
Measurement of robot similarity to determine
the best demonstrator for imitation in a group of
heterogeneous robots

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt

Abstract Imitation is not only a powerful means to drastically downsize the explo-
ration space when learning behavior. It also helps to align the learning efforts of
a robot group towards a common goal. However, one prerequisite in imitation, the
decision of which robot to imitate, is often factored out in current research.

In our work we address this question by providing a means to measure the simi-
larity between two robots. Based on this similarity a robot can choose which robot
to imitate. The affinity of two robots with respect to imitation is most reasonably
measured by calculating their behavioral difference, since the goal of imitation is
learning new behavior. This is accomplished by each robot individually construct-
ing an Affordance Network which is a Bayesian network upon its conditional af-
fordance probabilities in the environment. An affordance represents the interaction
possibilities an object provides to the robot. These Affordance Networks are then
compared with a new metric.

1 Introduction

Imitation is not only a powerful means to drastically downsize the exploration space
when learning new behavior [2, 12, 17]. It also helps to align the learn efforts of a
robot group towards a common goal. It becomes especially important if a robot is a
member of a group of robots who have to accomplish a common task or even several
different tasks. The awareness of this has led to the definition of the “big five” ques-
tions in imitation, “namely who, when, what, and how to imitate, in addition to the
question of what makes a successful imitation” [5]. As recent research has concen-
trated on the “what” and “how”, the “who” has so far been factored out in current
research – either by restricting the imitation process to a one-to-one demonstrator-
imitator relationship where the roles of both are clear, or by providing the robots
with fixed rules. However, the question of whom to actually imitate plays a role al-
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ready in early childhood, as shown e.g. by the Psychologist Burnstein [3]: He found
out that children imitate more often peers that have similar sex, age or interests.

In our work we address this question by providing a means to measure the sim-
ilarity between two robots. The affinity of two robots with respect to imitation is
most reasonably measured by calculating their behavioral difference, since the goal
of imitation is learning new behavior. This is accomplished by each robot individ-
ually constructing an Affordance Network which is a Bayesian network upon its
conditional affordance probabilities in the environment. Encoded in such a network
is the information which capabilities are dependent on which other ones. If, e.g. a
robot knows it has the capability A and another robot is capable of A and B and
in addition has identified the dependency A→ B, then it would be wise to imitate
that robot. Two robots can thus individually learn about each other’s Affordance
Networks and calculate the difference. When comparing each other the robots can
then determine from this difference the degree of behavioral similarity – the more
behaviorally similar two entities are the more reasonable it would be for them to
mutually imitate beneficial behavior. Depending on the metrics used to calculate the
difference an observing robot can decide whether it should a) copy the knowledge
of the other robot (if the demonstrator has the possibilities to share it), b) imitate the
robot using indirect observation, or c) ignore it.

Fig. 1 Simulation environment with two morphologically different robots: Choosing the right
robot to imitate helps to avoid useless imitation attempts

2 Related work

The psychologist Gibson observed that our perception of the world is dependent on
our interactions with it. For this he introduced the term affordance [9, 10] which is a



Measurement of robot similarity for imitation 3

property an object can have that describes the possible actions that can be performed
with it. This depends on the one hand on the object itself, its objective properties
like size, weight, surface friction, or shape, and on the other hand on the entity that
tries to manipulate that object. But even if the system has all the capabilities to
manipulate an object it does not help until it knows how to do that – a common
learning problem in developmental robotics [13]: If a system is able to find out
which actions make generally sense, it has filtered out the vast amount of useless
actions.

Robotics researchers have embraced that concept of affordances as it helps the
research to look through the eyes of a robot [7, 15, 16]. Affordances are even used
together with Bayesian Networks (BNs) in the field of imitation: Lopes et al. [14],
e.g., use BNs to learn object affordances. However, as they are interested in learn-
ing the individual affordances they assume the role of the demonstrator to be known.
Thus they use BNs to model the affordance. In contrast, we use them to model affor-
dance dependencies to infer behavioral differences. Cesa-Bianchi et al. [4] present
an algorithm that chooses the best expert from a set of predefined experts. In their
game-theoretic approach they require a static set of always accessible experts – a
condition hardly met in realistic robotic domains. As their algorithm is only relying
on the experts’ performances it does not help in heterogeneous real-world robotics
applications, where robots have different morphologies and capabilities. Balch de-
veloped a means to measure the overall diversity of a group of robots [1]. In his
approach the robots are assumed to be morphologically similar and that their learn-
ing algorithms already have converged to a stable behavior.

3 Algorithm

To compare robots based on their behavioural affinity and thus actively control the
imitation process one needs data which is related to the robot’s behavioural possi-
bilities. Upon the raw data we build a meaningful representation which we then use
to compare robots by an adequate metric.

3.1 Gathering raw data

First we need data about behavioural possibilities of a robot. This information relies
on the robot’s hardware and software. Thus the first idea could be to compare these
components. However, this approach is infeasible because the information can be
exchanged by communication only and a common communication interface cannot
be demanded for arbitrary robots. Furthermore, the robot’s hardware differs even if
it fulfills the same functionality, i.e. one robot could be differentially driven while
another one uses omniwheel for locomotion.
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As already pointed out, affordances are subjective and tightly coupled to the be-
havioural capabilities of a robot. Each robot can gather its own affordance data dur-
ing environmental exploration and can get the affordance data of potential demon-
strators by observation. In this paper we assume the set of affordances to be pre-
defined and constant. However, this is no restriction to our algorithm as learning
affordances at run-time (e.g. via [14]) does not pose a problem to this approach. Let
S = {s1, ...,sn} be the set of all recognizable affordances and let L = {l1, ..., ln} de-
note all objects in the robot’s environment. We can then define O = S×L×B where
B = {True,False} as the set of all possible results of an affordance test. Further-
more, we define Ori ⊆ O as the set of results gathered by robot Ri. To simplify the
disscussion we define the following functions: bool(oir) = bir, affordance(oir) = sir,
and object(oir) = lir, whereas oir ∈ Oir.

3.2 Affordance Network

The gathered raw data is unstructured, noisy and incomplete. Furthermore, the set of
data samples grows rapidly during the robot’s environmental exploration. To struc-
ture the data and cope with uncertainty each affordance is interpreted as a random
variable Xi and the gathered data for this affordance as a sample set. We then can
define the finite set X = {X1, ....,Xn} of random affordance variables where each
variable may take on a value xi from the domain {True,False}. Upon Ori we define
O
′
ri = {(bool(or1), ...,bool(orn))| ∀ori,or j : i 6= j and ob ject(ori) = ob ject(or j)} and

interpret these tuples as samples of the joint distribution of the random variables in
X . To get a compact representation of the joint distribution of the variables in X we
train a Bayesian Network with the set O

′
ri for each robot individually. As the data

in O
′
ri is directly coupled to the tested affordances a Bayesian Network trained with

this set will also encode behavioral information.

Definition 1. Let P be a joint probability distribution of the random variables X =
{X1, ....,Xn} in some set V , and G = (V,E) be a DAG. We call (G,P) a Bayesian
Network if (G,P) satisfies the Markov condition. By applying the chain rule of
probabilities and properties for conditional independencies, any joint distribution P
that satisfies the Markov condition can be decomposed into the product form:

P(X1, ....,Xn) =
n

∏
i=1

P(Xi| parents(Xi)).

The directed edges of the DAG describe causal relations between the random vari-
ables in X . Each node has an attribute which describes the conditional probabilistic
distribution of its random variable and the random variables of its parents.

If there is enough expert-knowledge to define the structure of a Bayesian Net-
work, only the parameters i.e. the conditional probabilities have to be learned from
data. In our case as we do not use any further domain knowledge we have to learn
both, the structure and the parameters from data. Therefore we apply the Structural
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EM Algorithm [8] to the affordance data. This is an iterative algorithm based on a
standard Expectation Maximization algorithm to optimize parameters, and a struc-
ture search to find the current best structure model.

A problem commonly found in structural-learning Bayesian networks is that real
causality cannot be derived from raw data [11]. However, this is not a problem here
as we do not make inference on the trained networks rather we use them to measure
the distance between robots by means of behavioral affinity.

3.3 Metric

After defining a meaningful and well structured representation of a robot we now
need to define a metric to measure robot affinity. As BNS are directed acyclic graphs
we can apply the Graph Edit Distance Metric (GED) [6] to measure structural dis-
tance between two graphs g1 and g2. To describe the GED metric we need the defi-
nition of a label representation as defined in [6]:

Definition 2. Let LE and LV denote sets of edge and node labels, respectively. A
graph g = (V,E,α,β ) is a 4-Tuple where V is the finite set of vertices, E ⊆ V ×V
is the set of edges, α : V → LV is a function assigning labels to the nodes and
β : E→ LE . The label representation of g, p(g), is given by p(g) = (L,C,λ ):

• L = {α(x)|x ∈V},
• C = {(α(x),α(y))|(x,y) ∈ E}, and
• λ = C→ LE with λ (α(x),α(y)) = β (x,y) for all (x,y) ∈ E.

Using the label representation we can then define the Graph Edit Distance met-
ric [6]:

Definition 3. Let g1, g2 be two graphs with label representations p(g1) and p(g2).
Furthermore, let C0 = {(i, j)|(i, j) ∈ C1 ∩C2 and λ1(i, j) = λ2(i, j)} and C′0 =
{(i, j)|(i, j)∈C1∩C2 and λ1(i, j) 6= λ2(i, j)}. Then the graph edit distance d(g1,g2)
of the two graphs is

dged(g1,g2) = |L1|+ |L2|−2|L1∩L2|+ |C1|+ |C2|−2|C0|+ |C′0| (1)

As we are only interested if an edge between two nodes exists, we define β (x,y) = 1
∀(x,y) ∈ E, and thus omit |C′0| from our distance metric for affordance networks.
As the nodes of the Affordance Networks also need a special treatment due to the
inherent conditional probability differences, this leads to the edge comparing part
of the final affordance network metric dane:

dane(g1,g2) = |C1|+ |C2|−2|C0| (2)

The nodes of the Affordance Network contain conditional probabilities which
may differ so that we have to measure distances between these probabilities. For
example, consider the node with the label “Reachable” in the networks g1 and g2
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(Fig. 2). In g1 it has no parent, thus it is is said to be unconditioned. The node
with the same label in g2 is conditioned by the outcome of node with the label
“Pushable”. We have to compare P(Reachable) = 0.2 from the node in g1 with
P(Reachable|Pushable = 1) = 0.0 and P(Reachable|Pushable = 0) = 0.8 from the
node in g2. To be able to measure the distance inside the nodes we use the definition
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Fig. 2 Two Affordance Networks with different distributions

of independence and conditional independence.

Definition 4. Two events E and F are independent if one of the following holds:

• P(E|F) = P(E)∧P(E) 6= 0,P(F) 6= 0
• P(E) = 0∨P(F) = 0

Definition 5. Two events E and F are conditionally independent given an event G if
P(G) 6= 0 and one of the following holds:

• P(E|F ∩G) = P(E|G)∧P(E|G) 6= 0,P(F |G) 6= 0
• P(E|G) = 0∨P(F |G) = 0

Using these definitions we can expand the probability of the node in g1: The proba-
bility for the “Reachable” affordance is therefore transformed from P(Reach.) = 0.2
to P(Reach.|Push.) = 0.2 and P(Reach.|¬Push.) = 0.2 if the events “Reachable”
and “Pushable” are independent. Since there is no edge in g1 between the nodes
with labels “Reachable” and “Pushable” the Markov condition guarantees their in-
dependence.

After extending the probability labels we can interpret the probabilities of node
v as a point point(v) in n-dimensional space, where n is the number of entries in
the nodes probability table. Then we can calculate the distance δ (e.g. Euclidean)
between two equally labeled nodes in the different Affordance Networks:

dann(g1,g2) = ∑
v1∈V1 ,v2∈V2

α(v1)=α(v2)

δ (point(v1), point(v2)) (3)

The final distance function for two Affordance networks dan is then the weighted
summation of dane(g1,g2) and dann(g1,g2), where the weights are domain depen-
dent and can be used to control the influence of the structure and the probability
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distribution:

dan(g1,g2) = ce (|C1|+ |C2|−2|C0|)+ (4)

cn

 ∑
v1∈V1,v2∈V2
α(v1)=α(v2)

δ (point(v1), point(v2))

 (5)

4 Experimental Results

The presented approach will be demonstrated with two scenarios: In the first one
it is shown in detail how the approach leads to the determination of behavioral
difference. The second scenario demonstrates how its usage leads to a significant
improvement of the imitation process.

4.1 Scenario 1

In this artificial example there are three robots of which one is the imitator (Ri) that
has to choose between two demonstrators (Rd1) and (Rd2) to imitate. The properties
regarding the gripper and the drive motor are shown in Tab. 1. Fig. 1 shows the
two demonstrators to which the environmental objects have different affordances
because of their different morphologies: The yellow robot (Rd2) with the barbed
gripper, e.g., is able to pull objects and can not lift them, whereas the blue one (Rd2)
has a strong gripper but a weak drive, so that it is able to lift some objects, but can
not pull them.

Over the course of its lifetime the imitator has recorded the affordances of the
two other robots in the scenario and has built an Affordance Network as described
in Sec. 3.2 that is depicted in Fig. 3 (page 8). Let us now take a look on how the
presented behavioral metric works on those networks to measure the behavioral
similarity.

Table 1 Qualitative description of three robots. The imitator is more similar to demonstrator 1 in
terms of its gripper and motor capabilities. When imitating another robot in order to learn new
behavior it should imitate that robot instead of demonstrator 2.

robot capabilities
gripper motor

length strength style strength

demonstrator 1 long weak barbed strong
demonstrator 2 short strong normal weak
imitator normal weak barbed normal
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From the qualitative description it is intuitively clear in this simple example that
the imitator has more resemblance to demonstrator 1 and should imitate that robot
instead of demonstrator 2 (Rd2). Applying the distance metric dan to the data col-
lected with the three robots we get the results for various weights of the edge and
the node distance part as shown in Tab. 2. As can be seen the behavioral distance
between the imitator and the first demonstrator is smaller than the distance to the
second one.

Table 2 Behavioral similarity calculated using the distance metric dan.

ce cn dan(Ri,Rd1 ) dan(Ri,Rd2 )

0.1 0.9 2.307 3.614
0.25 0.75 2.423 3.845
0.5 0.5 2.61 4.23
0.75 0.75 2.808 4.615
0.9 0.1 2.923 4.846
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Fig. 3 The final Affordance Networks from the viewpoint of the imitator. These are used by the
imitator to calculate the difference in order to determine that robot that has behaviorally the most
resemblance to the imitator

4.2 Scenario 2

This scenario was carried out in the PlayerStage/Gazebo simulation environment
(Fig. 1). A robot similar to the well-known Pioneer2DX had to choose between
three morphologically different demonstrators whom to imitate. All robots differed
in the size, strength and shape of their gripper and the strength of their drive unit.
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The experiment was carried out as follows: The imitator started without any
knowledge and no Affordance Networks. Then it observed a random demonstra-
tor carrying out an action like pushing an object (Fig. 1) and recorded whether it
was successful. Afterwards it carried out all known tasks with all known objects
in the environment by itself, recorded the success and updated the Affordance Net-
works for them both. The number of failed behaviors dependent on the number of
imitations it has carried out is shown in Fig. 4. As can be seen the imitation process
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Fig. 4 Increase of the imitation efficiency due to improved imitator selection

gets more efficient with more observations and thus more exact Affordance Net-
works compared to randomly choosing a demonstrator. The Affordance Networks
together with their metric significantly help to improve the overall imitation process.

5 Conclusion

We introduced Affordance Networks, which are Bayesian Networks based on the
affordance dependencies of robots and developed a distance metric which calculates
the behavioral diversity between two robots based on those Affordance Networks.
Once the affordances are observed a robot willing to imitate is able to determine that
robot in a heterogeneous robot group that is the most similar to the imitator. This
leads to a higher success probability in the imitation process as imitation of robots
that are e.g. morphologically different to the imitating robot is avoided.
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Although this example is carried out only in realistic simulation environment
it should be clear that it would result in a similar outcome in a real world if the
data can be collected in sufficient quantity, because the presented approach is able
to cope with missing and noisy data. To our knowledge this is the first solution to
answer the question whom to imitate in a group of robots. It is not restricted to the
robotics domain, but can be applied to all domains where behavior can be observed
and imitated.
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