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Abstract. Self-optimizing mechatronic systems react autonomously and 
flexibly to changing conditions. They are capable of learning and optimize 
their behavior throughout their life cycle. The paradigm of self-optimization is 
originally inspired by the behavior of biological systems. The key to the 
successful development of self-optimizing systems is a conceptual design 
process that precisely describes the desired system behavior. In the area of 
mechanical engineering, active principles based on physical effects such as 
friction or lever are widely used to concretize the construction structure and 
the behavior. The same approach can be found in the domain of software-
engineering with software patterns such as the broker-pattern or the strategy 
pattern. However there is no appropriate design schema for the development of 
intelligent mechatronic systems covering the needs to fulfill the paradigm of 
self-optimization. This article proposes such a schema called Active Patterns 
for Self-Optimization. It is shown how a catalogue of active patterns can be 
derived from a set of four basic active patterns. This design approach is 
validated for a networked mechatronic system in a multiagent setting where 
the behavior is implemented according to a biologically inspired technique – 
the neuro-fuzzy learning method. 

1 Introduction – Self-Optimization in Mechatronic Systems 

Future systems in the area of mechanical engineering will comprise 
configurations of intelligent system elements, where the communication and 
cooperation between these elements shape the behavior of the overall system. In 
terms of software engineering these are distributed systems of interacting agents. 
Agents are autonomous and adaptive function modules which can themselves initiate 
actions. These function modules are heterogeneous subsystems with mechanical, 

mailto:Andreas.Schmidt@unity.de


148 Andreas Schmidt 
 

electronic and information technology components. The agents’ behavior can be 
modified while the system is in operation – this is expressed by the term “adaptive”. 

A self-optimizing system is characterized by four fundamental aspects (Fig. 1): 
the target system, in the sense of a hierarchy of a number of targets; the structure, 
e. g. the topology of mechanical components, sensors and actuators; the behavior, 
which is the system’s reaction to influences from its environment; and the 
parameters that characterize the system components [1]. 
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Fig. 1. Aspects of Self-Optimizing Systems 

According to [2], intelligent mechatronic systems can be divided up into three 
layers: the Multifunction-Module layer (MFM) that is close to the sensor-/actuator, 
e. g. suspension-/tilt-modules. The Autonomous Mechatronic System (AMS) layer 
covers system elements that act autonomously in its environment such as single 
shuttles. The Networked Mechatronic System (NMS) layer represents unions of 
AMS, e. g. convoys that pursue common goals such as crossing a switch1. 

The aim is to carry out self-optimization on the basis of mathematical models, 
e. g. using a realistic physical model of the controlled system supplemented by 
excitation and evaluation models. Frequently, it will not be practicable to use models 
for reasons of cost, so model-based self-optimization is combined with what is called 
“behavior-based self-optimization” which acts quasi-nondeterministic. This means 
that changes occurring during operation are sensed and analyzed, and then, 
depending on the results of this analysis, either another appropriate mathematical 
optimization model is loaded, or, if the limitations of available models are exceeded, 
the system reverts to using past experience in the form of learned structures or 

 
1  The sample mechatronic system originates from the New Railway Technology project 

Paderborn (NBP) [3]. NBP has set-up a test-track where railway shuttles autonomously 
drive on an innovative magnetic track system. 
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parameter settings from its knowledge base. The self-optimization process proceeds 
continuously and repeatedly according to the subsequent three actions: 

 
1. Analysis of current situation: The system records its own state and the state of 

its environment. The necessary information may be obtained by communicating 
directly with other systems or by accessing previously recorded observations.  

2. Determination of targets: The system determines its current target system in 
view of the current situation, and, if necessary, also adapts it.  

3. Adaptation of the system behavior: The adaptation itself is carried out by 
modifying the parameters, the structure, and/or the behavior of individual system 
elements. 

2 Current Situation – Design of Intelligent Mechatronic Systems 

The design of self-optimizing systems is based on systems engineering [4], 
design methods of conventional mechanical engineering [5] and the design 
methodology of mechatronics [6] and extends those methods with essential aspects 
of the self-optimization paradigm. The conception phase constitutes one of the most 
decisive stages within the design of self-optimizing systems (Fig. 2). This is when 
fundamental functionalities (Function Hierarchy) and the structure (Construction 
Structure and Component Structure) of the system are determined. 
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Fig. 2. Core steps of the early stages of system conception 

In order to reuse successfully proven previous system engineering knowledge, 
active patterns are utilized. Active patterns contain template system elements and 
behavior to realize functions that are concretized in an active structure. Fig. 3 depicts 
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a categorization of domain-specific patterns [1], e. g. active principles AP of 
mechanical engineering according to [5] such as AP Cylinder in Fig. 2 or software 
patterns SP such as the broker pattern according to [7] or SP Distributed Knowledge 
in Fig. 2. However, those patterns do not address the specific needs for the superior 
paradigm of self-optimization, namely specifying intelligent and autonomous 
behavior in an unknown or partially known environment by analysis of the current 
situation, determination of targets and adaptation of the system behavior. This is 
where the demand for active patterns for self-optimization comes into play shown as 
AP Self-Optimization (Fig. 2) and categorized as a pattern of information processing 
(Fig. 3). 
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Fig. 3. Category of Patterns for the Design of Intelligent Mechatronic Systems 

3 Approach – Design with Active Patterns for Self-Optimization 

Active patterns for self-optimization (APSO) realize functions for self-optimizing 
systems such as autonomous planning, cooperation, and learning. APSO constitute 
templates which specify generally accepted, autonomous and intelligent behavior by 
using principle-models, application-scenarios, structure-models, behavior-models 
and method-models (Fig. 4). The principle-concept characterizes the basic idea of the 
APSO. It is used to allow the designer an intuitive access to the APSO. Application-
scenarios depict situations in which the APSO have already been applied successfully 
in the past. Those scenarios shall help the designer to select an appropriate APSO for 
the task at hand. The structure-model specifies necessary participating system-
elements and their relations among each other. One or more behavior-models 
describe adaptation-processes as a kind of state changes. The focus is on the 
modeling of autonomous intelligent behavior, which activates, supports and/or 
executes these state changes. This way a system is transformed from a given initial 
state to a desired target-state by the use of specific methods. Method-models specify 
those methods in detail. 
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Fig. 4. Components of Active Patterns for Self-Optimization 

We structure active patterns according to the House of Active Pattern for Self-
Optimization (Fig. 5). 
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Fig. 5. The House of Active Patterns for Self-Optimization 

Four basic active patterns can be differentiated which are derived from the 
pattern context and necessary activities for fulfilling the self-optimization process. 
The context may involve problem areas such as inadequate knowledge about past 
system and environment behavior, inadequate knowledge about the current system 
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and environment behavior or uncertainty about the future behavior. The context 
specifies demands for necessary basic-activities, such as learning from the past 
which we call reflecting, acting in the present which we denominate exploiting 
knowledge as well as interacting with other system elements and finally exploring 
the future. This approach leads to the four basic Active Patterns for Reflection, 
Exploitation, Interaction and Exploration. 

The basic active patterns can be detailed, combined and concretized (Fig. 6). 
Detailing an active pattern means to specialize the pattern structure and pattern 
behavior according to the method which shall execute the system behavior, e. g. 
detail Reflection towards Reinforcing Reflection in order to use the method 
reinforcement learning [8] where successful past behavior is rewarded. Basic 
patterns can be combined to form typical compound behavior, e. g. the combination 
of Exploitation and Reflection leads to a typical compound behavior in a multiagent 
setting of exploiting the knowledge of distributed system elements to direct the 
learning behavior of the whole system [9]. Eventually, the pattern structure and 
pattern behavior needs to be concretized towards the active structure and finally to 
the construction and component structure of the system. 
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Fig. 6. Catalogue of Active Patterns 

The catalogue of active patterns has been applied to several application scenarios 
of intelligent mechatronic systems, e. g. to shuttles driving on tracks by 
implementing the active patterns of Exploration and Interaction [10] or to the 
suspension-/tilt-module of a shuttle using the active patterns of Interaction and 
Exploitation [11]. The following chapter depicts the application of active patterns on 
the Networked Mechatronic System layer to design collaborative behavior of shuttles 
crossing a switch. 
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4 Validation – Collaborative Behavior of Shuttles Crossing a 
Switch 

The application scenario of crossing a switch is as follows (Fig. 7): A Networked 
Mechatronic System of two convoys CA and CB, each consisting of several 
autonomous shuttles Ai und Bj, approach a switch. The passage of a single shuttle 
shall be designed such that the approaching convoys CA and CB are merged to a 
virtual convoy CV. The shuttles shall optimize themselves autonomously and under 
restricted or no prior knowledge about an optimum behavior according to their own 
targets after each successfully completed crossing procedure. The whole scenario is 
split up into three zones – a decision, an execution and a learning zone. 

Decision Zone
Determination of targets

Execution Zone
Adaptation of current behavior

A2

...

...

A3An

B2

Bm

Switch

Track B  

Virtual Convoy: 
CV = (B1, A1)

Learning Zone
Adaptation of future behavior

Convoy CA

Master-
Shuttle A1

Head-
Shuttle B1

Track A

Knowledgebase
B1

Communication

Actual Convoy: 
CAct = (A1, B1, A2, A3, B2, …)

Targets A2
- Costs
- Arrival time

Targets B2
- Comfort
- Arrival Time

Targets CV
- Min. Distance
- Energyconsumption

Actual
- Distance
- Order

- Energyconsumption

Targets Switch
- Throughput
- Wear

Convoy CB

Track C

Knowledgebase
Switch

 

Fig. 7. The application-scenario of crossing a switch 

In the course of the early conception stage, a function hierarchy is built up (Fig. 
8). Let us illustrate the increasing concretization at the function of Determination of 
Sequence which shall define the passage sequence of shuttles. Based on prior design 
experience [11] this function can be realized by implementing the APSO Exploitation. 
The pattern structure of the APSO consists of two system-elements – the Knowledge-
Carrier and the Knowledge-User. The pattern behavior can be specified by a 
statechart which specifies the adaptation process by a neuro-fuzzy method [12]. The 
APSO is concretized towards the active structure as follows. Every shuttle can be a 
Knowledge-Carrier because of its implicit experience about the determination of 
sequence generation with the help of neuro-fuzzy methods. The master-shuttle 
represents the Knowledge-User because it determines the passage-sequence for the 
remaining shuttles. Eventually, the adaptation of the behavior is detailed by a 
statechart which specifies possible adaptation processes for the generation of a 
virtual convoy Cv – here the adaptation process from an initial state S0 – head-
shuttles A1 and B1 right ahead of the switch – to the target-states S1 := Cv=(A1,B1) 
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that is A1 drives first, afterwards B1 – as well as S2 := Cv=(B1,A1) that is B1 drives 
first, then A1. 
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Fig. 8. Concretization in Design - Application Scenario of Crossing a Switch 

In particular, the APSO Interaction specifies how the shuttles communicate with 
each other and determines the master-shuttle (Fig. 9). The APSO Exploration designs 
how target states such as S1 or S2 can be determined or newly created. A neuro-fuzzy 
system takes input-variables such as the velocity of shuttles Δv = (vA1 - vB1) and 
arrival-time ΔTA = (tA1 - tB1) at the switch to assign passage-classes such as C1 := 
(A1-B1) = Master-Shuttle drives first and class C2 := (B1-A1) = Master-Shuttle 
drives second. Because of the inherent uncertain and vague knowledge about 
environment- and system-states, fuzzy-variables are introduced, e. g. Δv = (slower, 
equal, faster) and ΔTA = (earlier, equal, later). Fuzzy-rules realize the assignment of 
passage-classes, e. g. If (Δv = slower and ΔTA = later) Then (A1 – B1). The APSO 
Exploitation allows the system to start from initial knowledge and initial rules in 
system-state S0 for setting up the neuro-fuzzy system. Once a target state such as S1 
is reached, APSO Reflection specifies, how the experience that was accumulated 
during the adaptation process can lead to adapted fuzzy-sets and new rules. This is 
done by evaluating the degree of fulfillment of committed targets such as minimum 
distance between shuttle ∆dmin and maximum energy consumption Emax and 
consequently adapting the weights of the neural network of the neuro-fuzzy system 
leading to adapted fuzzy-sets and possibly to new fuzzy-rules. 
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Fig. 9. Neuro-Fuzzy Learning with the exploitation of A-Priori Knowledge 

5 Conclusion and future work 

This article has proposed a schema called Active Patterns for Self-Optimization 
in order to design self-optimizing mechatronic systems in the early design stage. A 
set of four active patterns established the basis for the specification of a catalogue of 
patterns along the dimensions of detailing, combining and concretizing. The design 
approach was validated for a networked mechatronic system namely the crossing of 
a switch by convoys which consist of individually and autonomously acting shuttles. 
The pattern behavior was implemented according to the biologically inspired 
technique of neuro-fuzzy learning. Altogether it was shown, that active patterns for 
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self-optimization constitute an applicable approach for the design of intelligent 
mechatronic systems in the early design stages. 

In order to cope with functional demands that arise from endogenous needs of 
agents as opposed to given external targets, future research will deal with the 
extension of active pattern schema towards cognitive behavior. Also, the pattern 
catalogue will be extended as new application scenarios of intelligent mechatronic 
systems demand a detailing and concretization of pattern structures and behavior. 
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