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Abstract

System monitoring is not only the key to system and application optimization,
but also provides the fundamental functionality for adaptive and self-configuring
systems. In this paper we describe a novel approach to monitoring based on biologi-
cally inspired methods, which not only suits traditional requirements in generating a
detailed and pristine system state image, but also complies with the dedicated needs
of self-configuring systems. As a beneficial side-effect, the proposed monitoring
approach is inherently fault-tolerant and scalable with system size.
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1 Introduction

Traditional use of monitoring techniques range from basic system introspection re-
quired for sanity checks or load balancing to detailed system traces used for applica-
tion and architecture optimization. Especially the latter requires detailed and pristine
recording of the system state to enable correlation of program code and monitored
effects, such as e.g. cache hits and misses.

For these topics, a plethora of techniques and tools has been developed such as
hardware counter registers triggering to individual events, profilers, or simulation
infrastructures. Each of these methods, however, comes with certain drawbacks.
Simulation is only as precise as the underlying simulation model, and typically sev-
eral magnitudes slower than execution on a real system. It does, however, provide
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the possibility of closest possible introspection and is able to deliver a pristine sys-
tem view, unaltered by monitoring side-effects.

Simulation is especially hampered by the problem of data size: even short pro-
gram runs of few milliseconds are able to generate several megabytes of monitoring
(trace) data at single-step resolution. Even at a far more coarse-grained monitoring
resolution, a program run will easily generate traces in the gigabyte range.

All approaches typically share the way how monitoring data is collected and
transported: collection is usually done using fixed, assigned counter registers which
are subsequently polled by a monitoring framework. Hence, in real systems, side
effects caused by monitoring occur such as interrupt triggering or data transport.
When analyzing trace data, these side effects have to be carefully taken into account.

1.1 Adaptive and Self-configuring Systems

Conventional optimization relies on trace generation, off-line analysis of the gener-
ated trace data, and manual or semi-automated optimization. For trace generation,
monitoring is solely based on pre-defined rules, i.e. the programmer defines upfront
which events need to be generated or traced.

This is in contrast to adaptive, self-configuring systems: here, only a start con-
figuration can be provided and it is unknown whether this will suit future system
configurations or generate a sufficient amount of monitoring data to enable proper
reaction to events. Furthermore, monitoring data must not be collected for off-line
introspection, but rather be analyzed and evaluated on-line, adhering to application-
and system-defined real-time constraints.

Hence, adaptive systems consist of a closed control loop as illustrated by Figure
1: using monitoring components, the system’s current state is derived and evalu-
ated against a destination state defined by so-called objective functions. Using these
functions and the adaptive capabilities of the system provided by adaptive compo-
nents, a refined system configuration is derived and a reconfiguration performed
here-on.

arget Functio

Monitoring

Reorganization

Configuration

Fig. 1 Adaptive System: Control Loop
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Objective functions, however, are usually contradictory. Power vs. performance
may serve as an example: almost all dynamically applicable methods to lower power
consumption will also decrease performance — and vice versa. Hence, data must be
collected and evaluated in real-time to ensure that application demands, as defined
through the provided objective functions, are met.

As said before, this entire process is unlike conventional, narrowly focused op-
timization of e.g. data locality, where only limited information needs to be gath-
ered and correlated, and where correlation and optimization are typically done off-
line. Instead, an approach not hampered by a fixed corset of pre-defined events and
rules is required which instead is tailored towards the needs of adaptive and self-
configuring systems.

1.2 Outline

In this paper, we therefore propose a novel monitoring system approach. This ap-
proach employs a uniform, flexible method of associative counter registers, subse-
quently enabling real-time analysis of monitoring data, and minimizing side-effects
caused by monitoring data transfer. The approach does not require up-front defi-
nition of monitoring rules; instead, a bio-inspired method is used, enabling fault-
tolerant event generation, distribution, and evaluation. Therefore, within the scope
of an adaptive system, also monitoring itself becomes adaptive and — as a beneficial
side-effect of the used method, — easily scalable with system size.

This paper is organized as follows: we will first give an introduction to the spe-
cific set-up and needs of adaptive, self-configuring systems illustrated by a novel-
bio-inspired architecture. We then discuss existing monitoring approaches and their
suitability with respect to real-time capabilities, system influence, and use within
adaptive, self-configuring systems, followed by detailed presentation of our moni-
toring approach, its prototype implementation and results. The paper is closed with
the conclusion and outlook.
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2 Related Work

Trace generation for optimization purposes and feedback systems as required for
self-configuring, adaptive systems require techniques to gather and process system
parameters to be able to create a certain sense of self-awareness. These parameters
can be collected on various system levels such as lowest hardware level, driver level,
OS level, or application level.

On lowest hardware level, performance counters offer some rudimentary mon-
itoring support. They are typically used to profile an application and investigate
possible application optimizations, such as enhanced data layout in memory to im-
prove cache use. Modern processor architectures offer so-called event or perfor-
mance counter registers [2, 6, 11, 12, 18, 10, 17]. Number and use of these registers
are dependent on the individual architecture: counter registers are either bound to
certain events or can be more or less freely assigned [17, 11]. The majority of exist-
ing analysis tools is based on these counter registers.

Counter-based methods typically suffer from four basic limitations [21] which
are number of registers, sampling delay, and lack of address profiling. Furthermore,
it is not possible to differentiate between events being triggered by speculative and
non-speculative execution. False counts from speculation are addressed with the
precise event-based sampling (PEBS) of Intel’s Pentium 4 architecture [12, 20].
The drawback of this method, however, is increased chip size and influencing the
normal system behavior resulting from concurrent regular memory accesses of the
currently running program. Similar, but less complex methods are implemented in
the IBM’s Power architecture [18, 10].

It is a general problem of sampling methods described above, that only system
snap-shots are created. Thus, these methods serve only for creation of aggregated
statistics. It is usually not possible to selectively pre-compute monitored data al-
ready on the monitoring tier, leading to impact resulting from reading and post-
processing the counter registers.

While counter registers are well-suited for processor audit, they are not sufficient
for flexible, system-wide, and generic monitoring concepts as required for auto-
nomic computing systems. They are fixed and furthermore lack the possibility of
pre-processing.

For architectures without such hardware support, monitoring can be achieved us-
ing plain software based on profilers inserting function prologues to collect statisti-
cal information such as gprof [7]. It is also possible to embed monitoring routines
on driver level as demonstrated by the Myrinet-based Shrimp Cluster [13]. A com-
bined hardware/software method was used on the SMiLLE monitor for SCI networks
[8].

To configure the monitoring system and extract and process monitoring data,
higher-level monitoring APIs may be used such as [19], [3], or [14, 15]. Task of
these APIs is to decouple monitoring devices from post-processing software by of-
fering an abstract programming interface rather than directly accessing the monitor-
ing hardware.
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From the above examples several conclusions can be drawn: Existing infrastruc-
tures in hardware are fixed. While suitable for their designed task, monitoring in-
frastructures are too limited for generic use within a self-optimizing system. It is
not possible to replace or adapt existing resources. We address this topic by using
associative counter arrays instead of fixed event counters as outlined in Section 4.1.

Monitoring systems are application-specific. Powerful monitoring tools exist
for various applications, attaching monitoring techniques to various system lay-
ers. What is missing, though, is generic support for plugging dedicated monitoring
devices into the running system as required. Ideally, monitoring modules can be
applied to all system layers through a defined and standardized interface. This is ad-
dressed by a uniform event specification as outlined in Section 4.2, enabling unique
event identification where this identification also includes where and how an event
was generated.

No standardized API exists. So far, several approaches for monitoring APIs exist,
However, these are typically bound to certain applications. No uniform, application-
independent, and standardized monitoring API being able to report existing moni-
toring resources, permitting to access these resources, and — with respect to self-
organizing systems — enabling reconfiguration exists. We account for this by using
bio-inspired mechanisms for event evaluation also discussed in Section 4.2.

3 DodOrg: A Self-configuring Bio-inspired Architecture

For upcoming dynamically changing and self-adjusting systems the conventional
method of monitor-data processing is not suitable anymore. Such systems inter-
nally feature not one single observer/controller architecture, instead a multitude of
individual control loops may coexist creating a hierarchy of de-central, decoupled
control loops.

We want to illustrate this with the Digital on-demand Computing Organism for
Real-time Systems (DodOrg) [4], a novel computer architecture inspired by biology.

Like biological organisms, DodOrg is hierarchically structured: its hardware is
provided by so-called organic processing cells (OPCs). The OPCs provide different
capabilities ranging from general-purpose processing to DSP and reconfigurable
FPGA blocks, memories, and dedicated I/O cells. All cells are arranged in a grid
featuring peer-to-peer connection of the cells.

Mapping an application’s task to these cells follows the idea of organ formation
in biological organisms: individual OPCs are grouped into work clusters, or organs,
using a de-central hormone-inspired middleware. This grouping is based on an in-
dividual cell’s suitability for application tasks, i.e. its architecture (CPU vs. DSP vs.
FPGA), computing power, already assigned work load, and energy demands such
as provided vs. required energy.

This is akin to biological organisms where the concentration level of hormones is
measured. If a certain threshold is reached, some action is triggered such as e.g. ris-
ing blood pressure and heart beat rate. It is also possible, that based on the threshold
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levels of one or more individual hormones a so-called second messenger, i.e. a new,
derived event type, is generated.

Any organic architecture therefore requires a comprehensive, flexible, and adap-
tive monitoring approach, hence system monitoring is the important issue with self-
organizing systems. In particular, the entire system must be constantly evaluated,
therefore monitoring within DodOrg spans all system levels, i.e. individual moni-
tors are distributed across the system and are connected to different components and
layers.

4 The Monitoring Approach

As can be seen from the previous discussion, monitoring faces several challenges:
upcoming systems not only demand a high degree of flexibility with respect to event
detection and accumulation, but also require real-time correlation and interpretation
of such data. Since the system itself might constantly change, no infrastructure rely-
ing on pre-defined events and monitor rules is able to provide necessary adaptivity.

We therefore propose two basic mechanisms for next-generation monitoring in-
frastructures suitable for both, scalable systems and dynamically, self-adapting sys-
tems: the limitation of monitoring resources we address by using so-called associa-
tive counters triggering to arbitrary events instead of being hard-wired to a small
pre-selection of individual events. This obviously requires self-identifying event
coding.

In Section 4.1, we therefore show our proposed encoding scheme, the associative
counter design, and beneficial side effects resulting from this approach.

Subsequently, in Section 4.2, we show how this unique event coding matches the
biological model of hormones or messengers and how derived mechanisms over-
come the necessity for pre-defined monitoring rules, resulting in an inherently flex-
ible and adaptive nature of monitoring data evaluation.

4.1 Associative Counter Arrays

So-called performance counters enable real-time monitoring of event data without
requiring to trigger an external monitoring instance with every event occurrence.
Instead, a certain amount of events is counted and later an accumulated number is
forwarded to a memory buffer where it then can be processed by a higher monitoring
instance, e.g. for correlation or visualization.

In contrast to conventional systems, where both, counter size and event associ-
ation are typically fixed, our monitoring approach features the use of associative
counter arrays. Hence, no hard-wired connection between one or more predefined
events and a single counter exists; instead, the counters are self-triggering to any
event. Introducing a programmable modulo — potentially useful for more infrequent
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or rare events — enables control of the counter overflow, aiding histogram generation
for higher-level monitoring.

Figure 4 illustrates the general construction and work principle: upon event oc-
currence, the event is caught by the counter array and assigned to the first spare,
i.e. unassigned, counter. Subsequent occurrences of this very event will trigger the
assigned counter. If no spare counter is available, an assigned counter will be re-
assigned: in this case, the existing counter value and the event identification are
evicted from the counter array, and the referring counter is initialized and assigned
to the new event.
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Fig. 4 Associative Counter Array: Principle of Fig. 5 Unique Event ID Construction

Operation

From this explanation it becomes obvious that the associative counter array is
a cache memory by nature where the event ID becomes the cache tag and the the
event-associated counter resembles the cached data. Hence, likewise replacement
strategies including, but not limited to, FIFO, LRU, and LFU approaches.

To make this concept work, a unique and self-defining encoding of system events
as shown in Figure 5 is required. This encoding consists of two parts, a local part
denoting the event itself (i.e. a memory access) and associated data (the address and
read/write flag), and an additional part containing the source of this event, i.e. which
CPU performed this operation.

In the following, we will show that such a unique event tag does not only ease
event monitoring using associative counter arrays, but also correlation and evalua-
tion of such event monitor data.

4.2 Biologically inspired Event Communication and Evaluation:
The Hormone Concept

Associative counter arrays already provide sufficient flexibility for event detection;
in addition to that, also a flexible method of event correlation is required, including
the possibility of focus adjustment, i.e. changing the event granularity or “monitor-
ing resolution”.
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A suitable technique can, again, be found in biological organisms: here, certain
events are communicated using so-called messengers, or hormones. The amount of
messengers — i.e. events — generated is solely defined by its respective producers,
i.e. no central instance commands generation of events, neither does a central in-
stance command event encoding.

In biological organisms, the concentration level of hormones is measured. If a
certain threshold is reached, some action is triggered, such as e.g. rising blood pres-
sure and heart beat rate. It is also possible that based on the threshold levels of
one or more individual hormones a so-called second messenger, i.e. a new, derived
event type, is generated. Messengers are inherently self-defining by their chemical
structure; hence, using an encoding mechanism and a method of accumulation as
described in Section 4.1, both, hormone concept in general, and concentration trig-
gering in particular can be directly applied to digital systems as illustrated by Figure
6.
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Fig. 6 Hormone Reception, Processing, and Fig. 7 Mask-based Event ID Evaluation

Second Messenger Principle

In such a system, whether to react or not to one or more hormones is solely de-
cided by the receiver. With the absence of central instances therefore the the overall
system becomes very flexible and scalable. Further amount of flexibility is intro-
duced by not using event IDs directly, but to apply a simple identification mask and
therefore be able to narrow and widen the focus of event accumulation: with this
mask, mandatory and “don’t care”-fields of the event ID are specified. This mask
is then applied to incoming event IDs (using a simple Boolean function). In case
of a match, either a counter may be triggered or, mimicking the so-called second-



An Organic Computing Approach to Sustained Real-time Monitoring 9

messenger principle, a new event may be sent into the system. Figure 7 shows such
an evaluation process.

Since only the interpretation of already generated monitoring data is changed,
different monitoring instances might coexist, each interpreting the present monitor-
ing data differently.

The drawback of such an approach is a potentially high communication load im-
posed by transportation of monitoring data. However, [1] showed that for typical
setups the amount of monitoring data can be easily transported in modern commu-
nication infrastructures, including networks on chips (NoCs).

5 Prototype Implementation and Results

To fully elaborate the concept, we developed two prototypes: a software prototype
is used to demonstrate the suitability of the overall concept, and serves also as a
case study for using the proposed concept to enhance an existing communication
infrastructure.

In addition, we developed a hardware prototype aimed at monitoring traffic in
contemporary high-performance bus-systems employed in current and future multi-
core systems for core interconnection.

Our software prototype targets a sub-problem of distributed and heterogeneous
architectures such as DodOrg: in such architectures, memory allocation, access, and
access right management becomes crucial. Hence, we developed the concept of so-
called Self-aware Memory [5], providing a more intelligent, scalable, and de-central
memory management suitable for highly heterogeneous parallel systems with spe-
cial focus on dynamic, adaptive systems.

Communication within SaM is based on a lightweight, hormone-inspired proto-
col, where each memory access (allocation request, grant, and read/write access) is
therefore encoded as a unique event.

The monitoring approach proposed in this paper was applied to an existing SaM
simulation environment [16] where it will be used as the information-gathering en-
tity required for monitoring and correlating memory accesses to steer autonomous
defragmentation, locality optimization, and brokering. This environment basically
consists of a number of CPUs and memory banks connected through a shared inter-
connection network.

As a first step towards full self-management, we therefore extended the existing
simulation infrastructure to provide associative counter arrays in each component
to be able to detect incoming and outgoing accesses for each component, hence,
monitoring individual commands to record typical request/response behavior taking
place within the SaM protocol.

The setup was verified using a basic functionality test. For this test, we monitored
randomly generated memory accesses, proving the functionality of our monitoring
approach. This monitor was then subsequently used for further development of the
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SaM memory allocation protocol, where we successfully verified and measured the
behavior of the protocol additions and alterations.

With this setup, we were easily able to introduce and verify a new, more efficient
allocation mechanism replacing the formerly used strategy by simply triggering to
the individual access messengers (i.e. event IDs of individual accesses); while cer-
tainly overkill for just protocol optimization, the software prototype is, however,
the initial and vital step to explore self-management, leading to fully autonomous
self-optimization as required within the SaM context.

We also developed a hardware prototype to prove that our approach is suitable
for high-performance communication technologies required for on-chip multicore
connectivity as e.g. employed within DodOrg, and give a first estimation of the as-
sociated hardware costs. We therefore chose HyperTransport [9] as a state-of-the-art
interconnection system, using an existing interface core [22], which was extended
by an associative counter array to monitor memory accesses from CPU to memory.
The array consists of 64 individual 8-bit counters with a tag size of 40 bits.

Targeting a Xilinx Virtex4FX100, this monitor accounts for about 4% of logic
use (slices), mostly holding the access logic, and 6% of on-chip memory storage
(RAMB16) for the associative counter array; compared to the original, unaltered
core the monitor-equipped core shows an increase of 36% in logic and 33% in mem-
ory.

6 Conclusion

In this paper we presented a novel approach to sustained real-time monitoring. The
approach not only introduces increased flexibility, but also addresses the specific
topic of dynamically changing and self-adapting systems.

The approach employs associative counter arrays, introducing the flexibility re-
quired for such systems as counters are no longer bound a single event or predefined
small group of events. Doing so requires the introduction of unique event IDs so that
events are inherently self-defining. Applying a simple match mask enables scaling
of the monitoring resolution so that counters may react to individual events or con-
figurable groups of events, such as e.g. events coming from a distinct source or
memory accesses with configurable address granularity.

This concept is biologically inspired and based on the hormone concept where
solely the designated receiver decides whether to receive and how to react to hor-
mones. No centralized monitoring instance exists, instead a distributed systems of
producers (cells emitting hormones) and receivers (cells receiving hormones) exist.
Hence, the entire system is inherently scalable and fail-safe.

To evaluate the concept, we extended a simulation infrastructure where we ap-
plied this style of monitoring. It required very little programming work and proved
very successful in the process of expanding, optimizing, and verifying a communi-
cation protocol for de-central memory management and access.
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We furthermore developed a hardware prototype to demonstrate the general suit-
ability for high-performance real-time systems, and evaluated the hardware require-
ments such as chip area and ease of integration into existing hardware infrastruc-
tures.

By the outcome of this work we are convinced that the proposed method does
provide the necessary flexibility and ease of use as required for dynamical and
adaptive systems. We were able to show the required real-time capabilities, and
the hardware requirements proved to be modest so that they can be easily integrated
in existing interface structures such as the used HTX core.

We will therefore further pursue this work and not only refine the unique event
identifier scheme and optimize our existing prototypes, but also be soon able to
test our concept against real-world examples, running dedicated benchmark suites.
Doing so will generate more universal results with respect to hardware requirements
and communication overhead.
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