MULTI-OBJECTIVE DESIGN SPACE EXPLORATION
OF EMBEDDED SYSTEM PLATFORMS

Jan Madsen, Thomas K. Stidsen, Peter Kjeaerulf, Shankar Mahadevan
Informatics and Mathematical Modelling
Technical University of Denmark

{jan,tks,sm}@imm.dtu.dk

Abstract In this paper we present a multi-objective genetic algorithm to solve théqmob
of mapping a set of task graphs onto a heterogeneous multiprocéagorrp.
The objective is to meet all real-time deadlines subject to minimizing systsim co
and power consumption, while staying within bounds on local memory aims
interface buffer sizes. Our approach allows for mapping onto a fijatfopm
or onto a flexible platform where architectural changes are exploredgithe
mapping.

We demonstrate our approach through an exploration of a smart phbaee
five task graphs with a total of 530 tasks after hyper period extensionapped
onto a multiprocessor platform. The results show four non-inferiortieois
which tradeoffs the various objectives.

1. INTRODUCTION

Modern embedded systems are implemented as heterogenelipsaoes-
sor systems often realized as a single chip solution, Systei@hip (SoC).
Given the high development cost and often short time-toketademands,
these systems are developed as domain specific platform$ wait be re-
configured to fit a particular application or set of applicasioifhey are typ-
ically designed under rigorous resource constrains, sacépaed, size and
power consumption. Determining the right platform and edfitly mapping
a set of applications onto it, requires hardware/softwasitpning, hard-
ware/software interface, processor selection and contation planing.

In this paper, we address the following problem:

Given a set of applications with individual periods and deadlines, apteadge-
nous multiprocessor architecture on which to execute the applicationsnitete
amappingof all tasks on processors and all communications on communication
links, such that all deadlines are met subject to power consumptionprgem
size, buffer sizes of network adapters and overall component cost.

By mapping we mean the allocation of tasks in space and timethie deter-
mination of which tasks to execute on a given processor dsawd¢he detailed

2 Jan Madsen, Thomas K. Stidsen, Peter Kjeerulf and Shankaatéatan

time schedule of each task, and likewise for the commuminaton commu-
nication links.
We address two different variations of the problem;

1 Fixedplatforms, i.e. no changes of type or number of processaramo
interconnection topology. Hence, the focus is on mappiegatbplica-
tions onto the platform. This variation corresponds to theecahere
we want tore-usean existing platform, which is often the case when
moving from one generation to the next of a product family.

2 Flexible platforms, i.e. the types and/or number of processors may be
changed and the interconnection topology may be changeddiggor
removing buses and bus bridges. This variation corresparitietcase
where we may change the platform to better fit the requirenaritse
application.

To demonstrate the capabilities of our approach, we willengthe design
of a smart phone, i.e., a heterogeneous multiprocessdomptatunning five
applications with a total of 114 tasks: MP3, JPEG Encoder, JPEGd2eco
GSM Encoder and GSM Decoder. We will demonstrate how our apprcec
lead to improved solutions for both variations of the opsation problem and
in particular for the co-exploration of the architecturkeséon and application
mapping.

The rest of the paper is organized as follows; Section 2 dissusdated
work. Section 3 presents the application and architectudetsoln Section 4
and 5 we present details of our exploration framework. Sedipresent the
design space exploration case study of a smart phone. Einalgresent the
conclusions in Section 7.

2. RELATED WORK

Static scheduling algorithms for mapping task graphs onttiipnocessor
platforms have been studied extensively. A good survey gbua heuristic
scheduling methods can be found in [5].

Recently, Genetic Algorithms (GA) have been applied to iptdtessor
co-synthesis problems due to their property to escape tqutaha [3, 6-8].
In [6], the goal of the GA-based scheduler is to minimize ctatipn time of
all tasks. Although some processor characteristics amntako account, the
approach only addresses homogeneous platforms. In [7]djeetives are to
minimize the number of processors required and the totdlrtass of tasks
for real-time task scheduling. In MOCAG [3] the objectives axtended to
also include power consumption beside system price (cast}ask comple-
tion time. The approach showed very good results in partidaldarge sys-
tems. The approach described in [2] minimizes schedule hefigt the sum
of computation, communication and processor wait timeshixed-machine
distributed heterogeneous computing platforms execufin 200 tasks. The
approach uses a fast heuristic with the GA optimizatiorgbye reducing the
exploration time as compared to traditional GA. The apprgaekented in [8]

4 Jan Madsen, Thomas K. Stidsen, Peter Kjeerulf and Shankaatéatan

3.2 ARCHITECTURE MODEL

We consider a heterogeneous multiprocessor architectioe modelled as
an architecture graptv 4 = (V4, E4). The vertices represent three differ-
ent types of component$y = Vpp U Vy, U Vp, whereVpg = {PE, : 1
< ¢ < m} is the set of processing elemen3is), Vy, = {l, : 1 <wv <[} is
the set of buses which makes up the interconnection neteokyz = {by, :

1 < k < r} is the set of bus bridges. Processing elements can be any-of ded
icated hardware acceleratorBE 15;¢), reconfigurable devicesPErpaga),

or general purpose processof3Hpp). EachPE is characterized by a tu-
ple (f;, m;), wheref; is the operating frequency of the processor andis

the maximum size of the local memory of the processor. Figbrshbws a
example of an architecture graph.

The mapping of the individual tasks, determines if a task wdlimple-
mented as hardware logic, ASIC and/or FPGA, or as software mgnom a
GPP. Consequently, by choosing a different processor, theuéon charac-
teristics of the task may be changed, which in turn will affbe scheduling
of the succeeding tasks; and eventually the completiondiitiee application.

The interconnections are formed by a (possible hierarchiwatwork of
buses connected through bridges. The communication betiveenasks
mapped to the samBFE is done via accessing shared memory, i.e. we as-
sume that each processing element has local memory, anccgssatime is
negligible. The communication delay between two tasks mappeliffer-
ent PE’s is the property of the size of the message, the sizes ohteeface
buffers, and the bandwidth of the bus.

Processing elements are connected to buses through netdapkess. A
network adapter may include buffers, allowing for commatian to take
place concurrently with computation.

4. DESIGN SPACE EXPLORATION

To solve the presented multi-objective optimization peoi) we have used
the PISA framework [1] to create a multi-objective Genetic <hm (GA).
We take as input the set of application task graphs and antectire graph
as described in Section 3. The GA is responsible for desigantistions,
i.e. the selection oV4, and the assignment of the set of tagksonto the set
of processing elementispr; € V4. The selection process can be skipped if
the user is only interested in a mapping ontfixad platform, otherwise the
platform will be regarded as flexible.

A GA is an iterative and stochastic process that operatessmt af indi-
viduals (the population). Each individual represents amgaksolution to the
problem being solved, and is obtained by decoding the geradnttee indi-
vidual. Initially, the population is randomly generated @ur case based on
the input graphs). Each individual in the population is assiba fithess value
which is a measure of its goodness with respect to the probleing con-
sidered. This value is the quantitative information usedHhwydlgorithm to
guide the search for a feasible solution. The basic gengjaritthm consists

6 Jan Madsen, Thomas K. Stidsen, Peter Kjeerulf and Shankaatéatan

the PE array. Hence, if the type of F is changed for an entry, all tasks
referring to this index, will have their executidgE changed.

4.2 GENETIC OPERATORS

Initially, a set of individuals are instantiated with un&jarchitecture and
application mapping in order to form a population. Duringlegeneration we
can apply one or more of the following five types of geneticrape's,

s ChangePF: Randomly select an existingE and change it’s type, and
randomly select a bus and change its type.

= AddPE: Add a newPE to a randomly selected bus, and asjiéé%}
tasks randomly selected from the otlieF's.

s RemovePE. Remove aPFE from a randomly selected bus, and dis-
tribute its tasks among the remainiff’s.

m Crossover Crossover orPE types and tasks mapped R¥. This op-
erator copies the mapping aitfz-type from one individual to & F in
another individual.

= Randomly Re-assign Tasklove [1;4] randomly selected tasks from a
PFE to another randomly chosdhk.

m Heuristically Re-assign Taskdentify the task graphs which have tasks
missing their deadlines, and select a task from these ane mdov a
PFE with no deadline violation.

The first four of the genetic operators enables the GA to find alogiso in
the problem space. The fifth mutation operator adds a moreddcesarch re-
garding deadlines and workload balancing. Neither of tlogsgators change
the cardinality ofi’;,, however the GA has full flexibility to reorganize the ex-
isting interconnect topology. After applying these opersito individuals, the
outcome needs to be evaluated. This is done by a scheduliogthig which
is responsible for determining the start- and the end-tiofieélse computation
and communication activities. The scheduling algorithm &l presented in
the next section.

5. SCHEDULING

The scheduling task is NP-hard, and it has to be performed fur ieali-
vidual constructed by the GA algorithm. Hence, a fast sclieglumethod is
central for good performance. For a survey of different daifieg algorithms
see [5]. We have chosen to use a static list scheduling #hgorhich requires
a priority for each task. We use a mix of the so called t-leseald b-levels: The
t-level of a task is the earliest start time of that task whsrihe b-level is the
latest start time if time limits are to be satisfied. We use edircombination
of the two measures to produce a task priority-list.

During scheduling tasks are selected from the start of tiigyrlist but
with two important sub conditions

Multi-Objective Design Space Exploration of Embeddededy$tlatforms 7

1 For a task to be selected for scheduling, all of its pregetisks have
to have been scheduled already.

2 Tasks with smallest 'earliest start time’ is scheduledbebther tasks.

5.1 SCHEDULING ALGORITHM

In Figure 3 we outline the pseudo code for the list scheduliggrahm.
The list scheduling algorithm initially calculates the t-damlevels to initial-
ize the Priority_List (1). Then the listNum_Unschedueld_Predecessors
is initialized (2). Then the current task to schedy)és set to the task with the
highest priority which also satisfies sub-condition 1) ang3}) In the main
loop, first the earliest possible starting time for the tadkimd (5). Therr is
scheduled to start at this time (6). Afterwards thiem_Unschedueld_Pre-
decessors is updated (7). Then the task with the highest priority syitisf
sub-condition 1) and 2) is selected as the next tgsto schedule (8). Fi-
nally the Earliest Communication TIm@CT) for all predecessors tq, are
found, in order to find earliest ready communication resaifoe mapping
and scheduling (9).

CalculatePriority_List.
Initialize Num_Unschedueld_Predecessors]..]
Setr, to the first task inPriority_List satisfying sub condition 1) and 2)
repeat
Find earliest starting time far,
scheduled 7,
UpdateNum_Unschedueld_Predecessors|..]
Set next ready task iRriority_List to 7,
CalculateEC'T to 7,
until All tasks scheduled

i
=4

Figure 3. Scheduling Algorithm

Example: Consider a given inter-task communicatiofr,, 7,) € Vr (Fig-
ure 4a), such that, < 7,, and (PE,, PE3) € Vpg, wherer, — PE; and
1, — PEs3. Further we assume that the network adaptét &y has no buffers,
while PE; has both input and output buffers. For the schedulable ressu
and their interconnectivity, we associatec V;, a vector of items in the topol-
ogy set i.e. direct bus (one item) or bridged bus (3 or morasjeconnecting
PE, with PEs. In this case], consists of 3 items: local buses Bft'; and
PEFEs, [andly, and the bridgeh,, between; andl,. Further, we assume the
bandwidth ofl, > ;. Let the message size to be transferredrberigure 4b
shows a snapshot of the scheduling profile during the comratioicof inter-
est. For clarity, we assume the transfers over the bridge tmdtantaneous
and hence ignored in the figure. The shaded portions, implyttieashared
resource is busy.

Multi-Objective Design Space Exploration of Embeddededy$tlatforms 9

memory constraint on a given processor. This memory viaidsamne of the
objectives optimized in the multi-objective GA algorithm.

6. CASE STUDY

In this section we explore a smart phone [8] running 5 apptica (JPEG
encoder and decoder, MP3, and GSM encoder and decoder) widi afth14
tasks.

After expanding the task graphs into a hyper period, we hawéshof 530
tasks to schedule. The GA was run for 100 generations whiatesmonds
to approximately 10 min of run time. In each generation 1@lviduals was
evaluated. Hence, 10.000 solutions were explored, ragutiifour interesting
architectures (see figure 5) on the approximated pareto. front

Table 1 lists the cost, energy consumption and memory woldbr each
of the four architectures.

[id]| cost($) [Energy (J)] Memory violation (Bytes)]

166 || 1396 22.0 1344
171 1048 29.0 0
184 || 1396 24.6 0
187 1596 22.0 612

Table 1. Characteristics of four solutions on the approximated pareto front.

The two architectures id 166 and id 184 are identical, but withifferent
mapping of tasks to processors. This gives id 166 a smalleggrensump-
tion with the cost of a memory violation. The cheapest archite is id 171,
this is however the solution with the largest energy congionpWith regard
to energy consumption id 187 is the cheapest but at the saneettie most
expensive architecture.

As there is no guarantee for optimal solutions the seledfarchitectures
will only be an approximation to the pareto front. Howevée experiment
shows how the algorithm is a powerful tool to explore the giesipace for
embedded system architectures with both one and multigsdsu

7. CONCLUSIONS

The design of a heterogenous multiprocessor system, is gudictied either
by design reuse or incremental modification of existing desidn this paper,
we have presented a multi-objective optimization algamitivhich allows to
optimize the application mapping on to an existing arclitesx; or optimize
the application mapping and architecture during develagm®ur algorithm
couples GA with list scheduler. The GA allows to instantiatdtiple designs
which are then evaluated using the scheduler. The outcomeaisoximated
pareto front of latency, cost, energy consumption and baffiel memory uti-
lization. The case study has shown, that maximum gains aievachwhen
optimizing both architecture and application simultarsdpu

