
to explain the observations recorded from the demonstrator with the imitator’s al-
ready existing state and action space. Thereby, the imitator tries to understand the
demonstrator with the knowledge it already has in terms of its own state space (cf.
Sec. 3.1) and behavior repertoire (cf. Sec. 3.2).

If the observations provide enough information to infer the corresponding state,
P(0;|s;) could be straightforwardly calculated out of the state representation chosen
for the specific domain. If e.g. a nearest neighbor approach is chosen to map state
observations to abstract states used in the SMDP, P(o, |s;) could e.g. chosen to be
inversely dependent on the distance to the labeled observation instances in the kKNN-
representation. However, this is seldom the case in realistic applications so that in
order to be able to use Viterbi for inference on the imitator’s self-learned knowledge,
the robot has to 1) infer the probable state transitions, and 2) guess which of its
behaviors could have realized those observed state transition.

The calculation of P(s; = s|s;—; = 5') in Eq. 4 is more involved. If one would
just take the transition probability of its greedy action in s;_; the robot would not get
new insight about other and maybe better state transition behaviors in that specific
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state. Instead, it should guess from the observations which of the behavior in its own
behavior repertoire would best match the recorded observations.

Let us now consider state transition <s,a,stb>, where s;, # s;,. Firstly, for every
recorded observation step (o;_1,0;) (¢ € [t4,15]) all the behaviors are asked to give a
vote P, (o, | 0,—1) representing the ability of behavior b to be able to realize that step!.
These are determined by means of the corresponding error function with which the
behaviors were learnt. These votes are then divided by the time span of the full state

transition: )
_ Z;b:;a Py(0r]0r-1,51,)

Pb(st;, |St,,) = f—1 (6)
a

At every state transition, one can now determine the most likely transition action
by = argmax,, Py (sy, | 5, ). It can be used to retrieve the transition probability in the
observer’s SMDP that would most probably correspond to the observation of the
demonstrator: P(s;, |s;,) = P(sy, | $1,,bm). Thereby, we get the recursive solution

V(s,t) = ml?xP;,(ol |s; =s,0,—1)max P(s; = s|s;—1 =5 ,a=b_)V(s',t—1), ()
s

in which P(s; = s|s,_1 = 5',a=0b;_1) = T(5',a,s) are the transition probabilities
learnt in the strategy layer. ¢(s,7) is determined accordingly. For full reference, the
whole algorithm is depicted in Alg. 1. It has the same time complexity as the Viterbi
algorithm.

With this information the observing robot can now either remember the (s;,a, 5;+1)-
traces for later replay or spend direct reward along that trace in its strategy layer. If
P(sy, | $1,,Agreeay) is below a predefined threshold (0 in Alg. 1) it is assumed that
the robot has no behavior that could probably generate the observed movement
from time 7, to f,, marking where it could most efficiently spend its valuable ex-
ploration time. Of course, in this case it is wise not to incorporate the understood
sub-sequences of the observed trace, but to wait until behavior for the missing link
has been learnt so that the full trace is understood.

5 Evaluation

To evaluate the approach robots were put into an environment with soccer balls that
had to be transported onto an elevated platform (Fig. 4). To achieve that they can
simply push the ball or use their grippers to pick the ball and release it on the target
area. The robots have a defined field of view (fov) of 60°. The field size is 100m?2.
They are able to perceive via their vision capabilities the distance and bearing of the
nearest soccer ball if it is within their fov. The platform onto which the ball has to be
put is given as absolute coordinates to the robot, which also knows its own position.
Overall the robot can perceive the following attributes:

! Note the different time scales at the observation and state recordings notations.
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Algorithm 1 RECOGNIZE: Recognize familiar behavior and save unrecognizable
behavior for later exploration

Input: OT: observation ((01,e1),...,(or,er)) as an (observation, evaluation)-episode stream
where e; < er; S and T (s',a,s): state space and transition probabilities of the SMDP

Output: Recognized most likely state transitions and missing links

1: Transform O7 into subjective observations — o

2. T «—0 // collects understood (s ,a,s) triples

3 W0 /l collects missing links (s’,s) that must be explored later on

4: V(s,1) < max,, P(o1|s1 =s)P(si =s)VseS

5: Hast < 1

6

7

8

2
: whiles < |T| do
for s € S do
9: by < argmax,, By (o; |s;—1 = 5,0,-1)
10: V(s,t) < maxp Py(0; | si—1 = 5,0;—1 ) maxy T(s',by—1,5)V(s',t — 1)
11: o(s,t) < argmaxy T(s',b—1,8)V(s',t — 1)
12: if ©(s,1) # @(s,1145) then
13: S?ay[ — (p(s7tluxr)
14: by — argmax, Py (s|sy,, )
15: Siast < P(s,1)
16: I — T U (85> bt > Stast)
17: tigst < 1
18: break
19: end if
20: end for
21:  if max, Py(0; | si—1,0—1) < 6 then
22: while max;, P,(or |0,—1) < 8 and r < |T|—1do
23: t—t+1
24: end while
25: Y — WU (t145,1)
26: V(s,t) < max, P(o |s;)P(s;) Vs €S
27: end if
28: t—t+1

29: end while
30: return I, ¥

e the relative coordinates and width of the ball in the camera image (Fig. 3):
(X6, Y, Wp)

e distance of the ball from the ground the robot is standing on to detect gripper
activities:

e distance and bearing of the target zone: (d_, 6,)

The skill layer has as the capabilities to rotate and to translate the robot and to
manipulate the gripper. If it is not using its grippers it is nevertheless able to move
the balls around in the field by simply pushing them. In the imitation process only
the positions of the ball and the robots can be observed. The robot’s perception,
called observation in the algorithm, is thus:

0= (xbvybawbvhbvdzv GZ)
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@ guicam [userCamo]

Controls

time 33.600 0.000

Fig. 3 The perception of the robot that we use in  Fig. 4 Experimental scenario: The ball has to
our experiments. It shows one camera image with  be put onto the elevated platform.

the ball that has been recognized by our vision

algorithm.

Changes in this data are used by the already learned skills in the recognition process
to check whether the they could have accomplished those changes.

The experiment goes as follows: Two robots, called demonstrator and imitator in
the following, are equipped with appropriate strategies and skills in order to move
the ball around: The demonstrator is setup with manually handcrafted code, com-
prising three skills: approaching ball, lifting the ball, and approaching the goal. The
imitator is missing the behavior to lift the ball. It has instead individually learned
the skill to approach the ball (cf. Sec. 3.2) and is able to approach the goal, and the
corresponding strategy using those skills (cf. Sec. 3.1). In the experiment, the imi-
tator is allowed to observe the demonstrator. The new exploration hints as received
from the presented algorithm it has obtained via the observation process are then
analyzed. The actual exploration in thereby collected narrowed exploration space is
not focused in this paper.

As can be seen in Fig. 5 the imitator has successfully recognized episodes in the
demonstrator’s movements that coincide with the imitator’s own behavior knowl-
edge (dark areas). The B denotes the time span in which the demonstrator recog-
nized a behavior resembling its own approach ball behavior, and G resembling its
approach goal behavior. It is interesting that the imitator even was able to detect
not understandable behavior as such (light areas) and bootstrap the recognition pro-
cess as soon as it has reasonable explanations for the observed behavior data. This
missing link can now be used in the subsequent exploration processes to direct the
exploration towards it, while the understandable regions can be used, e.g., to adapt
the strategy towards more aggressively using them.
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Fig. 5 Recognition results during the imitation process: B and G (dark area) denote the behavior in
time that the demonstrator has understood as equivalent to its approaching ball and approaching
goal behavior. The behavior between them (light area), lifting the ball, is recognized as a missing
link.

6 Conclusion

We have shown how sporadic imitation can be accomplished to guide the explo-
ration efforts towards more interesting spaces. For the first time it was shown how
inspired by the Viterbi algorithm the maximum likely path of states can be found
corresponding to the observation with full reference to the observers own already
learned low-level skill capabilities. With it, the observer could reliably explain the
demonstrator’s performance in terms of its own capabilities if it had skills that could
describe the observations or recognize intervals in the observation that could not be
understood and should be explored in more detail later on.

Future research should concentrate on more fine-grained dissemination of the
unknown regions. Using P, (s, | s;,) (Eq. 6) the robot is not able e.g. to detect that
more than one action is necessary to be explored in order to accomplish the state
transition (s;, ,s;,). Here it would be helpful to look for consecutive e-homogeneous
action sequences. Such a sequence would then contain actions of the same type with
probability 1 — €.
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