Learning Useful Communication Structures for
Groups of Agents

Andreas Goebels

International Graduate School of Dynamic Intelligent Systems
Knowledge Based Systems, University of Paderborn, Germany
swarmgroupQupb.de

Abstract. Coordination of altruistic agents to solve optimization prob-
lems can be significantly enhanced when inter-agent communication is
allowed. In this paper we present an evolutionary approach to learn op-
timal communication structures for groups of agents. The agents learn
to solve the Online Partitioning Problem, but our ideas can easily be
adapted to other problem fields. With our approach we can find the op-
timal communication partners for each agent in a static environment.
In a dynamic environment we figure out a simple relation between each
position of agents in space and the optimal number of communication
partners. A concept for the establishment of relevant communication
connections between certain agents will be shown whereby the space
the agents are located in will be divided into several regions. These
regions will be described mathematically. After a learning process the
algorithm assigns an appropriate number of communication partners for
every agent in an - arbitrary located - group.

1 Introduction

Multi Agent Systems (MAS) and Swarm Intelligence (SI) are two quite recent
but very promising topics in current computer science research. SI deals with
large sets of individuals or agents that can be seen as a self organizing sys-
tem showing emergent behaviour[1][2]. Ideas from biology are used often and
successfully to solve (optimization) problems in the computer science area. In
both fields, communication between the single agents or particles plays an im-
portant role. In nature this communication is, for instance, realized with the
environment as communication partner, the so called stigmergy concept, first
introduced by the biologist Grassé [3], or with special dance moves that can be
found at several bee colonies[4]. In both examples the concept of locality and
self organization plays an important role. In most swarms, flocks or schools in
nature we can hardly observe global communication.

If we have to solve an optimization problem and need inter-agent communi-
cation to enhance or even enable solutions, we could make use of a complete
communication structure that allows direct communication between all pairs
of agents. But if we are in settings that deal with a huge number of agents,
such complete structures might produce high communication costs and/or are
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not manageable because of information inferences or other real world problems.
Therefore, it would be nice if we would have a concept that can produce a very
small and cheap communication structure without significantly reducing the
quality of the solution.

In this paper, we consider the Online Partitioning Problem (OPP) introduced
in [5]. This problem, which is located in the area of Multi Agent Systems and
Swarm Intelligence, deals with the association of agents with very limited and
mostly local knowledge with different tasks represented as targets. The agents
distribute themselves in an Euclidean space according to the following three
objectives:

(1) The agents have to be distributed uniformly.
(2) Minimize the overall distance toward the targets.
(3) The abilities of the agents should be very simple.

Each of these goals is oppositional to any other, so we look for the best possible
solution fitting in all objectives in quite an acceptable way. The knowledge
of each agent is limited to a (preferable small) communication radius. They
are able to communicate with their direct neighbours and know the distance
to all targets according to their position. A more detailed description of the
abilities of the agents can be found in [5]. There, several basic strategies have
been presented to distribute a small number of agents onto two targets, coping
with the three objectives mentioned before. It turns out that the communicative
strategies perform better than the non-communicative ones. In general, Matarié
discusses in [6] some advantages of using communication in multi agent systems
to reduce locality by addressing two key problems, the hidden state and credit
assignment problem.

In this paper we present an algorithm that is able to construct a successful
communication structure to solve the OPP by defining useful communication
connections between agents. This is done by dividing the space into regions
depending on the position of each agent in relation to the targets and by learning
an ideal number of communication partners for agents in these regions.

This paper is organized as follows. In the next section some terms will be defined.
As an introduction, we roughly present an idea that deals with static settings.
In the main section 4 we present our approach for dynamic groups of agents
and do some mathematical considerations of the single regions we divided the
space into. To show the quality of our approach we present in section 5 several
simulation runs.

2 Definitions

In this paper, we denote the set of all agents with A = {aq,...,a,} and the
set of targets with 7 = {t1,...,tm} (n,m € N). d(p1,p2) defines the geometric
distance between two points in the Euclidean space. This function works in the
same way if we consider two arbitrary agents a and o’ or an agent a and a
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target ¢, then §(a,a’) and d(a,t) calculate the distance between the positions
of two agents or between an agent and a target, accordingly.

3 The static approach

In this section we consider a static setting, i.e. a set of agents on fixed positions
in a two-dimensional, Euclidean space dealing with the OPP. They have to de-
cide for one target regarding the objectives we mentioned in the introduction.
For given parameters dictating communication costs and parametrizing the ob-
jective function for the OPP we try to find an optimal communication structure
among the agents. Because of the unknown structure and the size of the solution
space we make use of a genetic algorithm to search for good solutions. With
this approach, a solution that optimally fulfils an evaluation function can be
found very fast. We will give only a rough idea of this algorithm, more details
and the results can be found in a master thesis [7] that was done under our
supervision.

3.1 Evaluate the Quality of a Communication Structure

The quality or fitness f of a communication structure can be calculated at any
time by the following formula. The notation is related to the notation in [7].
We sum up the single optimization criteria, i.e. the partitioning quality, the
distance quality and the communication costs, and weight the single parts.

n
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In this formula, b; denotes the number of agents that have chosen the target
t; in the current partitioning decision and o; the number of agents that would
have chosen target ¢; in an optimal partitioning. target(a;) defines the target
currently chosen by agent a; and c(i, j) is either 1 or 0 depending on the exis-
tence of a directed communication link from agent a; to a;. The highest possible
fitness is f = 1.0.

3.2 The genetic algorithm

We implemented a standard genetic algorithm and guide the search among
all possible communication structures by the mentioned fitness function that
consist of three summands representing the different objectives. Therefore, we
consider a multi-objective optimization problem and its single objective repre-
sentation.
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One individual in our GA is a n X n-matrix C describing the connectivity of the
agents among each other. A ’1’ on position (¢, j) allows agent a; to communi-
cate with agent a; (directed communication). In other words, C is the adjacency
matrix of the communication graph of the agents.

As a selection operator we use the Best selection and for mutation we simply
swap bits in C with a low probability. The crossover method is a modification
of the Single-Point Crossover. We apply this operator to two communication
matrices C; and Cy by choosing a random field (¢,7) with 7,57 € [1;n] in the
communication matrix. The two new individuals will exchange a corresponding
rectangular part of the matrix defined by (¢, ) as the upper left and (n,n) as
the lower right corner.

4 The Dynamic Approach

In the former section we introduced a static approach to learn optimal commu-
nication structures for a given set of fixed agents. But this structure strongly
depends on the special setting it was trained on and cannot be used for other
groups of agents or other positions of the same agents, especially if we con-
sider communication costs that are constrained by the distance between two
communication partners. In this section, we will present an idea to learn a use-
ful communication structure that is independent from the distribution of the
agents in space.

Therefore, we construct a communication network for a dynamic setting in a
totally different way. The agents do not learn what the best communication
partners are, but they try to find out how many communication partners are
useful for the position they are located at (depending on the position of the tar-
gets). That means, the agents learn a function that connects a region that can
be computed locally with an ideal number of communication partners. Since
the agents do not know the extension of the simulation area, the agents have to
calculate the area they are in only with regard to the distances to the targets.
Therefore, we calculate a g-value for each agent position (z,y) by

oy = min(d((z,y), t1), .-, 6((=, y), tn))

P maz(8((z,y), t1), - 6((2, ), tn))
Or, to put it in a more informal description, we calculate the quotient for each
agent position by dividing the distance to the closest target by the distance to
the farthest target!. With this procedure we can calculate values that represent
the area an agent is in without paying attention to its real distance. In the
further text we will call this value the g-value. Because we are in a continuous
space, there is an infinite number of different g-values. Therefore we combine
the different g-values in intervals of the same size. For [ categories, we obtain

the following intervals Iy, ..., I; with

! In this paper we focus on settings with two targets. If we would consider a higher
number, we maybe will have to make the calculation of the g-value more compli-
cated. This will be focus of an upcoming paper.
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4.1 Our Approach

We solved the Online Partitioning Problem (OPP) for huge agent sets and
enhanced the knowledge base of a selection of agents by enabling communication
with its neighbours.

Table 1. The number of communication partners based on the g-interval. For each
interval, an appropriate number of communication partners can be defined.

g-interval I I I

number of communication partners n1 no n;

Therefore, the agents have to learn the number of communication partners
depending on the g-interval they are located in. Or, in other words, they learned
an appropriate assignment for each n; in table 1. We call such a table g-table.

4.2 Size and Properties of the g-Intervals in Space

In this section we will give a short mathematical insight into the regions we
created with our intervals. We consider an arbitrary g-value, denoted by ¢’. All
positions in space that produce exactly the value ¢’ are located on two circles
with the same radius r around two centre points. The targets are somewhere
inside this circles. The distance between the two targets is fixed and denoted
by D.

Theorem

All points in space that have one specific g-value according to two targets
t; and to on positions (t1,,t1,) and (t2,,%2,) lie on the circles C; and Cy with
centre points

M, = t2y — q2 “tiy tz’y - q2 ‘tly My = tiy — q2 oy tly — q2 ‘tz’y
1,q2 ’ 1,q2 ’ 1,q2 ’ 1*(12

q-D
(1-¢2)"

and radius r =
Proof
q is calculated for an arbitrary point p = (z,y) by the formula

dist. to nearest target
dist. to farthest target

Without loss of generality we assume that target to is the nearest one and ¢,
the farthest one. Therefore, ¢ can be expressed by:
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(a)

Fig. 1. Figure (a) shows the distribution of the g-values when calculated for arbitrary
positions in space. Each grey tone represents one specific g-interval. In this example
there are 30 different g-intervals. In (b), the circles for the interval borders (here we
have 12 intervals), obtained by our mathematical examination, are visualized. They
perfectly cover the regions.
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q

This can be transformed to:

2
1— g2 1—q2 1—q2
2 2 2
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1—q2 1—q2

and this can be simplified to a standard circle equation:

q-D 2_ a t2m_q2't1m 2 B tgy—qQ.tly 2
(=) = (- () + (o (™))

These are centre point M7 and radius r in our Theorem. If target ¢; is the near-
est one, we obtain the other centre point M5 by using the same transformations.
a

4.3 The Genetic Algorithm

There is a huge number of possible assignments for such a structure as presented
in table 1, especially when dealing with large numbers of agents. Each n; can be
assigned to a value from {0, ..., (n — 1)} with n = | 4| representing the number
of agents. Therefore, we have (n — 1)! possible assignments. We use a genetic
algorithm to search for good ones because we have no prior information about
the structure of the solution space. The fitness of a solution obtained with a
table assignment is the quality of the solution of the OPP . It is set in relation
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to the optimal solution, regarding communication costs, and is calculated by
the formula:

fitness(tableAssignment) = a - fitnessopp + (1 — @) - fitnesscommunication

The fitness of a OPP solution is calculated as in [8] by

I b: > min (8(ast5))
: _ i=1 i=1J=1..m
fitnessopp = B | - +1-p | ==
I o 3" 6(as, target(ai))
i=1 i=1

We use the same notation as we did in section 3.

The Communication Costs in the fitness function will be calculated by re-
garding the communication distances between two agents that are allowed to
communicate. The number of communication partners is defined in the g-table.
When establishing nj connections for an agent located in the interval I, this
agent will create communication lines to its n; nearest agents. The sum of these
costs will then be set in relation to the maximum costs for communication that
could appear if it holds for each entry in the g-table that n; is equal to (n —1).
Hence, we can define a partial fitness function for the communication costs:

q — table defined communication graph costs

fitnesscommunication =

complete communication graph costs

We assume that a subset of agents that own communication connections among
each other will be able to calculate an optimal partial solution for the OPP.

The crossover operator is simple, we use One-Point Crossover. Therefore, a
random point p from {1,...,1} is chosen. Then we create two new g-tables by
recombining the tables from two parental individuals split at this particular
point (or column) p. We think that we can maintain coherences between the
table entries with this operator if they exist.

For the selection of individuals for the next generation we implemented the
Roulette Wheel and the Best selection. In comparison runs the Best selection
shows slightly better results, therefore we made our final experiments with this
method. For both algorithms, we use a (u, A)-scheme and chose 50% of the
individuals for the new generation out of the old generation.

For the mutation of a g-table we make use of two mutation parameters, p;y
defines the probability for mutating one individual. The second parameter p;
determines the probability of mutating one table entry. When an entry I; has
been selected to become mutated, we adjust the ny value in the table by adding
a random value r € {—(n —1),...,(n — 1)} to the entry and check if the value
is out of range with the formula mutation(ny) = maz(min(n — 1,n; +1),0).

4.4 Our Algorithm

We use a genetic algorithm to find the appropriate number of communication
partners for each interval in the g-table. The most interesting part of the al-
gorithm is the calculation of the fitness of an individual in the population, i.e.
the fitness of a g-table. To rate such a g-table Q, we test the quality of a set of
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agents working on the Online Partitioning Problem that use a communication
structure developed from Q. The fitness of each Q can be calculated by the
following algorithm:

001: FUNCTION double calculateFitness(qTable Q)

002: {

003: agentSet = new random set of agents;

004: place targets on random positions in space;

005: agentSet.createCommunicationGraph(Q) ;

006:

007: commFitness = calculateCommunicationFitness(agentSet);
008: oppFitness = calculateOPPSolutionFitness(agentSet);
009:

010: RETURN « - oppFitness + (1 — «) - commFitness;

o11: }

The function calculateCommunicationFitness(agentSet) simply applies the
communication fitness function as described in 4.3. The higher this value is the
less communication is used.? The more interesting function is the one calculat-
ing the OPP solution fitness, this is shown here in more details:

001: FUNCTION double calculateCommunicationFitness(agentSet)

002:

003: // create reference solution

003: d = minimal overall distance to targets in optimal partitioning;
004: s = optimal number of agents on each target in optimal partitioning;
005:

006: FOR EACH agent a in agentSet DO

007:

008: IF (#outgoingConnections(a) > 0) //derived from g-table

009: calculateLocalOptimalSolution(a, communicationPartners);
010: ELSE

011: choose nearest target;

012: }

013: d = calculateDistanceFitness(agentSet, d);

014: s’ = calculateDistributionFitness(agentSet, s);

015:

016: RETURN B -d’ + (1 — ) - s';

017: }

The function calculateLocal OptimalSolution(a, communicationPartners) in
line 9 assumes that an agent can calculate the optimal partitioning for the
agents it communicates with. This is quite an idealistic picture because we still
have a hard problem, but we can take this calculation power into account by
increasing the influence of the communication costs for the fitness function.
Anyway, if this function can calculate only an approximation, our algorithm
will still work.

The pseudocode algorithms show only the most important steps of our algo-
rithm, for a more detailed insight you can have a look at the original Java sources
that are available for download and further experiments via our webpage®.

2 In our simulations we repeated lines 3-8 several (five) times to obtain more mean-
ingful fitness values.
3 http://www.upb.de/cs/ag-klbue/de/staff /agoebels/index.html
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5 Results

In this paper, we concentrate on the results for the dynamic approach presented
in section 4, the results for the static approach (section 3) can be found in [7].
There, a good communication matrix could be found fast for every given fixed
set of agents.

T T
best fitness ——
average fitness ——-x-—-
no communication fitness -+
1r communication costs a8 1

fitness

. . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
GA generations

Fig. 2. This figure presents the development of the fitness over 500 generations. We
show the average fitness of the whole generation and the fitness development of the
best individual in population. This graph illustrates the average result over 25 runs.
The parameters we made use of can be found in the source code package. The fitness
rises while the communication cost could be reduced. The single graphs are smoothed
with a Bezier curve for better visibility.

5.1 Fitness Development

First of all, we examined how the fitness of the GA develops. Figure 2 shows a
typical fitness development. Both the best and the average fitness rise very fast
to a high level and remain there. As a reference we present the fitness value
of a non communicative algorithm choosing always the nearest target for each
agent. This reference fitness is significantly lower than the fitness value achieved
with our approach. By adjusting the weights for the communication costs we
can obtain any fitness value between 1.0 (no communication cost, a = 1) and
the reference function (o = 0). Hence, we can conclude that inter-agent com-
munication enhances the solution quality of the whole group and our approach
finds good OPP solutions for given communication costs or restrictions.

5.2 Development of g-Table values

Once we could see that our idea works, we wanted to get more insight into the
communication structure the agents learn. Therefore, we observed the changes
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of the g-table entries during the learning process. Figure 3 shows a typical pic-
ture representing the value development.

communication partners
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Fig. 3. The development of the g-table entries during the learning process.

After several hundred generations the g-tables look similar for all settings. In
this figure the average over all g-tables in 25 runs is presented. In the early
generations the number of communication partners is high and nearly identical
for all intervals. But the communication structure becomes fastly sparser and
in the last generations we can see that the g-table can be divided into 2 parts.
For intervals containing small g-values the agents learned to have nearly no
communication partners?. For ¢g-values greater than 0.5 it seems to make sense
to communicate with a small number of neighbours to increase the fitness to a
near optimum value. One other key result is that the overall number of com-
munication connections between agents is very low compared to the maximum
possible value. This shows that a communication structure does not necessarily
have to be very complex or massive if we generate it in an intelligent way.

6 Conclusion & Future Work

In this paper we presented a genetically guided approach to learn qualified com-
munication structures for sets of agents to solve an optimization problem. For a

4 The intervals I; and I contain all g-values below 0.1. As we saw in 4.2, the area
in space representing all possible values in these intervals is very small compared
to the remaining space, hence the probability for an agent to be placed in one of
these areas is very low and it does not influence the fitness significantly.
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static environment we presented a rough idea how the optimal communication
structure can be found by an algorithm adjusting a communication matrix. For
dynamic and random settings we presented a new approach which offers guide-
lines to create a small set of communication connections. Therefore, only the
position in space in relation to some targets is necessary, the optimal or near
optimum number of communication partners can be found by our approach.
In our future research we will restrict the values in the g-table and will try to
learn or cope with restricted communication distances. This will enlarge the
possible number of real-world applications. We also will examine the influence
of the different probabilities for each g-interval on the fitness development and
the overall solution quality.
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