Unifying HW Analysis and SoC Design Flows by
Bridging Two Key Standards: UML and
IP-XACT

Sebastien Revol, Safouan Taha, Francois Terrier, Alain Clouard, Sébastien Gerard,
Ansgar Radermacher, and Jean-Luc Dekeyser

Abstract In order to save time and improve efficiency, all SoC development pro-
cesses are separated into many parallel flows. These flows should keep a strong
communication to avoid redundancy and incoherency. We distinguish two main
trends. One aims at designing and implementing hardware when the other focuses
on its functional description that may serve to software architecturing, analysis and
allocation. Even if both are newly using UML, no connections have been made
to synchronize them. The goal of this work is then to bridge permanently the gap
between those two hardware design trends by unifying their corresponding model-
based standards: UML and IP-XACT.

1 Introduction

Many initiatives are working on adapting the Unified Modelling Language (UML),
for Hardware design in order to benefit from model driven development, reuse, re-
finement and complexity management. In electronics system design, depending on
the modelling purpose, we can distinguish two main trends. One aims to imple-
ment hardware, describing circuits (structure and behaviour) using UML techniques
[8I[91[10][11]. The other trend focuses on functional description of hardware for
analysis and allocation purposes [1][2]. These two approaches have never been effi-
ciently unified, keeping the two modelling flows separated.

The number of the various UML diagrams enables to address many different
aspects of a system. Moreover UML offers specialization mechanism for specific

Sebastien Revol - Alain Clouard
STMicroelectronics, e-mail: firstname.lastname @st.com

Safouan Taha - Frangois Terrier - Sébastien Gerard - Ansgar Radermacher
CEA LIST, e-mail: firstname.lastname @cea.fr

Jean-Luc Dekeyser
INRIA-DaRT, e-mail: dekeyser@lifl .fr

69

70 Sebastien Revol et al.

domains, namely the UML profile capability. An UML profile is a set of stereotypes
that extend UML concepts, and bring them a specialized semantics. It is the standard
way to tune this general purpose language for a particular domain.

In the domain of System on Chip (SoC) design, different initiatives worked on
defining profiles, having in mind a code generation purpose and using UML as a
hardware design language. The UML SoC profile [10], standardized by the OMG
(Object Management Group), proposes a graphical description of the SoC structure
and permits SystemC! code generation. Likewise, the UML profile for SystemC
[12] is a one-to-one transcription in UML context of all SystemC concepts including
behaviour aspects. However, those profiles are often too close to the implementation
languages and this has for effect to extend UML with implementation semantics. To
resolve this point, our strategy was to get inspired from the IPXACT? concepts. This
standard, widespread in the electronics community, is defined by the SPIRIT con-
sortium with the objective to factorize in an XML grammar the hardware concepts,
and to clearly dissociate the structural characteristics of a component (interfaces,
registers etc.) from the way they are implemented. At STMicroelectronics we de-
veloped the ESL (Electronic System Level) profile that extends UML with IP-XACT
concepts, allowing interoperability between them as well as the derivation of these
formalisms into specific implementation languages.

In parallel to the hardware implementation flow, it is a common practice to spec-
ify functional, abstracted and understandable hardware models in order to commu-
nicate design intends and study interdependencies between hardware and software.
Software design, allocation and analysis (e.g schedulability) require a high level
description model of the hardware architecture in terms of number of processors,
amount of memory Several profiles were also developed to define functional mod-
els of hardware like SPT [1] and AADL [2]. They classify resources whether if
they are for computing, storage, communication and so on. These profiles are only
introducing generic concepts and they are really lacking details and specific em-
bedded systems properties. As a part of the new OMG standard MARTE [3] (Mod-
elling and Analysis of Real-Time and Embedded systems), we developed in CEA
LIST the HRM [4][5] (Hardware Resource Model) profile that is an open frame-
work for UML-based hardware modelling. It provides many functional views and
covers many detail levels.

The reason behind the separation between implementation models and functional
ones, is the inadequacy between their levels and nature of details. This separation
leads to redundancy and incoherency between these parallel flows. Implementation
models are considered as very low level specification that cant serve for functional
description. In this paper, we demonstrate that HRM profile is enough detailed, and
ESL profile is enough abstracted to be able to define bridges between a functional
description and an implementation one. Relying on the UML capability to provide
different views of the same model, we succeeded to unify both profiles, so that they

! Open SystemC Tnitiative, www.systemc.org
2 The Spirit Consortium: www.spiritconsortium.org

Unifying HW Analysis and SoC Design Flows 71

can be applied on an unique model, serving both for analysis and implementation
concerns.

In the following sections, we will first present the HRM profile, its concepts and
the way they can be used. Then we will introduce the ESL profile and its interoper-
ability with IP-XACT. Last we will describe the unification process and illustrate it
within a small example.

2 MARTE standard: Hardware Resource Model

The new OMG standard MARTE is proposed to replace the UML profile for
Schedulability, Performance and Time (SPT). It handles the heterogeneity of em-
bedded systems by adopting the Y-model [6] which consists of three models repre-
sented by different colours within Figure 1:

e Application model of the system tasks.
e Resource model of the execution platform, which is, in turn, composed of:

— Software Resource Model describes the software execution platform (e.g. an
operating system, drivers).
— Hardware Resource Model.

e Allocation model that maps the application onto resources.

MARTE Foundations ‘
Non Functional . "
Properties [<« import »-——-—-- Time
A import »-——— -« import .l
Allocation i« import »=> Generic Resources F « import »--—— Causality
« impbrt » «import »
Real-Time & Embedded Design ‘ Real-Time & Embedded Analysis ‘

I
« |rr?port »= Hardware Generic Quantitative Analysis
Resources
A N

« \mpbn » « import »
| | I— E—
L Software -
« import »--=> Resources ‘ Schedulability ‘ ‘ Performance

Fig.1 MARTE structure

Application

MARTE extends UML with a detailed Hardware Resource Model (HRM). This
latter is intended to serve for functional description of hardware platforms, through
different views and detail levels [4]. The Hardware Resource Model is grouping
most of hardware concepts under a hierarchical taxonomy with several categories

72 Sebastien Revol et al.

depending on their nature, functionality, technology and form. It is composed of
two subprofiles, a logical one that classifies hardware resources depending on their
functional properties, and a physical profile that focuses on their physical proper-
ties. HRM exploits particularly the Non-Functional Properties (NFP) package of
MARTE [7] that allows quantitative annotations with measurement units and pro-
vides a rich UML library of basic types like Duration, Data Transmission Rate, Data
Size and Power.

In this paper we will focus on the logical part of HRM that classifies hardware re-
sources depending on their functional properties. The objective is then to provide a
functional taxonomy of hardware resources, whether if they are computing, storage,
communication, timing or auxiliary devices. This classification is mainly based on
services that each resource offers. A big amount of stereotypes are introduced within
HRM, they are rigorously specified and organized under a tree of successive inher-
itances from generic stereotypes to specific ones, no stereotype is orphan because a
particular care has been made to explicit semantic relations and links among all the
needed concepts. This is the reason behind the ability of the HRM profile to cover
many abstraction levels. Another feature of the HRM is support of most hardware
concepts thanks to a big range of stereotypes and once more its layered architec-
ture. If no specific stereotype corresponds to a particular hardware component, a
generic stereotype may match. This is appropriate to support new hardware compo-
nents and new technologies. Finally, HRM includes many notations, and there is an
appropriate icon for each logical stereotype.

« stereotype » « dataType »
HwMemory Timing
memorySize : NFP_DataSize notation : NFP_String « emfmerat_lon »
addressSize : NFP_DataSize description : NFP_String WritePolicy
timings : Timing [*] value : NFP_Duration WriteBack
WriteThrough
Other
Undefined
« enumeration »
« stereotype » « enumeration » Repl_Policy
HwCache CacheType
« dataType » LRU
level : NFP_Natural CacheStructure Data NFU
type : CacheType Instruction FIFO
structure : CacheStructure nbSets : NFP_Natural Unified Random
repl_Policy : Repl_Policy blocSize : NFP_DataSize Other Other
writePolicy : WritePolicy associativity : NFP_Natural Undefined Undefined

Fig. 2 HwMemory and HwCache stereotypes

In Figure 2 we extracted a part of the memory package from the logical subpro-
file of HRM. HwCache is a processing memory where frequently used data can be
stored for rapid access. HwCache may vary depending on its level, type and struc-
ture. The cache structure is organized under sets of blocks, where associativity value
is the number of blocks within one set.

In order to maximize flexibility, HRM stereotypes extend most UML structural
concepts, allowing the use of the profile within any structural UML diagram. How-

Unifying HW Analysis and SoC Design Flows 73

ever, we provide in [5], a specific methodology to guide the hardware designers
within an incremental process of successive compositions. It helps to resourcefully
use HRM and benefit from its features. Finally, notice that we provide the XMI of
the profile. This enables using XML-based technologies like model transformation
and code generation for analysis, allocation or simulation of hardware models.

3 Electronic System Level Profile

The objective of the ESL profile is to provide a first view of the hardware architec-
ture as a starting point of the refinement flow toward implementation, just after hard-
ware software partitioning. Since this partitioning often leads to the reuse of existing
components as well as the definition of new components, the goal of our profile is
to provide both a strong IP interconnection mechanism and a way to ex-press the
specifications permitting to quickly derive the implementation of new components.
The following figure illustrates the role of ESL in the workflow.

IP-XACT
Repositor

Transfo

Association
Language Specific Model

(SystemC-Profile)

New

IP-XACT compliant Code generation

Component
J PXACT

HW design Environment Executable code
Description

Fig. 3 Transformations workflow around the ESL profile

3.1 Positioning the profile

Regarding other initiatives, our objectives may seem similar to the OMGs SoC pro-
file. However, the analysis of this profile led us to conclude that its semantics was
very close to the old 2.0 version of SystemC. Particularly, the interconnection se-
mantics, based on soc_port that can be in, out or inout and must be connected to
soc_interface implementations, really constrains the SoC description to the SystemC
coding-style (with sc_in, sc_out, sc_inout ports and sc_interface). This way to pro-
ceed does not provide an efficient way to describe a connection such as a master
bus interface, which may be later implemented with a set of in and out ports. More-
over, the register memory map description of a component is an important concept
when describing an IP, being at the frontier of the structure and the functionality of
the component (since a register is a structural feature that may influence the way a

74 Sebastien Revol et al.

component will work). This notion unfortunately does not appear in the SoC profile
(neither in SystemC).

On the other side, the goal of IP-XACT is to provide a standard XML abstraction
of HW components implementation files, whatever the language is (VHDL, Verilog,
SystemC, etc.). Hence, they can be handled with standard compliant EDA tools, to
favor the reuse of IPs. To do so, the members of the SPIRIT consortium realized a
big effort to identify the concepts that represent the characteristics of a component
from those that are specific to a particular implementation. Our approach was to se-
lect in the IP-XACT grammar the concepts that could be useful in an UML flow, not
in order to replace IP-XACT with UML, but to provide a way to use them comple-
mentarily. Indeed, UML better fits for the definition of new components, whereas
IP-XACT provides specific mechanisms for their instantiation.

The introduction of IP-XACT concepts into UML positions the ESL profile as a
pivot language. As illustrated in figure 3, it enables the translation between a IPX-
ACT models an UML ones. Moreover, the structural information contained in an
ESL model can then be used to transform this model into a specific implementation,
either directly to code, either to intermediate language specific profiles, such as the
SystemC profile. Indeed the interest of relying on this intermediate model is then
that it permits to complete the model with language specific concepts (including be-
havior) and to connect this implementation to the its ESL specification in order to
generate a full coherent IP-XACT description.

3.2 Main profile concepts

Providing a behavioural description of hardware components independently from
the abstraction level and the language they are implemented appeared for us a real
challenge (that is not addressed by IP-XACT). Consequently, we had to focus and
started by the structural description. The concepts we defined can be grouped into
three main categories: the identification, the interconnections mechanisms and the
register memory map.

The reuse of existing components implies to identify them clearly. To do this,
IP-XACT provides the HW component with a unique identifier, based on the four
attributes that are: the Vendor name, the Library to which it belongs, the Name of
the component, and its last Version (VLNV). It is translated by extending the UML
StructuredClass metaclass with a HWComponent stereotype, owning three tagged
values (Vendor, Library and Version, the name of the component being mapped on
the name attribute of the Class).

IP-XACT interconnection mechanisms is translated to UML using the port and
provided/required interface UML concepts. However, IP-XACT introduces the Bus-
Definition principle, which defines compatibility rules to connect together master
and slave BuslInterfaces. Instead of dealing only with in and out ports, the BusInter-
face represents a connection point of the component defined by a protocol (BusDef-
inition). We mainly distinguish two types of connection points: a Master- BusIf
which initiates communication transactions and a SlaveBuslIf that only answers

Unifying HW Analysis and SoC Design Flows 75

them. The protocol type was expressed with the UML Interface concept, which also
has to be uniquely identified with a VLNV. So, we used the provided and required
interface mechanisms to express that a MasterBuslIf requires the interface and must
be only connected to a SlaveBuslf providing it.

The register map description relies on the Definition/Instantiation mechanism
provided by the Class/Property couple. As illustrated in Figure 4, a component can
instantiate several register maps that are defined by the RegisterMapDef. The latter
can instantiate, in turn, several registers, characterized by several attributes such as
their address offset, bit-width, multiplicity, access type (read-only, readwrite, write-
only) and so on. By the same way, a register definition instantiate fields (set of
bits in a register), also characterized by the same kind of attributes. Each definition
concept is then mapped on a Class stereotype with the tagged values corresponding
to its respective attributes, whereas each instance concept is mapped on a property
stereotype, also accompanied of its tagged values.

HWComponent «enumerations
Vendor AccesType
& i Read-0Only
. :Q'braw \Write-Only
ame Read-Write
Version
| +ownedRegMap
RegisterMap + pwnedRegs Register +ownedFields Field
addressOffset o addressOffset M bitOffset
[N + def [N/ + det i + def
RegisterMapDef RegisterDef FieldDef
dd R = accessType accessType
s resetValue bitSize
bitSize values

Fig.4 Register map model

4 Unification of both approaches

Both HRM and ESL profiles permit to describe the structure of a hardware plat-
form. In practice, they are used on the same kind of diagrams: the class diagram
for the definition of components, and the composite structure diagram to describe
module interconnections, and the hierarchical structure of the IP. However the con-
cepts added to UML via the stereotypes of each profiles are not conflicting, but
rather complementary. Whereas HRM brings to the model some information about
the functionality of the IP, the ESL profile focuses on the way it will be imple-
mented. On one hand, HRM introduces many stereotypes for each hardware func-
tion when ESL profile has a unique HWComponent concept permitting to identify
components. On the other hand, HRM does not provide a strong interconnection se-
mantics, with only a single stereotype to describe a connection point (HwEndPoint)
when the ESL profile provides stronger connection rules distinguishing different

76 Sebastien Revol et al.

kinds of connection points. The ESL profile also provides a fine grain description of
the IP internal structure (e.g. registers) that is not addressed at all by HRM.

HRM will be useful for platform architects who want to analyse the characteris-
tics of the system under construction, and study the mapping of an application on
this platform. The ESL profile will then be used to specify and realize this platform,
containing enough information to generate a big part of its implementation.

ESL profile HRM profile

« 5pp|_y » « gppl;r »

Hardware components
library

« import »

Platform Model h
» Software design . » Implementation
» Analysis . » Code generation
» Allocation " » Simulation

Functional view J Implementation view J

<

Fig. 5 Design flows unification process

UML allows the application of many stereotypes onto the same element, these
stereotypes could come from the same profile as they could belong to different ones.
In the first case, it means that the resource is playing many roles in the domain
specified with the corresponding profile. While in the second case, it is an adequate
way to merge concepts coming from different domains in the same model. In fact,
we will unify different concerns that are defined in unconnected profiles into one
complete hardware model, by means of multi-profile application.

The Figure 5 illustrates the development process we propose to manage the uni-
fication of design flows. First, we defined an UML library of hardware components
on which we applied both ESL. and HRM profiles. Each component is annotated
with many stereotypes (as shown on Figure 7), there is at least one stereotype from
ESL for implementation semantics and one stereotype from HRM for functional
ones. This way we are filling a library of models that is conform to IP-XACT. Then,
importing this library, the hardware designer may build its hardware platform by ar-
ranging and connecting components in an adequate way thanks to ESL stereotypes.
Once the platform model is built and thanks to UML, we automatically provide
two projections of the platform, one for implementation that only extracts the ESL
annotations from the library, and one for functional purposes (e.g. software archi-
tecturing) that is HRM-based.

Unifying HW Analysis and SoC Design Flows 77

Therefore, two development flows are separated but keep sharing the same
model, which means that they keep a strong communication between each-other.
Suppose that in an incremental or refinement process, one of the design flows
changed the hardware platform model, it will be automatically mirrored on the other
flows view.

Platform

«hwProcessor» «hwTimers «<hwProcesson
procl: Proc [1] timer: pwp_timer [1] proc2: Proc [1]

Fig. 6 Hardware platform functional view

Lets do a simple example, we create an SMP hardware platform where two pro-
cessors procl and proc2 are sharing one system bus and the same main RAM mem-
ory mem. Figure 6 is a typical functional view of such platform model. It is used
by software developers to take into account the multiprocessing aspect by designing
a multi-tasks application. This view is also used by system designers for allocation
or schedulability analysis, who may map each application task on one of the two
processors depending on their strategy criteria and then test the adequation.

«HWCompanent» @
vendor = st.com <hwTimer, hWComponents
library = SPG pwp._timer
version = 1,0 -

«HwTimer»
nbCounters = 2
counterWidth = 32 @ «slaveBuslf, hwEndPoint» target_port [1]
frequency = 10 MHz ahwMemory» N

memMap: memMapDef [1] {

«masterBusif, hwEndPoint» TIMINTC [1]
)/Eﬁ st.com_SPG_tlm_tac_2.0
«masterBuslf, hwEndPoint» TIMINT [2]
st.com_SPG_tlm_synchro_2.0 e

st.com_SPG_tim_synchro_2.0

Fig.7 The hardware component pwp_timer

Lets assume that the architectural study led to define a new timer component.
The ESL profile will permit to specify its interfaces as well as its register map (Fig-
ure 7). The model transformation we developed enables the generation of more than
80% of its UML-SystemC implementation model, including base class inheritance,
ports and registers declarations. It also generates the address decoding algorithms in
the read/write communication API, containing meaningful debugging messages and
taking into account the access type of each registers. After this step, the designer can
complete its model, adding the missing behavioural features with for instance the
state machines of the SystemC-profile, and generate both the full executable code

78 Sebastien Revol et al.

and the coherent IP-XACT description. The latter allows handling this new IP in
any IP-XACT compliant CAD tools.

5 Conclusion

We have presented a way to efficiently join different flows of the SoC design for
which model-based approaches present interesting benefits. The ESL profile, intro-
duced for the first time in this paper, acts as a pivot between three key aspects: the
functional analysis provided by the MARTE profile, the design approaches with
language-specific UML profiles and the IP-XACT industrial standard. Its level of
details, compatible with the MARTE-HRM profile, enables to use both of them on
a single model. This unification permits to work on one central model where three
were needed before, avoiding not only a duplication of modelling efforts, but also
the risk of inconsistency between the different models. Although we believe that
the automation possibilities can still be improved by connecting our approach with
higher level specifications processes, the efficient integration of different industrial
standards we have presented in this paper let us foresee a soon adoption of this
approach in a real industrial context.

References

1. Object Management Group, UML profile for Schedulability, Performance and Time (SPT),
Version 1.1. OMG Document, 05-01-02.

2. Avionics Architecture Description Language Standards Document (AADL),
http://www.aadl.info.

3. Object Management Group, UML profile for Modeling and Analysis of Real-Time and Em-
bedded systems (MARTE), http://www.omgmarte.com.

4. S. Taha, A. Radermacher, S. Gerard and J-L. Dekeyser. An Open Framwork For Detailed
Hardware Modeling In IEEE proceedings SIES2007, pages 118-125, Lisboa, July 2007.

5. S.Taha, A. Radermacher, S. Gerard and J-L. Dekeyser. MARTE: UML-based Hardware De-
sign from Modeling to Simulation. In proceedings FDLO7, Barcelona, September 2007.

6. L. Bonde, P. Boulet, A. Cucurru, J-L. Dekeyser, C. Dumoulin, P. Marquet, S. Meftaly and M.
Samyn, Model Driven Engineering for Distributed Embedded Real-Time Systems, chapter
Model Driven Architecture for Intensive Embedded Systems, ISTE, August 2005.

7. H.Espinoza, H.Dubois, S.Gerard, J.Medina, D.C .Petriu. Annotating UML Models with Non-
Functional Properties for Quantitative Analysis, Proc of MODELS2005 Sattelite Events, Lec-
ture Notes in Computer Science, Springer, 2006.

8. Y. Wang, X.G. Zhou, B. Zhou, L. Liang and C.-L. Peng. A MDA based SoC Modeling Ap-
proach using UML and SystemC. Proceedings of the Sixth IEEE International Conference on
Computer and Information Technology (CIT’06)

9. T. Schattkowsky, J. Hendrik Hausmann, G. Engels. Using UML Activities for System-on-
Chip Design and Synthesis, In proceedings of MoDELS 2006, Genova, Italy October 2006

10. Q. Zhu, R. Oishi and T. Hasegawa, T. Nakata, Integrating UML into SoC Design Process,
DATE ’05: Proceedings of the conference on Design, Automation and Test in Europe

11. W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. Dehaene, Y. Vanderperren,
UML for ESL design: basic principles, tools, and applications, ICCAD ’06: Proceedings of
the 2006 IEEE/ACM international conference on Computer-aided design

12. Riccobene, E; Scandurra, P.; Rosti, A.; Bocchio, S., A model-driven design environment for
embedded systems, Design Automation Conference, 2006

