
CONTINUOUS ENGINEERING OF

EMBEDDED SYSTEMS

Bernhard Steffen 1, Tiziana Margaria2

1Chair of Programming Systems, Universität Dortmund (Germany)
2Chair of Service and Software Engineering, Universität Potsdam (Germany)

Abstract We investigate the late phases of the embedded systems’ life cycles, in
particular the treatment of change requests, the integration of legacy
components, and the problem of emerging platforms. We propose to
tackle these issues in a model-driven design paradigm, on the behavioral
models, and to employ techniques from automata theory, model check-
ing and automata learning. The main practical impact of our approach
is its support of the systematic completion and update of user/customer
requirements, which by their nature are quite partial and concentrate on
the most prominent scenarios. Our technique generalizes these typical
requirement skeletons by extrapolation and it indicates via automati-
cally generated traces where the requirement specification is too loose
and additional information is required. This works in the initial phases
of system development, but also in case of change requests, where our
technique hints at possible problems with their realization (feature in-
teractions), and helps to keep the requirement model in synchrony along
the chain of new releases.

1. MOTIVATION

The bulk of research concerning embedded systems focusses of the early
stages of the systems’ life cycles. Today’s systems require unacceptable
efforts just for deployment, typically caused by incompatibilities, feature
interactions, and by the sometimes catastrophic behavior of component
upgrades, which no longer behave as expected. This is particularly true
for embedded systems, with the consequence that some components’ life-
times are ‘artificially’ prolonged far beyond a technological justification,
for fear of problems once they are substituted or eliminated.

The time after the first deployment causes the majority of the overall
costs of the system, but is hardly addressed, as is the integration of legacy
components. It is a major research challenge to provide systematic and



2 Bernhard Steffen and Tiziana Margaria

Figure 1. The AMDD Process in the jABC

consistent support to the later phases of the life cycle as well as system
construction with legacy components. Prerequisite in this direction is
the development of modelling levels that capture these aspects.
Here we investigate this situation under three perspectives, that treat

1 changing requests: in particular, the consistent integration of new
requirements.

2 legacy components: how can we increase our confidence when deal-
ing with components lacking specification.

3 emerging platforms: how can we separate the two issues above from
the technological details required for effective technology mapping.

Starting point for our analysis is an aggressive version of model-driven
development (AMDD) [14], which moves most of the recurring problems
of compatibility and consistency of system design, implementation, and
evolution from the coding and integration levels to the modelling level
(Fig. 1). Being a paradigm of system design, it inherently leaves a high
degree of freedom in the design of adequate settings. We propose to treat
the first two issues at the level of behavioral models, and use automata
theory, model checking, and automata learning to consistently deal with
looseness of requirements, uncertainties of legacy components, and the
consequences of change requests. The third point coincides with the
technology mapping issue discussed in the context of AMDD [14].

The main practical impact of the technique proposed in this pa-
per is its ability to support the systematic completion and update of
user/customer requirements, which by their nature are typically very



Continuous Engineering of Embedded Systems 3

partial and concentrate on the most prominent scenarios. Our tech-
nique generalizes these typical requirement skeletons by learning-based
extrapolation, and it indicates via automatically generated traces where
the requirement specification is too loose and additional information is
required. This technique can also be used for the construction of behav-
ioral models for third party/legacy components [5; 12].

This works in the initial phases of system development, but also with
change requests, where our technique hints at possible problems with
their realization (feature interactions), and helps to semi-automatically
keep the requirement model in synchrony along the chain of new releases.

In the following, Sect. 2 briefly sketches our tool landscape, based on
the jABC Modelling Framework, and Sect. 3 the essential features of
automata learning. Then Sect. 4 presents our method of learning-based
long-term requirement engineering: the principle, the simple monotonic
case of requirement completion, and the non-monotonic case of require-
ment updates. Finally Sect. 5 gives our conclusions and perspectives.

2. BASICS CONCEPTS OF THE jABC

jABC [6] is a Java-based framework for service development along the
AMDD paradigm [14]. Its central model structure are hierarchical, flow
chart-like graphs called Service Logic Graphs (SLGs) [13]. They model
the application behavior in terms of the intended process flows, based on
coarse granular building blocks called SIBs (Service-Independent Build-
ing blocks) which are to be understood directly by the application ex-
perts – independently of the structure of the underlying code, which in
our case is typically written in Java/C/C++. The component models
(single SIBs or hierarchical subservices), the feature-based service mod-
els called Feature Logic Graphs (FLGs), and the Global SLGs modelling
applications are all hierarchical SLGs. Additionally, the jABC supports
several model specification styles, including

1 two modal logics, mu-calculus and monadic second order logic on
strings [19], to abstractly and loosely characterize valid behaviors
of finite and parametric systems, resp., which come with plugins
for the graphical, pattern-based definition of constraints [7],

2 a classification scheme for building blocks and types, useful e.g.
for service discovery in distributed service environments [11], and

3 model-level and source code-level analysis and consistency verifi-
cation mechanisms based on these specifications [2].

In this sense, the jABC is an instance of actor-based modelling environ-
ments according to [3].



4 Bernhard Steffen and Tiziana Margaria

Predecessors of jABC have been used since 1995 to design, among oth-
ers, industrial telecommunication services [15], Web-based distributed
decision support systems [8], and test automation environments for
Computer-Telephony integrated systems [5], and most recently to equip
the Ricoh AFICIO printer series with a flexible process management.

jABC allows users to develop services and applications by composing
reusable building-blocks into (flow-)graph structures. An extensible set
of plugins provides additional functionalities to adequately support all
the activities needed along the development lifecycle, like e.g. anima-
tion, rapid prototyping, formal verification, debugging, code generation,
monitoring, and evolution. This process does not substitute but rather
enhance other modelling practices like the UML-based RUP 17, which
is in fact used in our process to design the single components.

jABC offers a number of advantages that play a particular role when
integrating off-the-shelf, possibly remote functionalities.

Agility. We expect requirements, models, and artifacts to change
over time, therefore the process supports evolution as a normal pro-
cess phase by various means, like, e.g., model checking, monitoring-
based consistency checking, and requirement completion/update.

Consistency. The same modelling paradigm underlies the whole
process, from the very first steps of prototyping up to the final
execution, guaranteeing traceability semantic consistency.

Verification. With techniques like model checking and local checks
we support the user to consistently modify his model. The basic
idea is to provide automatic checking mechanisms for previously
defined local or global properties that the model must satisfy.

Service orientation. Legacy or external features, applications,
or services can be easily integrated into a model by wrapping the
functionality into building blocks to be used inside the models.

Executability. The models can be executed in various modes:
executions can be as abstract as guided documentation browsing
and as complex as the concrete run of the final implementation.

Several applications have shown how these properties are exploited in
different application areas, like e.g. [9; 4; 8; 10].

3. AUTOMATA LEARNING

Machine learning deals in general with the problem how to automati-
cally generate a system’s description. Besides the synthesis of static soft-



Continuous Engineering of Embedded Systems 5

and hardware properties, in particular invariants, the field of automata
learning is of particular interest for soft- and hardware engineering.

Automata learning tries to construct a deterministic finite automaton
(see below) that matches the behavior of a given target automaton on
the basis of observations of the target automaton and perhaps some
further information on its internal structure. The interested reader may
refer to [18] for details, here we only summarize the basic aspects of our
realization, which is based on Angluin’s learning algorithm L

∗[1].
L
∗, which is an active learning algorithm, learns finite automata by

actively posing membership queries and equivalence queries to the tar-
get automaton in order to extract behavioral information, and refining
successively an own hypothesis automaton (HA) based on the answers.
Membership queries test whether a string (a potential run) is contained
in the target automaton’s language (its set of runs), and equivalence
queries compare the HA with the target automaton for language equiva-
lence, in order to determine whether the learning procedure has (already)
successfully completed and the experimentation can stop.

In its basic form, L
∗ starts with the one state HA that treats all words

over the considered alphabet (of elementary observations) alike, and
refines it on the basis of query results iterating two steps. Here, the dual
way of how L* characterizes (and distinguishes) states is central:

from below, by words reaching them. This characterization is too
fine, as different words may well lead to the same state.

from above, by their future behavior wrt. a dynamically increasing
set of words. These future behaviors are essentially bitvectors: a
’1’ means that the corresponding word of the set is guaranteed to
lead to an accepting state and a ’0’ captures the complement. This
characterization is typically too coarse, as the considered sets of
words are typically rather small.

The second characterization directly defines the HAs: each occurring
bitvector corresponds to one state.

The initial HA is characterized by the outcome of the membership
query for the empty observation. Thus it accepts any word if the empty
word is in the language, and no word otherwise. Next, the learning
procedure (1) iteratively establishes local consistency, after which it (2)
checks for global consistency.

Local Consistency. This is an automatic model completion loop,
that iterates two phases: (a) checking whether the constructed HA is
closed under the one-step transitions, i.e., each transition from each state



6 Bernhard Steffen and Tiziana Margaria

of the HA ends in a well defined state of this very automaton. And (b)
checking consistency according to the bitvectors characterizing the fu-
ture behavior as explained above, i.e., whether all reaching words with
an identical characterization from above have the same one step transi-
tions. If this fails, a distinguishing transition is taken as an additional
distinguishing future that resolves the inconsistency, splitting the state.

Global Equivalence. After local consistency, an equivalence query
checks whether the language of the HA coincides with that of the target
automaton. If this is true, the learning procedure successfully termi-
nates. Otherwise the equivalence query returns a counterexample, i.e.,
a word which distinguishes the hypothesis and the target automaton.
This counterexample gives rise to a new cycle of modifying the HA and
starting the next iteration.

4. LEARNING-BASED REQUIREMENTS
MANAGEMENT

Key towards continuous engineering is the treatment of new/changing
requirements. Our learning-based approach to requirement management
is organized to capture three dimensional requirement evolution:

Use cases: individual ‘runs’ of the intended system.

Temporal properties: global constraints that capture safety and
liveness properties of the considered system.

Structure requirements: system properties like symmetry between
technical components, determinacy of individual behaviors,

Change request may concern all three dimensions, although individual
change requests typically belong to one. This means in particular that
the other dimensions remain unchanged, which drastically enhances the
stability of upgrading procedures.

It is the central data structure of active automata learning, the ob-
servation table, which, slightly enhanced, enables the incremental and
evolutionary model construction. It does not only comprise the actual
HA, but also the concrete evidence which lead to its construction. Thus
it allows us to distinguish between the model structure based on con-
crete observations and the model structure which arose in the course of
extrapolation: the HAs are the state-minimal automata consistent with
the actual observations. As such, they are neither an under- nor an over-
approximation: they may as well allow (extrapolated) behavior, which
the considered system will never engage in, as also refuse behavior the
considered system is capable of.



Continuous Engineering of Embedded Systems 7

The enhanced observation tables are adequate as a means for change
management at the requirement level: they indicate how to cover new or
changing requirements without violating the primary model structure.
The basic intuition behind our approach is the following technique for
completing and changing requirement specifications.

4.1 COMPLETING REQUIREMENT
SPECIFICATIONS

Requirement specifications in terms of individual traces are by their na-
ture very partial and represent only the most prominent situations. This
partiality is one of the major problems in requirement engineering: it
often causes errors in the system design that are difficult to fix. Thus
techniques for systematically completing such partial requirement spec-
ifications are of major practical importance.

We propose a method for requirements completion based on automatic
(active) automata learning that in essence

initializes the learning algorithm with the set of traces constituting
the requirement specifications, and

constructs a consistent behavioral model by establishing the local
consistency introduced in the previous section.

This way, we build a finite state behavioral model which extrapolates
the given requirement specification: it comprises all ’positive’ traces of
the specification, and rejects all forbidden traces. All the other potential
traces are consider as ’don’t cares’, in order to construct a corresponding
state minimal HA. In particular, although the learning procedure by its
nature will only investigate finitely many traces, the constructed HA will
typically accept infinitely many traces, since the extrapolation process
introduces loops.

For this method to work, a number of membership queries need to be
answered. Both, establishing closure of the model, as well as establishing
the consistency of the abstraction of reaching words into states (i.e.,
of the characterization from above introduced in the previous section)
can only be achieved on the basis of additional information about the
intended/unknown system. This is not unexpected, rather even desired
(at least to some extent): the posed membership queries directly hint at
the places where the given requirement specification is partial. On the
other hand, it is not practical: the number of such membership queries
is the major bottleneck of active learning, even when its generation is
fully automated. The execution of membership queries is interactive,
and the effort unacceptable.



8 Bernhard Steffen and Tiziana Margaria

We observed that the number of membership queries can be drasti-
cally reduced on the basis of orthogonally given expert knowledge about
the intended/unknown system. We could show that already the follow-
ing three very general structural criteria, prefix closure, independence of
actions and symmetry, were sufficient to reduce the number of member-
ship queries by several orders of magnitude [5; 12].

This idea, originally designed for the optimization of the treatment of
’use case’-based requirement completion, allows us to also capture the
other two dimensions of requirement specification:

Temporal properties:. global constraints that capture safety and
liveness properties of the system. Besides typical example runs, applica-
tion experts are also able to formulate many necessary safety conditions,
be it on the basis of required protocols, or the exclusion of catastrophic
states. Adding these safety requirements in terms of temporal logics
to our specification can automatically answer a huge number of mem-
bership and equivalence queries, via model checking. This way, these
properties are automatically taken care of during model construction.

Structure requirements:. concern the shape of the overall sys-
tem. The nature of the system to be learned often leads to structural
constraints, like symmetry between technical components, or determi-
nacy of individual behaviors. These constraints can be automatically
taken care of by corresponding operations on automata, which add this
structure to the observed behavioral skeleton.

4.2 CHANGING REQUIREMENT
SPECIFICATIONS

So far our learning scenario was monotonic: observations made once are
guaranteed to remain valid. Thus it might only happen that

new observations revive the learning process, and/or

assumed temporal of structural properties turn out to be false

forcing us to revise the hypothesis model. In both cases we can incre-
mentally deal with membership queries – the major bottleneck – and in
fact the classical observation table supports this incremental treatment.

In contrast to requirement completion, requirement update is non-
monotonic, and may have a destructive effect on the observations made.
It may force us to discharge some results of previously answered member-
ship queries. There are two extreme approaches (and of course numerous
compromises) to do so:



Continuous Engineering of Embedded Systems 9

start the learning procedure from scratch, which is of course not
incremental, but inherits all the nice properties of automata learn-
ing, like ’the HA is a state-minimal representative of all automata
consistent with the made observations’.

continue the learning process as if it were monotonic, only question
previous query results in case there is a conflict, and in case of
conflict give the new observation precedence.

This approach is incremental, but unfortunately conflict resolution
is not as easy as it might seem: a new trace may well be in conflict
to quite a number of traces. Perhaps even worse, an old (no longer
valid) observation may not be conflicting with the new observa-
tion but make the hypothesis model ’explode’. We are currently
investigating various strategies to overcome these problems.

On the other hand, if we maintain knowledge about which queries were
answered by model checking or the assumption of structural properties
(our enhancement of the observation table), one can rather comfortably
deal with the change of these kinds of requirements.

5. CONCLUSIONS AND PERSPECTIVES

We have presented an approach to support the systematic completion
and update of user/customer requirements along a system’s life cycle.
This method, mainly based on automata learning, elegantly comple-
ments our behavioral model construction for legacy systems, and pro-
vides a powerful support for the late phases of the systems’ life cycles.

Currently, we are investigating how to efficiently deal with non-mono-
tonic updates. Due to the three dimensional structure of the considered
space of requirement specification, we do not expect a unique answer.
In fact, we believe that, in practice, one will very much depend on ad-
ditional information about which kind of changes have been made, in
order to derive an efficient strategy for learning-based model update.

REFERENCES

[1] D. Angluin. Learning regular sets from queries and counterexamples. Informa-
tion and Computation, 2(75):87–106, 1987.

[2] A.L. Lamprecht, T. Margaria, B.Steffen: Data-Flow Analysis as Model Check-
ing within the jABC, Proc. CC’06, 15th Int. Conf. on Com-piler Construction,
Vienna (A), March 2006, LNCS, 3923, Springer Verlag, pp. 101-104.

[3] E. Lee, S. Neuendorffer, M. Wirthlin. Actor-oriented design of embedded hard-
ware and software systems Journal of circuits, systems, and computers. 2002.

[4] M. Hörmann, T. Margaria, T. Mender, R. Nagel, M. Schuster, B. Steffen, H.
Trinh: The Jabc Approach To Collaborative Development of Embedded Applica-



10 Bernhard Steffen and Tiziana Margaria

tions, CCE’06, Worksh. on Challenges In Collaborative Engineering (Industry
day), Prag, April 2006.

[5] H. Hungar, T. Margaria, B. Steffen: Test-Based Model Generation for Legacy
Systems, Proc. IEEE ITC’03, Charlotte, 2003, IEEE CS Press, pp.971–980.

[6] jABC Webseite: www.jabc.de

[7] S. Jörges, T. Margaria, B. Steffen: FormulaBuilder: A Tool for Graph-based
Modelling and Generation of Formulae, Proc. ICSE 2006, 28th ACM-IEEE Int.
Conf. on software Engineering, Shanghai (CHN), May 2006, to appear.

[8] M. Karusseit, T. Margaria: Feature-based Modelling of a Complex, Online-Re-
configurable Decision Support Service, WWV’05, 1st Int. Worksh. Automated
Specification and Verification of Web Sites, Valencia, March 2005, ENTCS 1132.

[9] C. Kubczak, R. Nagel, T. Margaria, B. Steffen: The jABC Approach to Media-
tion and Choreography, Semantic Web Services Challenge 2006, Phase I Work-
shop, DERI, Stanford University, Palo Alto, March 2006.

[10] T. Margaria, C. Kubczak, M. Njoku, B. Steffen: Model-based Design of Dis-
tributed Collaborative Bioinformatics Processes in the jABC, IEEE ICECCS
2006, Stanford, Aug. 2006, to appear.

[11] T. Margaria, R. Nagel, B. Steffen: Remote Integration and Coordination of Ver-
ification Tools in JETI, Proc. IEEE ECBS 2005, April 2005, Greenbelt (USA),
IEEE CS Press, pp. 431–436.

[12] T. Margaria, H. Raffelt, B. Steffen: Knowledge-based relevance filtering for ef-
ficient system-level test-based model generation, Innov. in System and Software
Engineering - a NASA Journal, Vol. 1(2), pp.147-156, Springer Verl., Sept. 2005.

[13] T. Margaria, B. Steffen: Lightweight Coarse-grained Coordination: A Scalable
System-Level Approach, STTT, Int. Journal on Software Tools for Technology
Transfer, Special section on Formal Methods for Industrial Critical Systems,
Vol.5, N.2-3, 2004, Springer Verlag, pp.107-123.

[14] T. Margaria, B. Steffen: Aggressive Model-Driven Development: Synthesizing
Systems from Models viewed as Constraints, Workshop on Software Engineering
for Embedded Systems: From Requirements to Implementation, The Monterey
Workshop Series, Chicago, September 2003.

[15] T. Margaria, B. Steffen, M. Reitenspieß: Service-Oriented Design: The Roots, IC-
SOC 2005: 3rd ACM SIGSOFT/SIGWEB Int. Conf. on Service-Oriented Com-
puting, Amsterdam, Dec. 2005, LNCS 3826, pp. 450-464, Springer V..

[16] H. Raffelt, B. Steffen, T. Berg: LearnLib: A Library for Automata Learning and
Experimentation, Proc. FMICS 2005, 10th ACM Workshop on Formal Methods
for Industrial Critical Systems, Lisbon, Sept. 2005, ACM Press, pp.62–71.

[17] Rational Unified Process. http://www-306.ibm.com/software/awdtools/rup/

[18] B. Steffen and H. Hungar, Behavior-based model construction. In S. Mukhopad-
hyay and L. Zuck, editors, Proc. 4th Int. Conf. on Verification, Model Checking
and Abstract Interpretation, LNCS 2575, Springer 2003, pp.5–19.

[19] C. Topnik, E. Wilhelm, T. Margaria, B. Steffen: jMosel: A Stand-Alone Tool
and jABC Plugin for M2L(Str), Proc. SPIN’06, 13th Int. SPIN Works. on Model
Checking of Software, Vienna, April 2006, LNCS 3925, Springer V., pp.293-298.


