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Abstract Utilizing the collective behavior of a population of interacting in-
dividuals, based on rather simple local algorithms, is a promising approach
for achieving complex goals. We use an onboard online evolutionary model,
based on finite Moore automata, to develop collective behavior in an arti-
ficial swarm of micro-robots. Experiments have been made in simulation
to achieve Collision Avoidance. The model is shown to be capable to gen-
erate the desired behavior and we present experiments for adjusting the
parameters of the evolutionary optimization.

1 Introduction

As it has been shown in the past [1, 2], collective behavior can reduce the
algorithmic complexity of solving tasks, by exploiting emergent effects in a
swarm originating from the interaction between its single individuals. Mod-
ern robotics can profit from this concept. However, the emergent collective
behavior is hard to predict, and given a task, it is generally not obvious, how
programs should be designed to provide, as a collective behavior, the solu-
tion of this task. In some cases, one can develop algorithms and strategies
manually, but in general, this turns out to be hard even for simple tasks and
non-collective applications.

A common strategy for finding potential templates or strategies for the
design of a collective behavior is to observe swarms in nature. They show
adaptive behavior and, quite often, they are at least close to solving some of
their environmental challenges in an optimal way, the most prominent, stan-
dard example being the capability of ant colonies to find shortest paths [3].
By a careful analysis of the behavior of natural and artificial swarms, one can
hopefully extract appropriate local rules for collective behavior [1]. However,
there is no guarantee that the behavior of a natural swarm can be understood
sufficiently well to successfully generate the required behavior for an arti-
ficial swarm. Also, there are many conceivable tasks for artificial swarms
which do not have a related counterpart in nature.
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One of the suggested approaches to generate local tasks for collections
of cooperating agents is to use evolutionary algorithms or genetic program-
ming [4]. In this paper, we use an onboard online evolutionary approach to
develop collective behavior in a population of robots. Onboard means that
each robot has an evolutionary program running, which is separated from
the other robots and especially is not triggered by some kind of central con-
trol with global information. Online means that during a run, the robots are
supposed not only to achieve the ability to solve a given task, but also to
solve the task in the given environment in order to evaluate the feasibility
of the current solution. So the idea is to confront collections of robots with
a problem, and to let them learn cooperatively through evolution, until an
adequate solution is found, and to solve the problem at the same time.

Based on the approach presented in [5] the evolutionary model is built on
finite Moore automata and it is defined in a general way to be applicable on
different robot platforms. Up to now it has been implemented and tested on
the Jasmine IlIp robot platform at the University of Stuttgart and in simula-
tion, where also the Jasmine IIIp robot has been modeled. The Jasmine IIIp
series is a swarm of micro-robots sized 26 X 26 X 26mm®. It can drive forwards
and backwards and turn left and right. Each robot has seven infra-red sen-
sors (two facing to the front, the others being placed in steps of 60 degrees
around, each returning values between 0 and 255) to measure distances to
obstacles and to communicate with other robots (cf. www.swarmrobot.org).

This paper extends the approach presented in [5] by using extensive sim-
ulation experiments to adjust evolutionary parameters and to show that
Collision Avoidance can be evolved.

In Sec. 2, we describe the theoretical model and the implementation of the
framework for the Jasmine III robot in simulation. In Sec. 3, results of the
evolutionary runs are presented. Sec. 4 provides a conclusion and an outlook
to future work.

2 Model description

The developed behavioral model for robots is based on finite Moore au-
tomata defined in a common manner [6]. The output of a state defines an
instruction to be executed. The transitions depend on the internal state and
on the information provided by the sensors. The automaton is referred to
as the genome of the robot, while the resulting behavior (i.e., the mapping
from a sequence of sensor data to the corresponding sequence of output
instructions) is called the phenotype; accordingly, the genotypic search space
I' is defined to be the space of all Moore automata, while the phenotypic
search space (2 is the space of all behaviors. The genome can be modified by
mutation and crossover.
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Due to space limitations, this section only provides a brief overview of
the model and the implementation. For more detailed information see [5].

Preliminaries. We denote a set of byte values and a set of positive byte
values as B = {0,...,255} and B, = {1, ...,255}. The behavior depends on sensor
data represented by a set H of n sensor variables H = {hy, ..., h;}. The sensor
data may originate from real or virtual sensors (the latter being any internal
variables of the robot). Each variable /; can be set to any byte value. The
seven main infra-red sensors of the robot are stored as hy, ..., hy, starting with
the two sensors facing to the front and then incrementing clockwise. We did
not use any other sensors for the experiments.

We assume a set 7 = {I,...,I;;} € B4+ of m instructions, encoded as positive
byte values. In general, instructions may be interpreted as arbitrary pro-
grams, which are capable to run on a robot; however, up to now only the
following simple instructions have been used: (1) Idle (i. e., “keep executing
the last instruction”), (2) Stop, (3) Move forward, (4) Turn left, (5) Turn right.

We assume a function rand, which returns a random element out of an
arbitrary finite set, based on uniform distribution.

Moore automaton for robot behavior. A finite Moore automaton for robot
behavior (MARB) is a Moore Automaton A = (Q, X, Q,6,A,4p), where:

Q is the set of states (qo being the initial state).

The input alphabet X = B" consists of all possible combinations of sensor
values.

The output alphabet 2 = T X B, consists of the instructions with an addi-
tional parameter.

The transition function 0 is defined for any state and each combination
of sensor values in X by specifying for each state g a list ((c1,41),(c2,42),--)
of conditions and associated following states; it is interpreted like a case-
statement, i. e., the first condition evaluating to true under the current input
determines the next state. The conditions are conjunctive and disjunctive
combinations of false, true, or relational expressions of the type a rel b, where
a,be HUBy, rele{<,>,<,>,=,#,~,%}. @ is true (# is false) whenever the two
operands differ by at most a constant (which is set to 5 in our experiments).
If none of the conditions evaluates to true there is a default transition to the

initial state (see Fig. 1).
—> —>
Fig. 1 Example of implicit transitions to the initial state if no condition is true.

equivalent éhz < 30
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The output function A assigns to each state an instruction with a parameter,

e.g., (Turnleft, 45), which lets the robot turn left by 45 degrees. The parameter
can be any positive byte value.

Mutation. The mutation operator is defined as a mapping in the genotypic
search space: M : ' = I' (i.e. it maps a MARB A into a MARB M(A)). Let
k €1{0,...,255} be a constant (we set k =5 in all experiments). A mutation
randomly selects one of the following atomic transformations:

1.

Toggle ”“inactive” transitions (syntactic, i.e., no change of behavior): Re-
move a random transition, associated with the condition false or add a
random transition, associated with the condition false.

. Remove an ”inactive” state (syntactic): Remove a state ¢ without incom-

ing transitions or with all outgoing transitions being associated with the
condition false and the state being associated with the instruction IDLE.

. Add a new state g (syntactic): g has no incoming transitions and no outgo-

ing transitions, random instruction and a random parameter < k.

. Change a condition: Leta,b € B UH, c a condition. Any part of a condition

that matches the following patterns can be mutated (the notation x < x’
means that x may be replaced by x” and vice versa.):

a. (semantic, i.e., potential change of behavior)
a<b o a<b
a=b o a>b
b. One of the following (syntactic):

false & a=b & axb & o azxb o a#b o true

(c AND true) « ¢ < (true AND c¢)
(c OR true) - true — (true OR ¢)
(c AND false) - false — (false AND c)
(c OR false) PN c PN (false OR c)

c. Change anumber i within a condition (semantic): Leti’ = i+rand({-k,...,k}),
Replace i as follows:

i, if 1 <i’ <255
i — 41, ifi’ <1
255, if i’ > 255

d. Change a sensor variable /1 within a condition (semantic): Replace
h with rand(H).

. Change a state g (semantic): Let (I, P) be the output of g.

Replace (I, P) with (J,|P +c| + 1), where

I ifP+c>1
= rand({—k,..,k}), ] ="’ ise
¢ = rand({ D] rand(I) otherwise

Mutation was performed once within a time interval S. This interval was
studied in the experiments (see Sec. 3).
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Obviously, an appropriate sequence of mutations can transform any
MARB A into any other MARB A’ by changing its topology, conditions,
and the output function (i. e. the mutation operator is complete). In order to
make the mutations “smooth” in the sense that a single mutation causes only
a “small” change in the phenotypic search space, the focus is on keeping the
semantic mutations (i. e., mutations that potentially change the behavior)
few and small.

Reproduction / Selection. Since in the onboard concept there is no central
unit with information about the whole population, it is not possible to im-
plement a global selection operator. Instead, similar to the diffusion model
of evolutionary algorithms (cf. [7]) we use local selection: A robot produces
a child genome together with its closest neighbor. As in [5], a very simplified
recombination operator is used which assigns to both robots the parental
genome having the better fitness. Note, however, that this could easily be re-
placed with a more standard stochastic crossover operator combining parts
of both parental genomes into a child genome. Future work will feature such
a crossover operator.

On real robots, reproduction is performed each time two robots meet,
i.e., come closer to each other than some threshold. In simulation, we im-
plemented a similar solution which, however, is easier to analyze: Using a
constant time interval T, each robot reproduces with the robot which, after
T time units, is the spatially closest to itself. However, this does not mean
that all robots recombine simultaneously; for each robot a separate timer
is running which, due to possibly delayed requests, drifts apart during the
experiment. The parameter T was studied in the experiments (see Sec. 3).

Fitness function. As the fitness of a MARB has to be evaluated locally, it
has to be based on the observed sequence of sensor data which is influenced
by the generated behavior of the robot. Therefore, every U time units, the
fitness value is updated by a "fitness snapshot” (see below).

Since mutations modify the behavior, the fitness value has to be adjusted.
This is done by using “evaporation”, i.e., every V time units, the fitness
value of the robot is divided by 2. U and V are parameters that are studied in
Sec. 3. Furthermore, undesirable events (like collisions) should modify the
fitness appropriately.

For Collision Avoidance, we used a fitness measure, which states that mov-
ing around is good, but being near an obstacle is bad; colliding with an
obstacle is even worse. The fitness assignment is shown in Alg. 1. It holds
that NOT_MOVING is 0, if the robot’s current instruction is “Move”, 1 oth-
erwise; OBST_NEAR is 1, if a close obstacle is sensed (i.e., Ah € H: h > 100),
0 otherwise. Initially, the fitness value of every robot is set to 0.
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if *U expired* then // Add snapshot to fitness.
fitness += (1 - NOT_MOVING - OBST_NEAR);

end if

if *Collision* then fitness -= 3; end if

if *V expired* then fitness /= 2; end if

Alg. 1: Fitness assignment and update.

3 Experiments

When doing evolutionary computation, it is usually required to adjust a set
of parameters, before good results can be achieved. We made experiments
to adjust the four parameters mutation interval S, reproduction interval T,
fitness snapshot interval U and fitness evaporation interval V. However,
there are more parameters than these four, which have to be studied in
future experiments (e. g., number of robots, size of field, and more complex
parameters like the mutation and crossover operators).

Collision Avoidance as target behavior has been used, because it is a
simple and analyzable behavior. However, as it was not a priori clear if this
is even evolvable with a model based on finite Moore automata and how it
would work, we present also two of the resulting automata.

Since there was a large number of evolved robots (in total 21060 robots in
810 simulations), it was not possible to look at all results in detail. Instead,
we checked only those automata, which finally achieved a positive fitness
value. To justify this, we separately tested automata with fitness > 0 (A)
and those with fitness < 0 (B), whether they had a reachable “"Move”-state
(since otherwise, they could not move and, therefore, especially did not
perform Collision Avoidance). It turned out that 91% of the automata in
(A) had a reachable "Move”-state, but only 28% of those in (B) did. Also, the
observation of random samples convinced us that zero is a reasonable fitness
threshold to distinguish between “good” and “bad” Collision Avoidance
behavior.

Adjusting the parameters. As listed in Tab. 1, 3* = 81 different parameter
combinations have been used, setting each of the four parameters to three
constant values. Each of these experiments was repeated 10 times. The setting
was a rectangular field, 60 x 80cm, where 26 robots were placed randomly
(based on uniform distribution in position and angle). Their initial automa-
ton was completely empty, i.e., had no states. Simulation was performed
for about 2000000 simulation steps (a robot would drive about 8 km in one
experiment if only repeating the Move-instruction).

Fig. 2 shows the number of ”successful” experiments, i.e., experiments
in which there existed robots with a positive fitness in the end, distributed
on the 81 different parameter combinations. On average, there were about
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Table 1 Parameter values used in the experiments.
|Mutation Int. S|Reproduction Int. T|Snapshot Int. U|Evaporation Int. V

1. 5000 ms 1000 ms 250 ms 10000 ms
2. 10000 ms 2000 ms 500 ms 20000 ms
3. 20000 ms 10000 ms 1000 ms 30000 ms

7 robots with a positive fitness in the final populations of successful experi-
ments (see Sec. 4 for a discussion on selective pressure).

As Tab. 2 shows, some of the results indicate a tendency, in which direction
parameters should be shifted.

Table 2 Distribution of successful experiments for each parameter separately.

|[Mutation Int. S|Reproduction Int. T|Snapshot Int. U|Evaporation Int. V
1.| 5000 ms: 18% 1000 ms: 37% 250 ms: 37% 10000 ms: 31%
2./10000 ms: 29% | 2000 ms: 29% 500 ms: 36% 20000 ms: 30%
3./20000 ms: 53% | 10000 ms: 34% 1000 ms: 27% | 30000 ms: 38%
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]
Lo
(\! 5+ 5 7 5 -
o
= a 4 P
— 34 34 3l ‘
24 2 - 24 b
& L 10000 L] 10000 1 I 10000
& N 4 /2000 o Ay /2000 . ay '/ 2000
- W 5000 R 1000 5000 B 1000 W 5000 ‘ A 1000
E 10000‘ 20000 [ Reprod. 10000‘ 20000 " Reprod. 10000 20000 [ Reprod.
Mutation Interval Mutation Interval Mutation Interval
Interval Interval Interval
o
[«
0o
- 5 5 5
»—:1 4 | 4 a
Q..' 3 3 3
< 24 - 2 . - 2 -
c g 10000 0 /10000 1 10000
L2 o A oy 2000 ol 2000 . 2000
i ‘ 5000 : 1000 5000 A o ‘ 5000 1000
[ 10000‘ 20000 ‘ Reprod. 10000‘ 20000 Reprod. 10000 20000 ‘ Reprod.
Mutation Interval Mutation Interval Mutation Interval
Interval Interval Interval
o
[}
o
—
. 5 - 5 7 5
- . . .
;—:1 4 4 4 ‘
N 3 ’ 3 3 )
g . 4 ; . . : . 'ﬂ ;
[ - 10000 . 10000 10000
= 1 ‘ 1 L 4 1 4
& N 4 2000 o & ay /2000 N 4 2000
= 5000 = L 1000 5000 - /1000 5000 1000
E 10000 20000 ‘ Reprod. 10000‘ 20000 Reprod. 10000 20000 ’ Reprod.
Mutation Interval Mutation Interval Mutation Interval
Interval Interval Interval

Fig. 2 Distribution of successful experiments (i. e., number of experiments out of 10 repe-
titions, where at least one robot had a positive fitness — for the 81 parameter combinations).
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The number of successful experiments increases with a larger mutation
interval S. In particular, a mutation interval of 5000ms almost never yielded
successful experiments (18 %). So, looking at all parameter combinations, it
seems to be reasonable to increase the mutation interval even more.

For the reproduction interval T, no clear statements can be derived. Ap-
parently, the values between 10007s and 10000s have to be studied more
precisely.

For the fitness snapshot interval U, it seems as if the value should be de-
creased. However, the differences are smaller than at parameter S.

For the fitness evaporation interval V, higher values seem to be better.

However, due to dependencies between the parameters, it may not be
possible to find the perfect parameter combination by only optimizing each
parameter separately. Rather than doing that, we will continue to perform
experiments with a large set of parameter combinations to learn more about
these dependencies. We will use these results, however, to draw conclusions
about the directions, in which the search should be extended.

The evolution of Collision Avoidance. In our experiments, 545 robots (2.6%)
had a positive final fitness. Some of these achieved the expected Collision
Avoidance behavior, i. e., moving (arbitrarily) until an obstacle appears, then
turning until the way is clear, then moving again; some did some other forms
like driving in circles or ellipses. However, it is often hard to characterize a
behavior accurately, since it could depend on circumstances, which are hard
to understand; e. g., there were robots which avoided obstacles only when
a specific constellation of sensor values from the sensors in the back was
received. Therefore, we characterize a robot’s behavior only by its fitness
value; in future the fitness function should be refined to avoid unwanted

behaviors.
((h=122 121 <h) & (d6%h, | false)) (0 —> —— T30 h
T\ 7 —_h<B _—

(h,~h,
88>h,| & (112~h,

&h,#h,)
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(h,# h, & (11 £bATT17~ h, 1191 ~ h,)))
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Fig.3 Two examples of evolved automata — performing the expected Collision Avoidance
behavior (left, fitness: 730); driving a circle (right, fitness: 132); unreachable states set gray.

Fig. 3 shows two automata that evolved during the experiments. The left
one lets the robot essentially drive straight forward, except when sensing an
obstacle: then it turns left. The right one is driving a circle — without sensing
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obstacles at all. However, due to the implementation of crash simulation,
it turns out that a circle-driving robot finds, after a few initial collisions,
enough space to drive with nearly no colliding and, therefore, is successful
in the sense of the fitness function.

4 Discussion

Conclusion. The results presented in this paper show that the onboard ap-
proach of online evolution of robot behavior based on a Moore Automaton
control works in principle. A set of four parameters has been selected quite
arbitrarily and set to some almost arbitrary values to study their influence
on the quality of the resulting behavior with respect to the fitness function.
Even within this random selection of the parameter search space, a parameter
combination has been found, which in 5 out of 10 samples yielded successful
experiments (and others did so in 3 or 4 out of 10 trials). It can be expected
that even better parameters can be found by extending the search in the di-
rections indicated by the results of the experiments and by modifying other
parameters, which have not been considered in this paper.

However, the experiments also uncovered some problems, which have
to be considered in future work. The process of reproduction, which is also
the mechanism of selection, is based on the assumption that the robots are
moving around at least now and then. If too many are standing idle, the
rule of producing offspring always with the closest neighbor determines
an incestuous exchange of genomes, always with the same partner. Since
we argued that most of the robots had a negative fitness in the end and
that of their automata only about 28% even had a reachable Move-state,
we can expect that this assumption was not fulfilled sufficiently in many
populations. Since a similar problem arose in experiments with real robots,
the movement of robots during evolution has to be studied more carefully
and probably a new mechanism of reproduction has to be developed. Maybe
using a flexile mutation interval (e.g., mutating robots with lower fitness
more often), rather than a constant one as we did so far, could also help
avoiding this. A second problem was the fitness function, which induced
unexpected solutions like driving circles without sensing obstacles. Though
these solutions were successful in the sense of the fitness function, it was not
the intended behavior. Obviously, the design of a fitness function for a target
behavior has to be studied in correlation with the expected and the actual
outcome.

Another issue is the measure of diversity (as defined in [8]) in the popula-
tion during the experiments, which could give a more detailed insight into
the evolutionary process. Besides inherent problems of the diversity mea-
sure, in this case, it is not even clear, how to measure the difference between
two single individuals. As proposed in [9], this difference could be measured
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on the phenotypic level through the reaction of individuals to stimuli (i. e.,
some kind of fitness function, again). However, the fitness function is de-
layed and dependent on the environment, so a more precise measure on the
genotypic level should be found. For two automata A and A’ such a measure
could, e. g., be based on the number of input sequences (i. e., sequences of
sensor combinations), where the corresponding output sequences produced
by A and A’ differ.

So far, we considered fitness values and genomes at the end of exper-
iments, only. However, fitness, genome, and movement of each robot are
recorded during the experiments. A careful analysis of this data should allow
to gain more information about selective pressure, the benefits of a flexible
mutation interval, the problem with incestuous exchange of genomes and it
could help to get a better idea of an appropriate evolving time.

Outlook to future work. More experiments with a larger variety of parame-
ter combinations have to be performed and the statistical significance of the
results has to be checked. Especially studying the mutation interval seems to
be promising for achieving better results. A recombination operator which
generates offspring as a mixture of the genomes of both parents has already
been developed, but still has to be implemented and tested. Also, we are
planning to make experiments with a flexible mutation interval. A measure
for diversity on the genotypic level is being developed. The development of
the population during evolutionary runs is going to be studied in detail.
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