
Novelty-Aware Attack Recognition – Intrusion
Detection With Organic Computing Techniques

Dominik Fisch, Ferdinand Kastl, and Bernhard Sick

Computationally Intelligent Systems Lab, University of Passau, Germany
{fisch|kastl|sick}@fim.uni-passau.de

Abstract. A typical task of intrusion detection systems is to detect
known kinds of attacks by analyzing network traffic. In this article, we
will take a step forward and enable such a system to recognize very new
kinds of attacks by means of novelty-awareness mechanisms. That is, an
intrusion detection system will be able to recognize deficits in its own
knowledge and to react accordingly. It will present a learned rule premise
to the system administrator which will then be labeled, i.e., extended by
an appropriate conclusion. In this article, we present new techniques for
novelty-aware attack recognition based on probabilistic rule modeling
techniques and demonstrate how these techniques can successfully be
applied to intrusion benchmark data. The proposed novelty-awareness
techniques may also be used in other application fields by intelligent
technical systems (e.g., organic computing systems) to resolve problems
with knowledge deficits in a self-organizing way.

1 Introduction

Organic Computing (OC) has emerged recently as a challenging research area
dealing with future computationally intelligent systems that will be based on so-
called self-x properties such as self-organization, self-optimization, self-configura-
tion, self-healing, self-protection, or self-learning [1, 2]. An example for such a
system is an intelligent distributed system, e.g., a team of robots, a smart sensor
network, or a multi-agent system. Often, the nodes of such a system have to
perform the same or similar tasks, or they even have to cooperate to solve a given
problem. Typically, these nodes know how to observe their local environment and
this knowledge is represented by certain rules. However, many environments are
dynamic. That is, new rules are necessary or existing rules become obsolete.
Therefore, really intelligent nodes should adapt on-line to their environment by
means of certain machine learning techniques.

In this article we focus on components—intrusion detection agents (IDA)—of
a distributed intrusion detection system (DIDS). These IDA are able to analyze
network traffic and to distinguish between “normal” network data (connections)
and data originating from certain kinds of attacks (or tools used to prepare
an attack). The rules that are used for that purpose are learned from sample
data. The challenge is now that an IDA must be able to detect new kinds of
attacks as well as new kinds of “normal” data which it had not seen before. This

246 Dominik Fisch, Ferdinand Kastl, and Bernhard Sick

property is termed novelty-awareness. Then, the IDA must support a system
administrator in creating new rules. That is, it must present an autonomously
learned rule premise to the system administrator who must “label” that rule
(i.e., determine an appropriate conclusion). Then, the new rule must be added
to the existing rule system. In a future version of our DIDS, new rules will be
exchanged between different IDA of the DIDS. Then, an IDA will be enabled to
recognize attacks that it had not seen before.

The architecture of an IDA, the DIDS, a framework for large-scale simula-
tions, and techniques for alert aggregation are described in [3–5] in more detail.
Here, we focus on the novelty-aware attack recognition at the detection layer.
This kind of novelty-awareness is very new to the field of intrusion detection.
Thus, this article should be seen as a kind of proof of concept, where many of
the components will be further improved in the future.

In the following, Section 2 briefly discusses related work in the field of
DIDS, Section 3 lays the theoretical and methodological foundations of novelty-
awareness, and Section 4 provides some experimental results. Finally, Section 5
summarizes the major findings and gives an outlook to our future work.

2 Related Work

Here, we briefly discuss related work in the field of DIDS. Information about
terminology in the field of intrusion detection can be found in [6].

In most cases, the collaborative aspect of DIDS is found in the correlation
of distributed data. Classical DIDS research is mostly focused on systems where
agents located on network nodes aggregate data and send alerts to a central agent
for correlation [7]. [8] proposes a p2p overlay network which allows correlation
of attacks across domain borders with the goal of reducing the false positive
rate and the reaction time. [9] proposes a system where different agents use
different methods for attack detection (misuse or anomaly detection). [10] uses
clustering at centralized nodes to perform correlation tasks. [11] describes a
distributed fuzzy classifier, where distributed agents perform fuzzification of local
data sources. A central fuzzy evaluation engine aggregates the agents findings
and generates alerts according to pre-trained rules.

There are only a few proposals for systems which collaborate in some form
to improve the performance of attack detection in the distributed agents. These
systems are more closely related to our work. [12] describes an artificial immune
system based DIDS where a primary IDS generates detectors (negative selection)
and secondary IDS on the hosts perform detections and performance evaluation
(clonal selection). [13] uses a genetic algorithm (island model) to train decision
trees. Individual hosts form islands and work independently, but can exchange
individuals among the different islands’ gene-pools.

3 Theoretical and Methodological Foundations

In this section our proposed approach for realizing self-adaptive IDA is pre-
sented. First, we describe how classification knowledge is represented within the

Novelty-Aware Attack Recognition 247

agents. Then, we show how this kind of knowledge can be learned given a set of
training data. Finally, techniques for adapting learned knowledge to changes in
the environment are introduced.

3.1 Representation of Classification Knowledge

To classify network connections we use a probabilistic approach. That is, for
a D-dimensional input sample x containing information about a specific con-
nection (e.g., duration of the connection or number of transmitted packets) we
want to compute the posterior distribution p(c|x), i.e., the probabilities for class
membership given an input x. To minimize the risk of classification errors we
then select the class with the highest posterior probability (cf. the principle
of winner-takes-all). According to our previous publication [14], p(c|x) can be
decomposed as follows:

p(c|x)=

J∑
j=1

∫
x∈Rc

p(j|x)dx · p(c)
p(j)︸ ︷︷ ︸
p(c|j)

· p(x|j)p(j)∑J
j′=1 p(x|j′)p(j′)︸ ︷︷ ︸

p(j|x)

. (1)

In this classification approach based on a so-called mixture density model p(x),
the conditional densities p(x|j) (j ∈ {1, . . . , J}) are the components of the model,
p(j) is a multinomial distribution with parameters πj (the mixing coefficients
or rule “weights”), the p(c|j) are multinomial conditional distributions with pa-
rameters ξj,c, and Rc is the (not necessarily connected) region of the input space
associated with class c. That is, we have a classifier (rule set) consisting of J
rules, where each rule j is described by a distribution p(j|x) (which we call the
rule premise) and a distribution p(c|j) (which we call the rule conclusion). We
can state that the former can be trained in an unsupervised way while class la-
bels for patterns are needed for the latter. For a particular sample x′, the values
p(j|x′) are called responsibilities (i.e., of the component for the sample).

Which kind of density functions can we use for the components? Basically,
our D-dimensional input samples x describing network connections may have
Dcont continuous (i.e., real-valued) dimensions and Dcat = D−Dcont categorical
ones. Without loss of generality we arrange these dimensions such that

x = (x1, . . . , xDcont︸ ︷︷ ︸
continuous

,xDcont+1
, . . . ,xD︸ ︷︷ ︸

categorical

).

Note that we italicize x when we refer to single dimensions. The continuous part
of this vector xcont = (x1, . . . , xDcont

) with xd ∈ R for all d ∈ {1, . . . , Dcont} is
modeled with a multivariate normal distribution with center µ and covariance
matrix Σ, i.e.,

N (xcont|µ,Σ) =
1

(2π)
Dcont

2 |Σ| 12
exp

(
−0.5

(
∆Σ(xcont,µ)

)2)
(2)

248 Dominik Fisch, Ferdinand Kastl, and Bernhard Sick

with the distance measure (matrix norm) ∆M (v1,v2) given by ∆M (v1,v2) =√
(v1 − v2)TM−1(v1 − v2). ∆M defines the Mahalanobis distance of vectors

v1,v2 ∈ RDcont based on a Dcont ×Dcont covariance matrix M .
For categorical dimensions we must extend our approach presented in [14]

by means of multinomial distributions. We use a 1-of-Kd coding scheme where
Kd is the number of possible categories of attribute xd (d ∈ {Dcont+1, . . . , D}).
The value of such an attribute is represented by a vector xd = (xd1 , . . . , xdKd

)
with xdk = 1 if xd belongs to category k and xdk = 0 otherwise. Categorical
dimensions are modeled by means of multinomial distributions. That is, for an
attribute xd ∈ {xDcont+1

, . . . ,xD} we use

M(xd|δd) =

Kd∏
k=1

δ
xdk

k (3)

with a parameter vector δd = (δd1 , . . . , δKd
) and the restrictions δdk ≥ 0 and∑Kd

k=1 δdk = 1.
We assume that the categorical dimensions are mutually independent and

that there are no dependencies between the categorical and the continuous di-
mensions. Thus, the component densities p(x|j) are defined by

p(x|j) = N (xcont|µj ,Σj)

D∏
d=Dcont+1

M(xd|δjd). (4)

3.2 Knowledge Acquisition Using Sample Data

How can the various parameters of the classifier be determined? For a given
training set X with N input samples xn and corresponding target classes it
is assumed that the xn are independent and identically distributed. First, the
parameters of p(x) are computed in an unsupervised manner. Let θ be the overall
set of model parameters consisting of all µj ,Σj , δjd , and πj . Then, the likelihood
function of the parameters θ given the data X is defined by

p(X|θ) =

N∏
n=1

p(xn|θ). (5)

We are searching the parameter setting that maximizes this function. In the case
of a mixture density model it is not possible to evolve a closed formula for the
optimization. However, by introducing the concept of latent (i.e., unobserved)
variables, iterative methods can be used. For each sample xn one of the J compo-
nents is ”responsible”. To describe the ”assignment” of samples to components,
an additional latent random variable zn is introduced for each sample. Z denotes
the set of all latent variables.

In this work we perform model parameter estimation by means of a technique
called variational Bayesian inference (VI) which realizes the Bayesian idea of re-
garding the model parameters θ as random variables whose distributions must

Novelty-Aware Attack Recognition 249

be trained. This approach has two important advantages over other methods.
First, the estimation process is more robust, i.e., it avoids “collapsing” compo-
nents, so-called singularities whose variance in one or more dimensions vanishes.
Second, VI optimizes the number of components by its own. For a more detailed
discussion on Bayesian inference, and, particularly, VI see [15]. For the model
described in the previous section we need the joint distribution of all random
variables (i.e., observations, latent variables and model parameters) which can
be decomposed into

p(X,Z,π,µ,Λ, δ) = p(X|Z,µ,Λ, δ)p(Z|π)p(π)p(µ|Λ)p(Λ)

D∏
d=Dcont+1

p(δd). (6)

where π = {πj},µ = {µj},Λ = {Λj}, and δd = {δjd}. Note that for convenience
we are using precision matrices Λj which are the inverses of the covariance
matrices (i.e., Λj = Σ−1j). Unfortunately, this approach comes with an infeasible
computational effort, and, thus, an approximation must be used. Therefore, it
is assumed that the joint distribution of latent variables and model parameters
p can be approximated by a function q that can be factorized as follows:

q(Z,π,µ,Λ, δ) = q(Z)q(π)

J∏
j=1

q(µj ,Λj)

D∏
d=Dcont+1

q(δjd). (7)

The distributions of the model parameters on the right hand side are called
prior distributions and for an efficient computation their functional form must
be chosen in a special way (so called conjugate prior distributions, cf. [15]). For
the parameters µj and Σj , a Gauss-Wishart distribution must be used as prior
distribution [15], i.e.,

q(µj ,Λj) = N (µj |mj , (βjΛj)
−1)W(Λj |Wj , νj) (8)

where mj , βj ,Wj , and νj are the parameters of the distribution that are deter-
mined during training (see below). The parameters π and δjd are assumed to be
multinomially distributed and, thus, Dirichlet priors must be used, i.e.,

q(π) = Dir(π|α) and q(δjd) = Dir(δjd |εjd). (9)

The corresponding parameters α and εjd are also infered during training. The
VI is conducted iteratively by alternating between two steps. In the first step,
the responsibilities γn,j of components j for patterns xn are evaluated:

γn,j =
ρn,j∑J

j′=1 ρn,j′
, (10)

where

ln ρn,j = E[lnπj] +
1

2
E[ln |Λj |]−

Dcont

2
ln(2π)

−1

2
Eµj ,Λj

[(xcont
n − µj)TΛj(xcont

n − µj)] +

D∑
d=Dcont+1

Kd∑
k=1

xndkE[ln δjdk]

250 Dominik Fisch, Ferdinand Kastl, and Bernhard Sick

with

E[lnπj] = ψ(αj)− ψ

 J∑
j=1

αj

 , E[ln δjdk] = ψ(εjdk)− ψ

(
Kd∑
k=1

εjdk

)
,

where ψ(·) is the Digamma function,

E[ln |Λj |] =

Dcont∑
i=1

ψ

(
νj + 1− i

2

)
+Dcont ln 2 + ln |Wj |,

and

Eµj ,Λj [(xcont
n −µj)TΛj(xcont

n −µj)] =
Dcont

βj
+νj(x

cont
n −mj)

TWj(x
cont
n −mj).

In the second step, the parameters of the prior distributions q(·) are adapted.

With Nj =
∑N
n=1 γn,j being the “effective” number of samples generated by

component j, Njdk =
∑N
n=1 γn,jxdk the “effective” number of samples belonging

to category k in dimension d generated by component j and the statistics

xj =
1

Nj

N∑
n=1

γn,jx
cont
n , Sj =

1

Nj

N∑
n=1

γn,j(x
cont
n − xj)(x

cont
n − xj)

T

the update formulas are given by

αj = α0 +Nj , βj = β0 +Nj , νj = ν0 +Nj ,

εjdk = ε0 +Njdk , mj =
1

βj
(β0m0 +Njxj)

and

W−1
j = W−1

0 +NjSj +
β0Nj
β0 +Nj

(xj −m0)(xj −m0)T .

In the formulas we see some parameters indexed with 0, namely α0, β0, ε0, m0,
ν0, and W0. These parameters are so-called prior parameters of the VI, which
can be used to influence the behavior of the algorithm in a desired way, e.g., to
avoid singularities and to cope with sparse data. The values of these parameters
represent prior knowledge that can be set depending on the data set or on the
specific application.

The VI algorithm is also able to estimate an appropriate number of compo-
nents for a dataset. The “effective” number of samples Nj for which a component
is responsible can be used as a decision criterion. The higher this number, the
more “valuable” is the respective component. If a component is not valuable
enough (a test criterion is realized with a threshold), it is simply deleted from
the model. That is, the VI training approach must be started with a number
of components that must be higher than the number that is expected to be re-
quired. The training is performed until a given stopping criterion is met (e.g.,

Novelty-Aware Attack Recognition 251

no or only slight improvements of the likelihood or a fixed number of steps).
Point estimates of the model parameters are then obtained by calculating the
expected value of the trained distributions.

At this point, we have found parameter estimates for the rule premises
(p(j|x), cf. Eq. (1)) in an unsupervised manner. Now, we still need the parameters
ξj,c of the rule conclusions p(c|j). These can be obtained in a second, supervised
step. With Ic we denote the index set of all samples from the overall training set
X for which c is the assigned target class. Then, with p(j|c) =

∫
x∈Rc

p(j|x)dx
where Rc is the region of the input space associated with class c, we get the
maximum likelihood estimates

ξj,c =
1

Nj

∑
n∈Ic

γn,j . (11)

This supervised step can also be realized in a slightly different way if labeled
data are not available: After the unsupervised step, the components (i.e., rule
premises) may be labeled by a human domain expert.

3.3 Knowledge Adaptation Based on Novelty-Awareness

In a changing environment agents must be able to detect the need for generating
new rules and to handle this situation appropriately. In the case of an IDA, new
knowledge is required if events are observed that are not covered by the current
set of classification rules. This can either be due to malicious actions such as
an hitherto unknown attack taking place or legitimate actions that deviate from
the learned profile (e.g., a newly installed application).

First, we will describe our novel approach for detecting the need for new
knowledge (i.e., novelty detection). Here, we only use the continuous part xcont

as an indicator for novelty. The key measure for our technique is the Maha-
lanobis distance ∆. We exploit the fact that the squared Mahalanobis distances
∆2
j (x

cont,µj) of samples xcont generated by a Gaussian component j to the cor-

responding center µj are approximately χ2-distributed with Dcont degrees of
freedom. Knowing the distribution of the Mahalanobis distances, we can define
a hyper-ellipsoid around each center µj such that we can expect that a certain
percentage κ of the samples produced by the process which is modeled by com-
ponent j lies within that hyper-ellipsoid. The radius ρ of these hyper-ellipsoids
can be determined by means of the inverted cumulative χ2 distribution. Based
on these hyper-ellipsoids we define a novelty status snov of the overall classifier
that can be regarded as the degree of “satisfaction” with respect to the cur-
rently observed situation. This status is updated with every new observation. It
is rewarded if the observation is inside the hyper-ellipsoid and penalized other-
wise. If the ratio of penalty to reward is equal to the ratio of “inside samples”
to “outside samples”, there is an equilibrium of penalties and rewards and snov
oscillates around its initial value. In this case, our classifier fits the observed
data. If, however, we observe more than 1− κ percent outside samples (i.e., due
to a new process that is not yet covered by the classifier such as a new kind

252 Dominik Fisch, Ferdinand Kastl, and Bernhard Sick

of attack), snov is penalized more often and, thus, decreases. If it falls below a
user-defined threshold τ , novelty is detected.

To compensate the effect of overlapping components we additionally scale the
rewards and penalties with the component responsibilities (cf. Eq. 10). Thus, our
novelty detection algorithm works as follows:

Novelty Detection:

1. Set the percentage κ of samples that are expected to be inside the hyper-
ellipsoid (e.g., κ := 0.9) and penalty νpen and reward νrew values with the
correct ratio (e.g., νrew := 0.1, νpen := κ

1−κ · νrew).

2. Determine the set Jin of rules for which the sample xcont is inside the hyper-
ellipsoid and the set Jout of the remaining rules by comparing the squared
Mahalanobis distance of xcont to the centers µj to a threshold ρ:

Jin := {j|∆2
j (x

cont,µj) ≤ ρ} Jout := {j|∆2
j (x

cont,µj) > ρ}.

The threshold ρ is obtained by evaluating the inverse cumulative χ2-distribu-
tion for the value κ.

3. Compute an update value for the overall novelty status of the classifier by
scaling the rewards and penalties with the corresponding responsibilities:

∆nov(xcont) := η ·

∑
j∈Jin

γn,j · νrew −
∑
j∈Jout

γn,j · νpen

with η being the step size controlling the reaction time.

4. The new novelty status is then

snov := snov +∆nov(xcont)

where snov must be initialized appropriately (e.g., with snov := 1).
5. If snov sinks below a given threshold τ (e.g., τ := 0.2), there is a need to

integrate one or several new rules into the classifier.

The algorithm can be parametrized to show different behavior, i.e., if new
processes are expected to emerge distant to existing ones and the detection delay
should be short, larger values for κ (e.g., κ = 0.95) should be used. A more
deliberate behavior can be achieved with smaller values (κ = 0.7). It is also
possible to use multiple instances with different parameterizations in parallel.

Whenever novelty is stated, the rule set must be adapted accordingly by
adding new rules. Basically, we use the VI technique on a sliding window of
recent samples to find new rule premises. To avoid changes of the already existing
premises, the centers and covariance matrices of existing components are fixed
and only those of new components are adapted. The mixture coefficients can
either be re-estimated based on the sliding window or set to identical values. A
rule conclusion, i.e., an estimate of the parameters of the distribution p(c|j) for
a new component j, can then be obtained in various ways:

Novelty-Aware Attack Recognition 253

1. Application experts (e.g., system administrators) can be asked to label a set
of recently observed samples (e.g., measured within a sliding window). These
labels are then used to determine values for the parameters ξj,c.

2. Application experts can be asked to label a new rule j, i.e., to assign it
uniquely to one of the classes.

3. In the case of rule exchange between IDA, certain rules, and in particular
their conclusions, may be taken over from other IDA.

Altogether, we can state that the adaptation of rule premises can be done in
an unsupervised way, i.e., autonomously by the agents themselves. For the rule
conclusions we need application experts in some application scenarios, but their
effort can be kept as low as possible if rules are taken over from other agents
whenever possible and experts are asked to label rules instead of a (often large)
number of samples which can be done much more efficiently.

4 Experiments

To analyze the performance of our proposed techniques we use parts of the
well-known DARPA intrusion detection evaluation data set [16] that consists
of several weeks of labeled network data (i.e., legitimate normal network traffic
interleaved with various attacks) which was generated within a simulated envi-
ronment. The network architecture as well as the generated network traffic have
been designed to be similar to that of an Air Force base. We are aware of the
various critique of the DARPA data (e.g. [17]). In order to achieve fair and re-
alistic results, we carefully analyzed all known deficiencies and omitted features
that could bias detector performance.

We used the TCP/IP network dump as input data for an agent. At the
sensor layer TCP connections are reassembled and statistical information (i.e.,
events) are extracted and handed over to the detection layer. Each event consists
of features that are typically used for intrusion detection, i.e., two categorical
dimensions (source and destination port) and ten continuous dimensions (e.g.,
duration, number of transmitted packets, entropy of the exchanged information).
We removed all attack connections from the first week of the DARPA data
set and used the result to train an initial detection model for the agent that
describes the expected normal network traffic. The agent is equipped with two
instances of our proposed novelty detection technique (one parametrized with
κ = 0.97, η = 0.05 to detect distant and one with κ = 0.80, η = 0.1 to detect
close new processes) and it is able to perform self-adaptation. When a new rule
premise is generated, a simulated human expert is asked to provide a conclusion
(which is calculated here using the labeled connections). We confront the agent
with weeks 2 to 5 (attacks with less than 20 connections were left out). After
every week, we reset the agent to its initial model to prevent influences between
the weeks.

Table 1 (left) shows the classification rate (CR), missing alert rate (MA), false
alert rate (FA), the total number of connections (i.e., events), and the number
of newly generated rules for week 2. First, note that obviously the normal traffic

254 Dominik Fisch, Ferdinand Kastl, and Bernhard Sick

of week 2 differs from week 1 as two additional rules are generated. The attacks
back and ipsweep are successfully detected with good classification rates. Guest
and portsweep only consist of a few connections and, thus, the delay until a
new rule is generated significantly reduces the classification rate. Interestingly,
ipsweep shows a high rate of false alerts. A closer inspection of the misclassified
connections showed, however, that these connections are suspicious (i.e., they are
directed at closed ports and consist only of two packets) and should definitely
be reported to a system administrator as they indicate an erroneous program
configuration.

Table 1 (right) shows the results for week 3. The normal traffic significantly
differs from week 1 as the agent learned 18 new rules. All attacks are successfully
detected. Again, portsweep being a short attack results in a lower classification
rate due to the detection delay.

Type CR MA FA events rules

Normal n/a n/a n/a 182 932 2
Back 95.5% 4.6% 1.4% 983 3
Guest 74.0% 26.0% 0.0% 50 1
Ipsweep 89.9% 10.1% 72.1% 855 2

Portsweep 63.6% 36.4% 8.3% 99 4

Type CR MA FA events rules

Normal n/a n/a n/a 54 893 18
Back 92.1% 7.9% 0.3% 999 3

Neptune 100% 0.0% 0.4% 185 652 1
Nmap 95.9% 4.1% 9.1% 941 1

Portsweep 70.0% 30.0% 5.6% 100 4

Table 1. Classification Results for Week 2 (Left) and Week 3 (Right).

Type CR MA FA events rules

Normal n/a n/a n/a 49 159 10
Neptune 98.9% 1.1% 0.2% 798 1
Portsweep 98.4% 1.6% 5.7% 1 971 3

Satan 16.7% 83.3% 2.4% 4 003 2
Warezclient 72.8% 27.2% 0.2% 419 2

Type CR MA FA events rules

Normal n/a n/a n/a 44 130 11
Neptune 100% 0.0% 0.4% 419 832 1
Portsweep 96.4% 3.6% 2.9% 2 238 7

Satan 5.8% 94.1% 1.9% 204 1

Table 2. Classification Results for Week 4 (Left) and Week 5 (Right).

The results for week 4 are outlined in Table 2 (left). Obviously, the attack
satan is very hard to detect for our agent. A closer inspection showed, that the
first of the 10 newly generated rules for normal traffic covers a major part of
all satan connections. We analyzed the events that resulted in the generation
of this rule and, again, found a number of unsuccessful connection attempts.
However, as they are labeled as being normal connections our simulated human
expert provides a “normal” conclusion for the rule. A real human expert would
certainly provide a different conclusion for these suspicious connections.

Neptune and portsweep are very well detected in week 5 (cf. Table 2, right).
Again, such as in week 4, one of the new rules for normal traffic covers most of
the satan connections.

These experiments showed very promising results of our proposed techniques.
Our initial model was trained using only normal traffic but for all attacks corre-
sponding rule premises were generated and for nearly all attacks good classifica-
tion results were obtained. The classification rates of the satan attack suffered
from a number of unsuccessful connection attempts contained in the normal

Novelty-Aware Attack Recognition 255

traffic that led to the creation of corresponding normal rules. Thus, these mis-
classifications can be regarded as an artifact caused by our expert simulation.

5 Conclusion and Outlook

In this work we laid the methodological basis for IDA that recognize novel kinds
of attacks, react accordingly by creating new rules, and (in the future) col-
laborate by exchanging these locally learned rules. The self-adaptation of the
IDA is performed in a very efficient manner that reduces the need for a human
application expert to a minimum: System administrators are confronted with
rule premises for which appropriate conclusions must be found. Thus, we try
to avoid situations where system administrators must analyze huge amount of
alerts to build new rules. We investigated how these techniques perform on some
well-known benchmark intrusion data. In the future, we will combine the classi-
fiers presented here with conventional intrusion detection systems such as Snort
[18] to improve the classification rates and we will develop DIDS based on OC
principles. We will also consider categorical input attributes of a classifier in our
novelty-awareness techniques (detection and reaction) and improve the temporal
behavior of these techniques.

It is obvious that the proposed novelty-awareness techniques may also be
used in other applications to support intelligent technical systems (e.g., in the
field of OC) in their task to resolve problems with knowledge deficits in a (partly
or completely) self-organizing way. Thus, novelty detection and reaction tech-
niques will become a fundamental OC principle. We will use the techniques for
knowledge exchange in intelligent distributed systems, too. This kind of collec-
tive intelligence is biologically inspired in the sense that these systems follow
the human archetype: Humans not only learn by exchanging information (e.g.,
observed facts) but also by teaching each other learned knowledge (e.g., rules)
and experience gained with the application of this knowledge.

Acknowledgment

This work was supported by the German Research Foundation (DFG) under
grants SI 674/3-2 and SI 674/3-3 (priority program Organic Computing).

References

1. Müller-Schloer, C.: Organic computing – on the feasibility of controlled emergence.
In: IEEE/ACM/IFIP Int. Conf. on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS 2004), Stockholm, Sweden (2004) 2–5

2. Würtz, R.P., ed.: Organic Computing. Understanding Complex Systems. Springer,
Berlin and Heidelberg, Germany (2008)

3. Buchtala, O., Grass, W., Hofmann, A., Sick, B.: A fusion-based intrusion detection
architecture with organic behavior. In: The first CRIS Int. Workshop on Critical
Information Infrastructures (CIIW), Linköping. (2005) 47–56

256 Dominik Fisch, Ferdinand Kastl, and Bernhard Sick

4. Fisch, D., Hofmann, A., Hornik, V., Dedinski, I., Sick, B.: A framework for large-
scale simulation of collaborative intrusion detection. In: IEEE Conf. on Soft Com-
puting in Industrial Applications (SMCia/08), Muroran, Japan (2008) 125–130

5. Hofmann, A., Sick, B.: On-line intrusion alert aggregation with generative
data stream modeling. IEEE Tr. on Dependable and Secure Computing
(2010) (status: accepted, published on-line at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2009.36).

6. Axelsson, S.: Intrusion detection systems: A survey and taxonomy. Technical
Report 99-15, Chalmers University of Technology, Department of Computer Engi-
neering (2000)

7. Snapp, S.R., Brentano, J., Dias, G.V., Goan, T.L., Heberlein, L.T., Ho, C.L.,
Levitt, K.N., Mukherjee, B., Smaha, S.E., Grance, T., Teal, D.M., Mansur, D.:
DIDS (distributed intrusion detection system) – motivation, architecture, and an
early prototype. In: Proc. of the 15th IEEE National Computer Security Conf.
Baltimore, MD. (1992) 167–176

8. Yegneswaran, V., Barford, P., Jha, S.: Global intrusion detection in the domino
overlay system. In: Proc. of the Network and Distributed System Security Symp.,
NDSS 2004. San Diego, CA. (2004)

9. Chatzigiannakis, V., Androulidakis, G., Grammatikou, M., Maglaris, B.: A dis-
tributed intrusion detection prototype using security agents. In: In Proc. of the
6th Int. Conf., on Software Engineering, Artificial Intelligence, Networking and
Parallel and Distributed Computing. Beijing, China. (2004) 238–245

10. Zhang, Y.F., Xiong, Z.Y., Wang, X.Q.: Distributed intrusion detection based on
clustering. In: Proc. of 2005 Int. Conf. on Machine Learning and Cybernetics.
Guangzhou, China. Volume 4. (2005) 2379–2383 Vol. 4

11. Dickerson, J.E., Juslin, J., Koukousoula, O., Dickerson, J.A.: Fuzzy intrusion detec-
tion. In: Proc. IFSA World Congress and 20th North American Fuzzy Information
Processing Society (NAFIPS) Int. Conf., Vancouver, BC (2001) 1506–1510

12. Kim, J., Bentley, P.: The artificial immune model for network intrusion detection.
In: 7th European Conf. on Intelligent Techniques and Soft Computing (EUFIT’99),
Aachen, Germany. (1999)

13. Folino, G., Pizzuti, C., Spezzano, G.: Gp ensemble for distributed intrusion detec-
tion systems. In: Proc. of the 3rd Int. Conf. on Advances in Pattern Recognition.
Bath, U.K. (2005) 54–62

14. Fisch, D., Sick, B.: Training of radial basis function classifiers with resilient prop-
agation and variational Bayesian inference. In: Proc. of the Int. Joint Conf. on
Neural Networks (IJCNN 2009), Atlanta, GA (2009) 838–847

15. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York,
NY (2006)

16. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,
Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A.:
Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion de-
tection evaluation. In: DARPA Information Survivability Conf. and Exposition
(DISCEX). Volume 2., Hilton Head, SC (2000) 12–26

17. McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln laboratory.
ACM Tr. on Information and System Security 3(4) (2000) 262–294

18. Roesch, M.: Snort – lightweight intrusion detection for networks. In: LISA ’99:
Proc. of the 13th USENIX Conf. on System Administration, Berkeley, CA (1999)
229–238

