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Abstract. This paper presents a novel flexible, dependable, and reli-
able operating system design for distributed reconfigurable system on
chip. The dependability and reliability are achieved by integrating on-
line model checking technique. Each OS service has different implemen-
tations which are further partitioned into small blocks. This operating
system design allows the OS service to be adapted at runtime according
to the given resource requirements and response time. Such adaptable
services may be required by real time safety-critical applications. The
flexibility introduced in executing adaptable OS services also gives rise
to a potential safety problem. Thus, online model checking is integrated
to the operating system so as to improve the dependability, reliability,
and fault tolerance of these adaptable OS services.

Keywords: Online Model Checking, Distributed Reconfigurable Sys-
tem on Chip, OS Adaptable Service

1 Introduction

The vast growing need for powerful yet small and customized systems encour-
aged the development of embedded systems. These now are most likely to con-
tain more than one computational element on a single chip forming what so
called a System on Chip (SoC). An addition of a Field Programmable Gate
Array (FPGA) gives SoC the ability of reconfiguration. FPGAs are known of
their computational power and dynamic behavior in comparison with General
Purpose Processors (GPP). Many applications such as signal processing, en-
cryption/decryption, and multimedia encoding/decoding are in need for such
systems. However, the complexity of these systems is no longer easily manage-
able, especially if they are distributed. This raises the necessity for embedded
Operating System (OS).
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An OS working on distributed Reconfigurable SoCs (RSoC) can also bene-
fit from the dynamic behavior and the computational power provided by their
FPGAs. These benefits involve adaptability, runtime safety checking and recov-
ery, etc. This adaptable OS is capable of changing its resource requirements and
execution behavior in order to accommodate the variety of applications highly
expected in distributed systems.

The underlying OS services usually play a critical role in order to safely
execute real time applications/tasks on distributed RSoCs. This is reflected in
ensuring the executions of these services correct without violating any deadlines
or safety constraints. In order to achieve this goal, we make OS services be
accompanied with a runtime checker to predict possible errors or constraints
violation. In case that an error or constraint violation is found, the presented
novel OS service design allows the service to recover. The recovery process allows
the OS service to continue execution from the point the error occurred with
as minimum losses as possible and without violating any constraints. This is
achieved by recalculating and finding another configuration efficiently [1, 2].

In this paper we present a novel flexible and dependable OS design that can
adapt at runtime its services according to applications/tasks desired QoS, i.e.,
the actual resource requirements and response time, on the one hand; meanwhile
online check at model level the safety constraints of these adaptable services and
then recover if necessary from the detected errors or constraints violation on
the other hand. We make this design feasible by partitioning OS services and
integrating online model checking [3, 4] into the operating system.

The rest of this paper is organized as follows: Section 2 introduces the dis-
tributed system topology and discusses the adaptable OS design; in Section 3
the online model checking is introduced as follows: Subsection 3.1 explains ap-
plication scenario; Subsection 3.2 describes how to generate an abstract model
for an adaptable OS service; the model checking paradigm and the pre and post-
checking are presented in Subsection 3.3 and 3.4 respectively; the integration of
the online model checker with the OS design is discussed in Section 4; in Section
5 some related work is introduced and finally we conclude the work in Section
6.

2 Distributed Reconfigurable System on Chip with
Adaptable OS services

The distributed system under consideration is a hybrid one between a central-
ized and fully distributed system. The RSoCs are distributed and allowed to
operate and communicate freely without central coordination. However, at the
initialization stages and for the sake of OS services distribution, a unique central
RSoC exists. This central RSoC is assumed to have enough resources to hold
and manage a whole copy of the OS and acts as OS Services Repository (OSR),
see Figure 1. After distributing the services, this central RSoC existence is no
more important, but beneficent. This is because the used distribution algorithm



Integrate Online MC into Distributed RSoC with Adaptable OS services 101

Fig. 1. RSoCs distribution

supports encoding which allows the retrieval of any OS services and provides for
some fault tolerance.

Each RSoC in the distributed system has at least an FPGA and GPP. For
an OS service to be able to fully or partially utilize FPGA and GPP on each
RSoC, the service exists in two implementations. One implementation is to run
on FPGA while the other one is to run on GPP. Further, each of the two imple-
mentations is divided into the same number of blocks, where each block is called
a Small Execution Segment (SES), see Figure 2. Each SES with the same index
has the same functional behavior. For instance, the second SES in all the imple-
mentations of the given OS service will have the same functional behavior. If we
input identical data to the second SES in any implementation of this OS service,
we should get identical output. However, the time of getting these outputs, the
power consumed, and the area/utilization required for each SES differ.

These similarities and differences give us much flexibility in executing an OS
service. For example, if we have one service with two implementations each with
just two SESs, we would have four possibilities to execute the service, each with
different resource requirements and response time. Our previous work, [1] and
[2], prove the feasibility of this design to execute and adapt an OS service to
run on RSoC even with very limited resources without violating any demanded
constraints. Further, a complete formal description of the design and a linear
algorithm to schedule such service were presented.

As aforesaid, the RSoCs are distributed in a hybrid topology network where a
central RSoC management node exists but the RSoCs can work without central
RSOC. This central RSoC contains the whole set of OS services. It is used in
the initialization stage to balance the distribution of the services/SESs over all
the available RSoCs in the system. Depending on resources and distribution,
an execution of a service can be either carried out on a single RSoC or as
collaboration of more than one RSoC. This requires an evaluation at runtime
to find a suitable configuration for the service to execute on available resources
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Fig. 2. Two implementations of OS service with execution order of the SES’s. Here S
stands Software, H: for Hardware, C for Communication, T for Time, P for power and
A for Area. For example SCT denotes Software Communication Time

without violating any constraint. Due to dynamic changes in applications/tasks,
the resources or the constraints may change accordingly at runtime. This may
lead to change/adjustment in service configuration. Due to the sensitivity of
the process, as this may be a service requested by a real time application/task,
dependability and fault tolerance of the underlying operating system is highly
expected.



Integrate Online MC into Distributed RSoC with Adaptable OS services 103

3 Online Model Checking

3.1 Application Scenario

Given an adaptable service with n (> 1) implementations and each implemen-
tation with m (> 1) SES’s, then we have mn different combination ways to
configure the SES’s of this OS service. The actual configuration of the SES’s has
to be determined at runtime with respect to the resource requirements and the
response time. There is no way to know in advance which configuration of the
SES’s should be selected. In essence, each configuration of the SES’s can be seen
as a different implementation of this service. Due to the huge time and space
complexity, it is impossible to verify the safety properties of all the mn differ-
ent implementations of this service at the systems development phase. Therefore,
online model checking [3, 4] might be a good choice to improve the dependability
and fault tolerance of our distributed RSoC with adaptable OS services.

Without loss of generality, let’s suppose that some SES’s of a given OS ser-
vice are safety-critical. Of course, all the SES’s of an OS service can be con-
servatively labeled as safety-critical. When this service is called by a real-time
application/task running on an RSoC, the middleware (see Section 4) of the
RSoC will figure out a suitable configuration of this service. Therefore, the mid-
dleware always knows in advance when a safety-critical SES will be executed
and thus can trigger online model checking in time on an RSoC with enough
resource.

3.2 Abstract Model

In order to do online model checking, we need to generate a sufficiently precise
abstract model from the source code of each safety-critical SES of a service at
first. A promising approach to construct an abstract state graph automatically
is predicate abstraction [5]. Let {ϕ1, ϕ2, · · · , ϕk} (k > 0) be a set of predicates
induced from the conditional statements and guarded expressions of the source
code. E.g., for a guard (x < y), where x and y are Integer variables, we can get
a predicate ϕ = (x < y). Abstract states are the evaluations of these predicates
ϕ1, ϕ2, · · · , ϕk on the program variables at each statement of the source code.

The abstract state graph is constructed starting from the abstract initial
state. With the help of some theorem prover (e.g., PVS), we can compute the
possible successors of any abstract state by deciding for each index i whether ϕi

or ¬ϕi is a post condition of this abstract state. Obviously, the more predicates
we have, the more precise the abstract model is. The resulting abstract model is
an over approximation of the concrete system. For every concrete state sequence,
there exists a corresponding abstract state sequence.

The relations between concrete states and abstract states are defined by
means of two functions: abstraction function α maps every set of concrete states
to a corresponding abstract state; concretization function γ maps every abstract
state to a set of concrete states that it represents.
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In this way, for each safety-critical SESi of a service, we can get the cor-

responding abstract model ŜESi as well as the abstraction function αi and
concretization function γi.

3.3 Model Checking Paradigm

Online model checking runs on an RSoC in parallel with the SES’s to be checked.
The abstract model of the checked SES is explored with respect to the given
safety property. Here we consider such a kind of the safety properties that can be
formally specified as invariants or LTL formulas. Since our model checking is done
online, the current (concrete) states of the SES’s execution can be monitored
and reported to the model checker from time to time (see Subsection 4.1). By
mapping these concrete states to the corresponding abstract states at model level
through the abstraction function, the online model checker needs only to explore
such a partial state space reachable from these abstract (current) states as shown
in Fig 3. Initially, when the current starting state is not available, online model
checking will explore all the possible behaviors from the abstract starting state.
Once a current state is available, the state space to be checked will be shrunk to
the part reachable from the corresponding abstract state. If this partial abstract
model is checked safe against the given property, then we have more confidence
to the safety of the actual execution trace. It doesn’t matter even though there
might be some errors lurked outside the partial abstract state space. If an error
is detected within the partial state space, the recovery process will be triggered
(see Subsection 4.2). Notice that the detected error might not really exist in the
source code, because we check at (abstract) model level, which usually contains
more behaviors than the corresponding source code. To avoid the error really to
happen, it is necessary for safety-critical systems to trigger recovery process.

We have done some experiments to estimate the performance of our online
model checking for invariants and LTL formulas [4]. The experimental results are
promising and demonstrate that the maximal out-degree of a model has a larger
influence on look-ahead performance than the average degree of the model.

3.4 Pre-checking and Post-checking

Since we check the abstract model instead of the concrete source code, the ex-
ecution of our online model checker is loosely bound to the execution of the
source code. Online model checking is able to explore the abstract state space
even when a current state is not yet monitored. In fact, the current states are
only used to reduce the state space to be checked. From this point of view, there
exists a race between the model checker and the source code to be checked.

Ideally, we wish that model checker could always run enough (time) steps
ahead the execution of the source code. This depends on the complexity of
the checking task as well as the underlying hardware architecture. In reality,
model checker might fall behind the execution of the source code. Therefore,
we introduce two checking modes: pre-checking and post-checking. The model
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Fig. 3. Online Model Checking

checking is in pre-checking mode, if it runs ahead of the execution of the source
code; otherwise, it is in post-checking mode.

In pre-checking mode, the model checker can predict violations before they
really happen. In post-checking mode, it seems at first sight that the violations
could only be detected after they have already happened. However, it is still
possible to “predict” violations even in post-checking mode because our on-line
checking works at the model level. If an error is detected at some place other than
the monitored execution trace in the partial state space, then we can “predict”
that there might be an error in the model which has not happened yet. In this
sense, both checking modes are useful for safety-critical systems.

Of course, we hope that the model checker can take the leading position
against the source code for as long time as possible. We need to find a so-
phisticated strategy to make the model checking have more chance or higher
probability to win against the source code. Recall that the source code is usu-
ally validated by means of simulation and testing. Currently we are looking to
find some heuristic knowledge at the system testing phase so that the abstract
model can be enriched with more useful information. The heuristic information
can thus guide on-line model checker to further reduce the state space to be
explored whenever necessary.

4 Integrate Online Model Checking into Distributed
RSoC with Adaptable OS Services

Recall that every RSoC in the distributed system is assumed to have at least one
FPGA and one GPP. In order to hide the complexity and provide some trans-
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Fig. 4. A) An overview of an RSoC with one FPGA and GPP and the communi-
cations between SESs, MC, and memory. B) An insight of the SES stages and the
communication with the X-manager.

parency to applications, a middleware is introduced to each RSoC. The middle-
ware can prepare the services needed by applications, coordinate the communi-
cation between applications and OS services, monitor the resources availability,
and manages the SES’s. It can also cooperate with the online Model Checker
(MC), see Figure 4-A, to provide for fault tolerance and recovery as discussed
bellow.

4.1 Communication between the MC and SES’s

Online model checker needs to communicate with SES’s running on FPGA as
well as on GPP. For the implementations of an adaptable service, all the SES’s
with the same index have the same functional behavior, i.e., given the same
input, we will get the same output from the SES’s with the same index. However,
the SES’s with the same index might be implemented by different algorithms in
different languages on different platforms. They might be executed in a parallel or
sequential way depending on the underlying architecture. As a result, the SES’s
with the same index are distinctive in terms of execution time and resource usage.
This makes it unrealistic to synchronously schedule the communication between
the model checker and an SES to be checked, e.g., every T time. Fortunately, an
event driven approach is a suitable solution. This can be done at the design phase
by defining triggering points at which communication is initiated. The triggering
points depends on the functional behavior and states of each OS service and can
be obtained by analyzing the source code. When the communication is triggered,
a decoded message with the required information is sent to the model checker.
These are normally global data and conditional values.

The model checker is usually running on GPP. This eases data transferring
between SES’s running on GPP and the model checker. It can be achieved by
coping/accessing the address space of the SES or using shared memory. Because
we also consider to check the SES’s running on FPGA, an X-manager is intro-
duced, where X is either H for hardware or S for software. The X-manager is
working as complementary part to the model checker. It consists of two parts:
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the H-manager which works on FPGA and the S-manager which runs with the
model checker on GPP, see Figure 4-A. All the SES’s communications involving
reading or writing memory are done through the X-manager. In doing so, the
X-manager can monitor all the modifications and synchronize the SES’s to get
an updated value to any memory request. Without the X-manager the memory
requested by SES may not be up to date, because FPGA can normally access
the physical memory directly. In addition, anything running on GPP accesses
memory using a memory manager. This may also involve caching and/or virtual
memory usage. In this case, memory accessed by an SES on FPGA might not be
up to date if that memory was cached by an SES on GPP, and no update occurs
to the physical original memory. To avoid such errors, we need to monitor and
synchronize any modification to memory so as to ensure that we always read up
to date values.

Needless to say, X-manager plays a decisive role in the communication be-
tween the online model checker and the SES to be checked. For this purpose, the
internal structure of each SES is further defined into stages at design phase as
shown in Figure 4-B. A stage is a logical grouping of a SES code after which the
MC is triggered. Any access to the memory from every stage is monitored by the
X-manager. At the end of each stage, an event will be sent to the X-manager.
On receiving the event, the X-manager will provide the model checker with a
snap shot of the memory just modified by the so far executed stage of the SES
to be checked. This minimizes the time needed to transfer data to the model
checker. Thus, the model checker might have more chance to run in pre-checking
mode, i.e., look ahead in the near future at the model level. This is important
as it allows the recovery process to happen without violating any constraints.

4.2 Recovery Process

When an application/task running on an RSoC requests a service to be exe-
cuted, the middleware of the RSoC evaluates the available resources and the
real time demands of the application/task to find a suitable configuration. This
process may require coordination with other RSoCs or if applicable with an
Operating Systems Repository (OSR) (see Fig. 1). It is just at this time that
the configuration of the service to be executed is known. This configuration is
then administrated by the the middleware of the RSoC for execution. The online
model checker is triggered whenever an SES marked with safety-critical is known
to be executed. The model checker runs in parallel with the SES to be checked.
In case that a possible violation is detected in the abstract model of the SES to
be checked, a recovery process is initiated as shown in Fig 5.

The recovery process is initiated by sending a recovery message from the
model checker to the RSoC middleware which coordinates the process of OS
service execution. This can be the same RSoC where the model checker is being
executed or different RSoC in the distributed system. The message contains
information about the possible incorrect SES and the current state of this SES.
The middleware then evaluates a new suitable configuration and if necessary
acquires any missing SES from OSR. Meanwhile, it raises a stop signal to the
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Fig. 5. Recovering a possible fault in OS service execution

incorrect service. The middleware afterwards initialize the new configuration and
redirect the further execution of the service to it. The middleware also sends the
model checker a message to set a new model associated with the new SES to be
executed if necessary.

5 Related Work

The benefits of implementing OS partially on RSoC is well recognized [6, 7].
Many researches have been carried out in the direction for an OS design to
support RSoC [8–10]. The idea of multiple implementations was also presented in
[11] and [12]. Every Service were assumed to have one implementation as a whole
for GPP and another for FPGA. Both implementations co-exist at the same time
on an RSoC to allow context switching. Doing so wastes too much resources
on each RSoC and makes the underlying OS design unfeasible for distributed
systems. Moreover, this OS design uses an algorithm based on Binary Integer
Programming (BIP), whose computational complexity is O(n2). We present an
OS design specially for distributed systems. It is fault tolerant and it can adapt
according to the QoS requirements of the applications. Further, the adopted
algorithm [1, 2] has a linear complexity.

For distributed systems, correctness and temporal analysis of the underlying
OS are desirable, because most SoC systems have real-time and dependability
requirements [13]. This analysis includes more and more formal verification tech-
niques like model checking [14]. Model checking has the advantage of being fully
automated and inherently includes means for diagnosis in case of errors. On the
other hand, model checking is substantially confronted with the so called state
explosion problem. Numerous approaches to overcome this deficiency have been
developed, like partial order reduction [15], compositional reasoning [16], and
other simplification and abstraction techniques, which aim to reduce the state
space to be explored by over-approximation [17] or under-approximation [18]
techniques.
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In recent years, runtime verification is presented as a complementary ap-
proach to the static checking techniques. The basic idea of the state-of-the-art
runtime verification [19–22] is to monitor the execution of the source code and
afterwards to check the so far observed execution trace against the given proper-
ties specified usually by LTL formulas. The checking progress always falls behind
the execution of the source code because the checking procedure can continue
only after a new state has been observed. In contrast, our runtime verification
is applied to the model level. The states observed from the execution trace are
mainly used to reduce the state space to be explored at the model level. If the
checking speed is fast enough, our online model checking could keep looking cer-
tain time steps ahead of the execution of the source code and then predict how
many time steps in the near future are safe.

6 Conclusion

We present a novel OS design which allows OS services to have flexible QoS,
fault tolerance, and recovery ability in distributed RSoC environment. Each OS
service may have different implementations, which can be configured at runtime.
This dynamic feature makes it difficult to check the safety of such OS services at
design phase. Therefore, online model checker is integrated so as to make error
prediction and recovery available. In [1] and [2], we have proved the feasibility of
this OS design to execute and adapt an OS service running on RSoC even with
very limited resources without violating any demanded requirements. We have
done some experiments to estimate the performance of our online model checking
for invariants and LTL formulas [4]. The experimental results are promising and
demonstrate that the maximal out-degree of a model has a larger influence on
look-ahead performance than the average degree of the model.
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