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Abstract Consider a group of m stations with fixed positions in the plane and a
group of n mobile robots, called relays, aiming at building a communication net-
work between the stations consisting of as few relays as possible. We present two
strategies for dimensionless, identical (anonymous), oblivious and disoriented re-
lays with limited viewing radius for constructing such a network. These strategies
resemble natural strategies of swarms for maintaining formations. A relay does not
communicate with others, its decision - whether to remove itself from the system,
or where to move - consists only of the relative positions of its neighbors within its
viewing radius. We provide a theoretical analysis of worst-case scenarios and upper
and lower bounds for the number of relays used by the strategies. In addition, we
show some preliminary experimental results.
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ad-hoc networks

1 Introduction

In our research we investigate the construction of a communication network con-
necting stations in a planar terrain without obstacles. Mobile relays are used to route
messages between the stations. Both stations and relays have a restricted viewing
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radius and thus are connected via their so-called unit disk graph. They are able to
sense the positions of all nodes within this distance. Starting with a large group of
relays with positions somewhere in the plane and a group of stations with fixed po-
sitions, our goal is to develop local strategies for the movement and removal of the
relays that globally result in a network of relays connecting the stations using as
few relays as possible. We assume that the initial unit disk graph of the stations and
relays is connected and our strategies must keep it connected. A globally optimal
solution would place the relays on the edges of a Minimum Steiner Tree connecting
the stations.

In Section 2 we present two local, distributed strategies for the movement and
removal of the relays. Both versions are very intuitive and do not use any commu-
nication, the relays perform their movements using only the sensed positions of the
relays and stations within the communication distance. This approach is defined in
[1] and called “Interaction via sensing”. In Section 3 and 4 we analyze and compare
the performance of the strategies concerning the number of relays used. The theo-
retical results provide a worst-case analysis, the experimental results are taken from
a simulation and we present sample outcomes that show promising results.

1.1 Related work

Generally, our work belongs to the field of distributed algorithms for robot swarms,
where groups of small, cheap robots are used to perform a variety of tasks. Some of
these tasks are the formation of geometric patterns, gathering at and convergence to
a single point, searching and partitioning the group of robots. A strategy for gather-
ing which is closely related to ours is analyzed in [2]. The setting here also consists
of robots which move synchronously, are oblivious and anonymous and have a lim-
ited viewing radius. Also, like in our strategies, the calculation of the next position
of a robot is based on the center of the smallest enclosing circle around its neighbors.
The main difference to ours is the goal of the strategy: there are no fixed stations
and the robots gather in one point. Moreover, no robots are deleted and the avoid-
ance of connection loss is different. In [2], the robots are restricted to a movement
distance of at most 1 which must be calculated each round by each robot based on
its neighborhood.

Another related scenario was presented in [3], where the explorer and the base
station in the static setting correspond to our stations. In addition to only using
two stations, a communication chain already exists such that every relay knows its
predecessor and successor. Also in that scenario, removal of relays is not considered.
The only strategy with removals is presented in [4] . It converges very fast, but also
only holds for a chain of relays connecting two stations. In addition, the relays need
a sense of direction, the chain has to be consistently directed from one station to the
other.
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1.2 The model

In the following, we will refer to both relays and stations together as nodes. Using a
communication distance of 1, the unit disk graph of the stations and relays is a graph
where vertices correspond to stations or relays and edges exist between two vertices
if and only if the two nodes are within communication distance of each other. As
stated in Section 1, we assume that the unit disk graph is connected at the beginning,
and our goal is to transform the initial unit disk graph into one which still connects
all stations and uses as few relays as possible. Note that an optimal selection would
place the relays on the edges of a Minimum Steiner Tree connecting the stations, so
that neighboring nodes have distance 1. It is assumed that the measurement of the
position of neighbors is exact.

To simplify the analysis, we use a synchronous time model with discrete time
steps. In each step, nodes are able to sense their environment within the communi-
cation distance of 1, to compute their new positions and to move toward this new
position up to a distance of 1. This model is called “LCM-Model” (Look-Compute-
Move Model) in [5]. We furthermore denote the position of robot r at the beginning
of time step t by pt

r and the set of neighbors of robot r at the beginning of time step
t, i.e. all nodes within communication distance 1, by Nt(r).

We assume that a relay i can be deleted from the system if it recognizes that it
is not needed. The exact notions of “not needed” are part of the definition of our
strategies. (A deleted relay may be assumed to return to some base camp, in order
to be used for another task.)

For our analysis of the number of relays finally needed for the communication
network, we need the technical assumption that the viewing radius is smaller than 1,
i.e. we assume that the disks defining the unit disk graph are open sets. In this case,
the initial unit disk graph has the property that connected nodes are in distance of at
most 1−δ , for some δ > 0. We refer to δ as the slackness of the initial configuration.
In case we allow closed disks, we say that there is no slackness.

2 The strategies

The following GO-TO-THE-CENTER strategy is executed sequentially, i.e. every
time step one relay performs the strategy. The order in which the relays act is given
from the beginning and does not change. The time from the beginning of a move
of a relay r to the beginning of its next move is called a run. (We note here that
our results also hold if we assume a parallel execution of the actions of relay, as
long as no relays which are neighbors move in parallel. We have implemented a
randomized such strategy.) If relay i performs the strategy in time step t, it first
observes the exact positions of all its neighbors. It then computes its new position
as the center of the smallest enclosing circle around all positions of its neighbors
within its viewing radius. This center is equivalent to the point that minimizes the
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maximum distance to the nodes in Nt(i). If there already is a node j at this position,
relay i deletes itself.

The EXT-GO-TO-THE-CENTER strategy is an extension of the GO-TO-THE-
CENTER strategy with an additional deletion rule. Here, before a relay i moves, it
checks if the subgraph of the unit disk graph induced by Nt(i) is connected. If this
is true, i deletes itself.

The following lemma shows that the unit disk graph stays connected in both
strategies.

Lemma 1. For both strategies, the following holds: If the unit disk graph is con-
nected before time step t, it is also connected at the end of time step t.

Proof. Let relay i and j be neighbors at the beginning of time step t. At most one of
the two relays can change its position in time step t. If none of them moves, they are
obviously neighbors at the end of time step t. Let i therefore be the relay performing
one of the two strategies. The point computed by i minimizes the maximum distance
to its neighbors, therefore the maximum distance between i and its neighbors cannot
increase:

dt+1(i, j)≤ max
k∈Nt (i)

{dt(i,k)} ≤ 1

If i is not deleted, i and j therefore remain within communication distance and the
unit disk graph remains connected. If i is deleted, there are two possibilities:
(1) There is another relay r at position pt+1

i with Nt+1(i) = Nt+1(r). i and r therefore
have the same neighbors in the unit disk graph at the beginning of time step t + 1
and all edges adjacent to i lie in a circle. If i is deleted, the unit disk graph remains
connected.
(2) Relay i recognizes that its neighborhood is still connected without i. Since the
deletion of i only affects its neighborhood, the whole graph remains connected. ut

3 Theoretical insights

This section deals with the worst-case analysis of our strategies. We first prove that,
after finite time, the unit disk graph does not change any more, and that the convex
hull of all nodes converges to the convex hull of the stations. Then we provide upper
and lower bounds for the number of relays for scenarios with two or more stations
for both strategies. In the following, we assume that the number of relays in the start
configuration is n and that there exist m stations. The center of a smallest enclosing
circle is defined by two or three points (f. ex. [6]) called basis, we also call the nodes
at these positions the basis of a relay r.

Theorem 1. The number of changes of the unit disk graph is bounded by O(n(n+m)).

Proof. As soon as two relays i and j are neighbors, they stay neighbors until i or j
is deleted. A change of the unit disk graph therefore is a result of the deletion of a
relay or of two relays becoming neighbors. As no relays are added to the system,
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the maximum number of relays which can be deleted is n. Moreover, every relay
can only find n+m−2 new neighbors, resulting in a maximum number of changes
of the unit disk graph caused by new neighbors of n

2 (n + m−2) = 1
2 n2 + 1

2 nm−n.
The maximum number of changes of the unit disk graph in general is therefore
1
2 n2 + 1

2 nm. ut

Theorem 2. All relays will eventually be within ε-distance to CH∗, the convex hull
of the stations, for every ε > 0.

The proof follows a similar concept of a proof in [2], where it is shown that the
robots gather in one point.

Proof.
Let CH(t) denote the convex hull of all nodes after t steps. We split the proof in the
following two parts. They obviously imply the theorem.

(a) For every t ≥ t0, CH(t +1)⊂CH(t).
(b) There exists no convex polygon CH s.th. CH∗ is a proper subset of CH and CH

is a subset of every CH(t).

Proof of (a):
Fix some time step t +1, in which some node i moves. This move transforms CH(t)
to CH(t +1). As i’s new position is contained in the convex hull of its neighbors, it
is also contained in CH(t), which implies (a).

Proof of (b):
Let CH be such a convex polygon. Furthermore let t0 be a time instant such that
for all t ≥ t0 all relays are within ε distance of CH for ε > 0 small enough and
such that the unit disk graph does not change any more within finite time. Let CH ′

be another convex polygon consisting of edges parallel to those of CH in distance
ε outwards from CH. CH must have a corner e which is not defined by a station,
since CH∗ is a proper subset of CH. We call the corresponding corner of CH ′ e′.
Then there exists a line l intersecting CH in distance c of e with equal angles to both
edges of CH that intersect in e, where c > 0 is sufficiently small (compare Figure
1). Let E be the isosceles triangle formed by l and the edges of CH ′ intersecting in
e′. For every t > t0, E must contain a set of relays RE which can change in every
time step, since otherwise the convex hull of all nodes would be a subset of CH
(contradiction to the assumption). As the unit disk graph of the stations and relays
is connected, at least one relay in RE lies within communication distance to a relay
r outside of E. W.l.o.g. let r be the relay with maximum distance to l which still has
a neighbor in E. By choosing ε and c appropriately, it can be guaranteed that the
distance d′ from r to l is large enough such that in the run directly after r’s move
all relays in RE within communication distance of r leave E. Let ri be the first relay
leaving E in this run. Then there must still be relays left in E after ri’s move and,
since these relays are ri’s neighbors, the new position of ri must be closer to l than
the position of r. With ε and c small enough, the whole triangle E now lies within
communication distance of ri. Moreover, the distance of ri to l is still large enough
so that the new positions of all neighbors of ri are outside of E. This means that in



6 Friedhelm Meyer auf der Heide and Barbara Schneider

the following run before ri’s next move all neighbors of ri leave E or cannot enter
it. Furthermore, every other relay entering E in this run would become neighbor of
ri contradicting the assumption. So, on ri’s next move, there are no nodes in E. This
is a contradiction to the assumption. ut

Figure 1 Proof of Theorem 2

In the following, we prove first upper and lower bounds on the number of relays
eventually left over by our strategies. The first bound shows worst case limitations
of our strategies.

Theorem 3. Consider four stations forming a square of edge length d. There are
configurations of Θ(d2) relays for both strategies so that no relay will ever be re-
moved. (Note that the minimum Steiner Tree has size Θ(d) in this case.)

The second bound is restricted to the scenario of two stations and shows the
asymptotic optimality in this scenario for initial configurations with positive slack-
ness.

Theorem 4. Let an initial configuration with two stations in distance d and some
positive slackness δ be given. The number of relays used by EXT-GO-TO-THE-
CENTER will eventually be at most 2d. (Note that this is optimal up to a factor of
2.)

Proof (of Theorem 3). If the relays form a grid of distance 0.9 inside the square of
stations, there exist edges in the unit disk graph between two adjacent points on the
grid (see Figure 2). This is why there exists no relay with a connected neighborhood.
Moreover, every relay is positioned in equal distance to all its neighbors in the center
of the smallest enclosing circle. Therefore no relay can move or be deleted. The
number of relays is then quadratic in d.
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Figure 2 Illustration for the proof of Theorem 3

Proof (of Theorem 4). We first note, that the slackness of a configuration will not
decrease anymore after the last of the (finitely many, compare Theorem 1) changes
of the unit disk graph. Let the slackness after this last change be δ > 0. Now con-
sider a later time step so that, from now on, the relays will always stay within a
rectangle around the line connecting the stations with width ε > 0 small enough so
that ε(1−δ ) < 1. Fix an arbitrary relay i. Because of the choice of ε , its neighbors
in direction to the first station form a connected subgraph of the unit disk graph, and
its neighbors in direction to the other station do so as well. Thus, as the unit disk
graph does not change anymore, the closest neighbors of i in both directions have
distance at least 1. This implies the bound 2d for the number of relays. ut

4 Experimental results

In this section we will present some preliminary experimental simulation results. In
our tests, the results were much better than the worst-case scenarios in Section 3.
We have chosen three sample start configurations and present the results for both
strategies.
In the first start configuration (Figure 3), the four stations form a square with side
length 2.5 and part of the relays are located around the stations in form of a square
with side length 5. The remaining of the 53 relays are situated arbitrarily inside or
close to the square of relays.
The second start configuration (Figure 5) consists of five stations and 70 relays with
the stations situated arbitrarily in the plane and a lot of relays in the convex hull of
the stations. The remaining relays are mainly positioned at the left and at the upper
right side of the convex hull of the stations and the longest distance between two
stations is 6.
The third start configuration (Figure 7) consists of five stations and 400 relays, all of
them positioned uniformly at random in a 10×10-Grid. Because of the big number
of relays, the probability for a connected unit disk graph or for connected compo-
nents which merge during the simulation is high.

These preliminary experiments suggest the following:

• The set of relays is thinned out considerably.
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• The final formation of the relays does not reach the shape of a Minimum Steiner
Steiner Tree, but comes close.

• Typically, if the formation contains a part that resembles a cycle within the con-
vex hull of the stations, then this cycle cannot be broken by our local strategy.

• EXT-GO-TO-THE-CENTER converges substantially faster than GO-TO-THE-
CENTER.

Figure 4 shows the configurations after applying GO-TO-THE-CENTER or EXT-
GO-TO-THE-CENTER resp. to the first start configuration, Figure 6 depicts the re-
sults for the second and Figure 8 for the third start configuration. Additionally, the
figures show the minimal Steiner tree as the globally optimal solution.

Figure 3 Start configuration for scenario 1

(i) GO-TO-THE-CENTER (ii) EXT-GO-TO-THE-CENTER

Figure 4 End configurations for scenario 1
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Figure 5 Start configuration scenario 2

(i) GO-TO-THE-CENTER (ii) EXT-GO-TO-THE-CENTER

Figure 6 End configurations for scenario 2

Figure 7 Start configuration scenario 3
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(i) GO-TO-THE-CENTER (ii) EXT-GO-TO-THE-CENTER

Figure 8 End configurations for scenario 3
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