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Abstract. A generic predator/prey pursuit scenario is used to validate
a common learning approach using Wilson’s eXtended Learning Classi-
fier System (XCS). The predators, having only local information, should
independently learn and act while at the same time they are urged to
collaborate and to capture the prey. Since learning from scratch is often a
time consuming process, the common learning approach, as investigated
here, is compared to an individual learning approach of selfish learning
agents. A special focus is set on the performance of how quickly the team
goal is achieved in both learning scenarios. This paper provides new in-
sights of how agents with local information could learn collaboratively
in a dynamically changing multi-agent environment. Furthermore, the
concept of a common rule base based on Wilson’s XCS is investigated.
The results based on the common rule base approach show a significant
speed up in the learning performance but may be significantly inferior
on the long run, in particular in situations with a moving prey.
Keywords. Multi-agent learning, predator/prey pursuit scenario, emer-
gent behavior, collaboration, and XCS.

1 Motivation

Due to the increasing scale and complexity of strongly interconnected application
systems there is a need for intelligent distributed information processing and
control. The design of multi-agent systems (MASs) has addressed this need,
using concepts from machine learning and distributed artificial intelligence [1].
MASs have been utilized successfully in a range of application scenarios: Guiding
automated machines in collaborative industry scenarios [2], trading energy on
market platforms [3], seeking smallest distance routes for delivery services [4], or
managing air conditioners in buildings [5], are some examples of problems which
are solved (completely or partially) using MAS approaches.

A MAS consists of a collection of agents acting autonomously within their
common environment in order to meet their objectives. They take sensory inputs
from the environment, match them on actions, and then perform some actions,
which again affect their environment [6]. Here, an agent does not always represent
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a physical entity. It could be a virtual one, defined by a piece of software, or
even some lines of a program. The predator/prey scenario [7] has been shown
to provide a generic scenario as a basis for fundamental research on MASs,
capturing essential aspects of many potential fields of application (cf. [8]).

In this paper, we investigate different aspects of learning in predator/prey
scenarios. Each predator collects experiences while trying to capture the prey
and learns from others. We compare a common (centralized) knowledge approach
where every predator contributes to a centralized rule base to an individual
knowledge approach where every agent learns on its own and the experiences are
stored locally in decentralized rule bases.

The paper is structured as follows: Section 2 summarizes some related work
concerning XCS in multi-agent environments. Section 3 explains in more detail
the investigated scenario. Section 4 concentrates on collaboration methods, while
Sect. 5 discusses the methodology. Section 6 presents the results and compar-
isons, followed by a conclusion and an outlook in Sect. 7.

2 Learning Classifier Systems in MASs

The field of learning classifier systems (LCSs), introduced in the 1970ies [9],
is one of the most active and best-developed forms of genetic-based machine
learning. LCSs are rule-based on-line learning systems that combine nature-
inspired optimization heuristics and reinforcement learning techniques to learn
appropriate actions for any input they get.

A variety of different LCS implementations has been proposed, many are
based on Wilson’s eXtended Learning Classifier System (XCS) [10], as sketched
in Fig. 1. A learning agent senses its environment and sends its detector values
to an XCS. The input is compared to all rules (called classifiers) in the rule base
(population P ). Matching classifiers enter the match set M and are grouped
by their actions using the prediction array PA, which consists of each action’s
average of the predicted values. Then, the action with the highest prediction
value is chosen, and the related group of classifiers enters the action set A. The
chosen action is executed and a reward value is received based on the quality of
this action with respect to the resulting state of the environment. The reward
is used to update the prediction values of the classifiers in the action set and a
learning cycle starts again.

In general, multi-agent learning approaches using LCSs are based on the
idea of several independent LCSs which work in parallel on the same learning
problem. Agents administrate individual populations learned locally on the one
hand, and contribute to global shared rule sets on the other hand. In multi-agent
scenarios, this may be useful, when agents have to cooperate with each other
and their local behaviors contribute to a global goal with respect to different
roles. In dynamic environments, agents have to cope with changes, which often
require different behaviors. This corresponds to different roles an agent can take.

In [11], an XCS approach is investigated by modeling social problems. The El
Farol bar problem is used as a benchmark for ten up to hundred agents learning
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Fig. 1. Schematic overview of the on-line learning in XCS [10].

a cooperative behavior in parallel. XCS is also used in [12], where some agents
in forms of various five-square tiles (called pentominos) collaboratively manage
themselves to cover the smallest possible area by lying side by side. These papers
indicate the feasibility of using XCS in multi-agent scenarios with collaborative
agents, which is also in the focus of this paper.

3 Predator/Prey Pursuit Scenarios

In the literature, various types of predator/prey pursuit scenarios exist. Typi-
cally, some predators follow the goal of capturing a prey in a two-dimensional
grid world [13]. Since such a two-dimensional grid world with a team of collab-
orating agents (i. e., predators) offers many design possibilities, this approach
has been adopted for the investigations of this paper. Our special scenario is
described as follows.

3.1 Grid World

In this paper, the grid world consists of a borderless two-dimensional array (also
known as a torus), some predators, and one or more preys. For example, Fig. 2(a)
shows a 10 × 10 grid world with four predators working as a team to capture
one prey (a capturing situation is shown in Fig. 2(b)).

At each simulation tick, predators and prey move to one of the neighboring
cells in the von Neumann neighborhood. If the cell at the desired direction is
occupied, the agent stays where it is. Also, when more than one agent intends
to move on a free cell, only one of them (chosen arbitrarily) will move into the
cell while the other ones do not move.

The prey is captured when it has no possibility to move as all four directly
neighboring cells are occupied by the predators. Therefore, the quality of the
predators’ moves is evaluated with respect to their ability to minimize their
distance to the prey (measured as the Manhattan distance, i. e., the sum of
horizontal and vertical distances).
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(a) (b) (c)

Fig. 2. (a) A borderless grid world with four predators (black dots) and a prey (white
dot); (b) The goal is achieved as the prey is captured by the predators. (c) A predator’s
local observation range (using the Chebyshev distance of two).

3.2 Prey

Since the investigated scenario focuses on collaboratively learning predators, we
start with a simple prey which ignores any sensory information except for the
status of its four directly neighboring cells. In every tick it moves to one of its
von Neumann neighboring cells in an arbitrarily chosen direction, unless stated
differently for experimental purposes. If the prey is captured (i. e., it cannot move
any more), it is eliminated and another one will appear at a random location
within the grid world – to ensure that the simulation is continuously running
and predators can learn in several cycles.

3.3 Predators

Every predator is designed to obtain sensory information within a limited ob-
servation range determined by a Chebyshev distance of two (which refers to
the maximum of the horizontal and vertical distances), as depicted in Fig.2(c).
There, the predator in the middle of the grid can sense itself, two of its team-
mates, and the prey. Here, sensing is interpreted as recognizing and knowing the
grid coordinates (x, y) of all the currently sensed objects.

Moreover, the location of the prey is broadcasted to all the predators as soon
as one of them has sensed it locally. This is intentionally implemented to allow for
a local evaluation of the quality of the moves. In other words, without knowing
the prey’s location, predators cannot learn anything (since possible movements
could not be rewarded in a goal-oriented way).

When the prey’s location is unknown (for instance, at the beginning of
the simulation), all predators move arbitrarily expecting to find it somewhere
(Fig.3(a)). When at least one of them has located the prey (e. g., as depicted in
Fig. 3(b)), the coordinates of the prey are broadcasted (i. e., (5, 7) in Fig. 3(b), as
(0, 0) is the bottom-left corner cell) and retrieved by all teammates at the same
tick. If the prey’s location is known, the predator uses it for deciding about the
next action. This decision is taken at each time step of a simulation run.

Now, conventional non-collaborative predators will individually decide to
take their best movement regardless of any information about its teammates’
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(a) (b)

Fig. 3. Two examples of situations with predators having a viewing range of one: (a)
No predator sees the prey; (b) The prey is located by predator P4.

(a) (b) (c)

Fig. 4. (a) P1 and P4 are denoted as blocking predators, P2 and P3 as blocked predators.
(b) The blocked predators cannot get closer the prey. (c) Similar to Fig. 4(b)

positions. However, it is possible that the set of a predator’s movements which
minimize the distance to the prey is limited, since it may be blocked by its team-
mates, as depicted in Fig. 4(a). Then, the desired goal of capturing the prey is
not directly achievable.

As depicted in the example, the predators P1 and P4 perform a selfish be-
havior and block their teammates P2 and P3 as long as they all try to minimize
their distance to the prey with each move. Consequently, if P1 and P4 remain
at their capturing positions, P2 and P3 can only follow the option to move
around P1 and P4 in order to reach the other capturing positions, as marked
with crosses. Fig. 4(b) and Fig. 4(c) show the two blocked predators P2 and P3

could attempt to resolve this by moving away to the east or to the west. This
provides possibilities for the blocked predators to have good moves afterwards,
but the common behavior of all four predators does not relate to a desirable
collaborative behavior. The following section describes ideas to pursue the team
task collaboratively.

4 Collaboration Methods

In order to overcome the drawbacks of selfish behavior of non-collaborating
predators, we investigate possibilities of learning collaborative behavior which
is superior with respect to the global goal of capturing the prey. In a dynami-
cally changing environment, learning is often challenged by the need to adjust
the learning speed to the dynamics of the system (as mentioned in [14]). These
aspects are focused on in the following.
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Fig. 5. Required steps to capture the prey starting from a blocking situation.

(a) (b) (c) (d)

Fig. 6. (a) Fair moves by P1 and P4. (b) Goal achieved. (c) Not a fair move. (d) P3

blocks P4.

4.1 Fair Moves

In Fig. 4(a), blocking situations have been discussed which may arise in various
ways. Two possible static solutions are explained here:

1. The blocked predators move step by step around the other predators to get
closer to the prey eventually;

2. The predators collaborate and perform so-called fair moves.

As depicted in Fig. 5, the first strategy requires at least five steps for all
predators to surround the prey. In contrast, using fair moves as shown in Fig. 6(a)
and Fig. 6(b), only two steps are required which is a significant benefit.

The idea behind the fair moves is that blocking predators should move out
of their current position to give their teammates a chance to get closer to the
prey. This is called a fair move, only if the Chebyshev distance of the moving
predator to the prey does not change.

Starting from the situation displayed in Fig. 4(a), an example of fair moves is
shown in Fig. 6(a). The fair moves of P1 and P4 are allowing P2 and P3 to come
closer to the prey, as shown in Fig. 6(b). On the other hand, Fig. 6(c) shows a
move by P4 which is not a fair one. This unsurprisingly leads to a situation where
P4 becomes a blocked predator, as depicted in Fig. 6(d). Due to the benefit of
fair moves, the agents should get a special reward in the on-line learning cycles,
whenever they perform a fair move.

4.2 Common Rule Base

As outlined in Sect. 2, multi-agent learning approaches may use individual rule
bases or global shared rule sets. Generally, selfish agents would learn for them-
selves while collaborative ones do it for the team. In this paper, two different
learning architectures (as depicted in Fig. 7) are compared. Figure 7(a) shows
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(a) (b)

Fig. 7. Learning architectures: (a) Individual rule bases; (b) Common rule base

an architecture where every agent has its own rule base and the others do not
get the benefit of learning from any of their teammates’ experience. In contrast
to this, the second architecture uses a common rule base for all the agents, as
depicted in Fig. 7(b), i. e., every predator decides on its action by using the accu-
mulated experience of the team. Different from centralized learning approaches
with a centralized single-learning agent (e. g., in [5]); this approach is based on
a rule base which cumulatively collects experience from all predators. In other
words, all predators still make decisions autonomously, but store their knowledge
in a centralized rule base – accessible to all teammates.

Obviously, a good move for a predator is always a good one for others being
in the same situation. If predators act as a set of sensors (or experience collectors
for a common rule base), they will presumably have shorter learning times than
in scenarios where learning is limited to selfish agent behavior (i. e., a team of four
predators can update a common rule base four times faster than a single predator
can update its own rule base). Thus, in dynamically changing environments, a
quicker converging process of how to behave well seems to be very desirable.

Although these architectures are independent of the specific method of up-
dating the rule bases, in the following it is assumed that XCS is used as the
learning method in both scenarios. Following, the predators’ algorithm in apply-
ing the common rule base is described.

4.3 The Algorithm

At each tick of the simulation, every predator executes the algorithm given in
Fig. 8, which does the following: A predator observes its environmental sur-
rounding and takes a decision on an action that specifies the direction of the
next movement. Having the prey in the local observation range, the predator
broadcasts the location of the prey. Without having the prey in sight, a preda-
tor will examine whether any other teammate can sense the prey.

If the prey’s location is available (locally or by broadcast), a learning mech-
anism is applied based on Wilson’s XCS: An action is selected from the local or
global XCS rule base. It is triggered and evaluated, and the reward is used to
build up the predator’s knowledge. Otherwise, the predator performs a random
movement without referring to the rule base.

The next section describes how these behaviors are implemented, how the
methods affect the results, and how useful they are in achieving the goal.
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Fig. 8. A flow chart of the predator’s algorithm performed at each simulation tick.

5 Methodology

In the experimental setting, the predator/prey scenario is performed in a two-
dimensional 15×15 borderless grid world. Four predators having a viewing range
limited to a Chebyshev distance of two have to learn to capture a prey. All rule
bases are initialized to an empty population (i. e., no predefined knowledge). New
rules are generated using the standard covering operator [15]. The maximum
number of rules per rule base is set to 480. This means, whenever the number
of classifiers is greater than 480, rule deletions will occur, as specified in [15].

Initially, all entities start at random coordinates. When the prey is captured,
a new prey will appear and the old one disappears. The number of capture cycles
is then used to compare the performances in different parameterized scenarios.

To adapt the XCS algorithm to the scenario, three things have to be defined:
The input string to the XCS rule base, the action encoding, and the reward
mechanism. As explained and known from the literature (e. g., in [14]), classi-
fier systems have weaknesses in learning speed due to increasing search spaces.
Therefore, an efficient way of learning favors an intelligent coding of input and
output values and a proper reward mechanism.

Thus, two sorts of information are used as input to a learning predator: The
current relative direction of the prey and the predator’s von Neumann neighbor-
hood of range one (denoted as (direct) neighborhood afterwards). The direction
is used to decide where the predator should move to, while the direct neigh-
borhood is useful for extracting the information whether a neighboring cell is
occupied or not.

Figure 9(a) depicts an example derived from Fig. 2(c) and explains the en-
coding of the chosen XCS input. Firstly, the environment is simplified into eight
directions coded into four bits sequentially representing north, east, south, and
west, as shown in Fig. 9(b). For example, the direction southeast would be ‘0110’.
Since our investigations are limited to a scenario with one prey, only one of the
eight directions will be true.

The second part of the input is information concerning the possibility to move
to the neighboring cells. Moving to a cell occupied by a teammate is unfavorable,
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(a) (b)

Fig. 9. (a) Simplification of the observed area; (b) Encoding of the XCS input.

Fig. 10. XCS input of predators not seeing the prey

but in contrary, moving towards the prey is a good one. Therefore, no information
about the prey’s existence is given to this part of the input.

As seen in Fig. 9(b), the first part of the input is ‘0001’ representing west.
Then, a neighboring cell is coded to ‘1’ if it is occupied by a teammate, or to ‘0’
otherwise. Starting from the northern cell, going clockwise, and taking one bit
for every direction, the neighboring cells are coded to ‘1000’. The XCS output
will be one of four possible directions (north, east, south, or west are encoded as
0, 1, 2, or 3).

This simple form of input is also applicable to be implemented by the preda-
tors not seeing the prey. For instance in Fig. 3(a), P1, P2, and P3 compose inputs
using the prey’s coordinate broadcasted by P4, as shown in Fig. 10. Moreover,
the encoding is able to represent fair moves. For example, if the prey is located
at north (‘1000’) and a teammate is sensed on the southern neighboring cell
(‘0010’), then moving east (2) or west (4) will provide a fair move.

Based on the XCS output, each predator moves and gets a reward to the
classifiers in the action set according to the mechanism shown in Table 1. The
reward is based on the Manhattan distance between a predator and the prey.
After moving, each predator checks its current distance to the prey (Dt) and
compares it to the previous (Dt−1). The standard reward for an input-output-
combination (a rule) is 50, and a reward is considered as low if it is less than
that. A high reward will be given to a rule if it takes the predator closer to the
prey. Otherwise, a low reward will be received. Stagnancy, where a predator fails
to change its position, is rewarded very lowly.

A basic reward is given to any actions, while an additional reward is only
given to specific movements. Fulfilling more than one criterion, a move will be
awarded by the sum of the basic and additional rewards. For instance, staying at
any distance of x is a stagnant move deserving the low reward of 1. Additional
reward would be given for x = 1 which is a staying as a neighbor move, deserving
the total reward of 100. This value refers to closer, since in the rule base both of
them are represented by the same classifier denoting if the prey is in direction z
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Table 1. Allocation of rewards

no. Dt−1 Dt name condition basic add.
reward reward

1. x x− 1 closer any 100 0
2. x x + 1 further any 10 0
3. x x stagnant any 1 0
4. x x + 1 fair move was a blocking predator & un- 0 140

changed Chebyshev distance
5. 1 1 staying as a neighbor moving towards the prey 0 99

and you are not blocked by your teammate, then go to z. Finally, a fair move is
rewarded very highly to encourage predators taking it, testing its effectiveness
in achieving the team task.

6 Results and Comparisons

Experiments have been done using two types of prey, a static (not moving) prey
and a moving one, having the same speed as the predators. The following figures
show averaged experimental results how the agents behave in simulations over
time. The horizontal axis denotes the simulation time in a logarithmic scale while
the vertical axis depicts the average number of capture cycles from the beginning
to the end of the simulations. Data are taken from 20 experiments where each
simulation ends after one million ticks – one tick is one simulation step. Due to
lack of space we did not include any information on the statistical significance
of the results. But a simple statistical analysis indicates insignificant deviations.

Figures 11(a) and 11(b) present the experimental results of the comparison
between simulations with and without rewarding fair move decisions in the case
of both learning architectures (individual vs. common rule base). Moreover, both
figures show some relatively significant increases for the number of average cap-
ture times by rewarding fair move decisions, either in capturing a static or a
moving prey. Since rewarding fair moves seems advantageous, further compar-
isons only focus on the two different rule base architectures which are always
rewarding fair decisions.

The learning speed, which has been pointed out as a weakness of XCS, is
improved slightly by implementing a common rule base. As shown in Fig. 12,
simulations using the common rule base approach are superior for some ini-
tial period although after some time the individual rule base approach provides
better results, especially in capturing a moving prey.

Furthermore, the individual learning approach can benefit from storing indi-
vidual knowledge for a longer period. Rarely used classifiers are possibly deleted
in the common learning approach, since the maximal number of classifiers keeps
the population as compact as possible (cf. the mechanism of deleting classifiers,
as proposed by [15]).
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(a) (b)

Fig. 11. Comparisons of learning with and without rewarding fair move decisions using:
(a) the individual rule base approach; and (b) a common rule base

(a) (b)

Fig. 12. Comparison of learning using individual and common rule bases in fair mode
simulations using (a) a static prey; and (b) a moving prey

7 Conclusion and Outlook

This paper has focused on an instance of the generic pursuit scenario where
predators should learn to contribute to a common goal - capturing a prey. The
usability of Wilson’s XCS has specially been investigated in two different ap-
proaches. Firstly, all predators individually learn and store their experience in
local rule bases. Secondly, the predators share and store their experiences in a
common rule base.

Predators have been designed with a local view where they can sense their
local environment. If the prey is found, its coordinates will be broadcasted to all
other predators. Then, a simple input encoding has been defined, consisting of
the direction where the prey has been located and information about the neigh-
boring cells - are the cells occupied with the teammates or not. Finally, a proper
reward function for fair moves has been proposed, which enforces collaborative
group behavior. These fair moves are based on the idea that moving away from a
desirable position and thus giving a chance for a teammate to come closer could
be beneficial in some cases.

Experimental results have been achieved using different parameter combina-
tions. The results provide a clear view: The learning approach using a common
rule base provides a quicker improvement in the learning behavior but may be
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significantly inferior on the long run, in particular in situations with a moving
prey. Nevertheless, the presented idea of collaborative learning by storing the
knowledge in a common rule base provides a wide area for further research on
multi-agent learning: The complexities of heterogeneous predators, an intelli-
gently acting prey, or more complex goals than capturing a prey give rise to new
challenges for learning, which will be tackled by future work.
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