
TRANSIENT PROCESSOR/BUS FAULT TOLERANCE
FOR EMBEDDED SYSTEMS

With hybrid redundancy and data fragmentation

Alain Girault1, Hamoudi Kalla2, and Yves Sorel3
1INRIA Rhône-Alpes, 655 avenue de l’Europe, 38334 Saint-Ismier cedex, FRANCE

Alain.Girault@inrialpes.fr

2IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex France Cedex, FRANCE

Hamoudi.Kalla@irisa.fr

3INRIA Rocquencourt, B.P.105 – 78153 Le Chesnay Cedex, FRANCE

Yves.Sorel@inria.fr

Abstract We propose an approach to build fault-tolerant distributed real-time embedded
systems. From a given system description (application algorithm and architec-
ture) and a given fault hypothesis (type and number of faults to be tolerated),
we generate automatically a static fault-tolerant multiprocessor schedule of the
algorithm components on the target architecture, which minimizes the sched-
ule length, and tolerates transient faults of both processors and communication
media. Our approach is dedicated to heterogeneous architectures with multi-
ple processors linked by several shared buses. It is based on hybrid redundancy
and data fragmentation strategies, which allow fast fault detection and handling.
This scheduling problem is NP-hard and we rely on a heuristic algorithm to ob-
tain efficiently an approximate solution. Our simulation results show that our
approach generally reduces the schedule length overhead.

Keywords: real-time embedded systems, safety-critical systems, transient faults, scheduling
heuristics, hybrid redundancy, data fragmentation, heterogeneous architectures.

1. Introduction

Today, embedded real-time systems invade many sectors of human activ-
ity, such as transportation, robotics, and telecommunication. The progresses
achieved in electronics and data processing improve the performances of these
systems. As a result, the new systems are increasingly small and fast, but
also more complex and critical, and thus more sensitive to faults. Due to catas-
trophic consequences (human, ecological, and/or financial disasters) that could
result from a fault, these systems must be fault-tolerant. This is why fault-
tolerant techniques are necessary to make sure that the system continues to

2 Alain Girault, Hamoudi Kalla, and Yves Sorel

deliver a correct service in spite of faults [1]. A fault can affect either the
hardware or the software of the system. Thanks to formal validation tech-
niques, such as model-checking and theorem proving, a lot of software faults
can be prevented. Although software faults are still an important issue, we
chose to concentrate on hardware faults. More particularly, we consider pro-
cessor and bus faults. A bus is a multipoint connection characterized by a
physical medium that connects all the processors of the architecture. As we
are targeting embedded systems with limited resources (for reasons of weight,
volume, energy consumption, or price constraints), we investigate only soft-
ware redundancy solutions based on scheduling algorithms.

The paper is organized as follows. Sections 2 and 3 describe respectively re-
lated work and system models. Section 4 states the faults assumptions and our
fault-tolerance problem. Section 5 presents our approach for providing fault-
tolerance, and Section 6 details the performances of our approach. Finally,
Section 7 concludes the paper and proposes future research directions.

2. Related work

The literature about fault tolerance of distributed embedded real-time sys-
tems is very abundant. Yet, there are very few methods that manage to tol-
erate both processor and bus faults. Here, we present related work involving
scheduling heuristics to tolerate processor faults, bus faults, or both.
Processor faults. Several scheduling heuristics have been proposed to tol-
erate exclusively processor faults. They are based on active software redun-
dancy [2, 3] or passive software redundancy [4–6]. In active redundancy, mul-
tiple replicas of a task are scheduled on different processors, which are run in
parallel to tolerate a fixed number of processor faults. [2] presents an off-line
scheduling algorithm that tolerates a single processor faults in multiprocessor
systems, while [3] tolerates multiple processor faults. In passive redundancy,
also called primary/backup approach, a task is replicated into one primary and
several backup replicas, but only the primary replica is executed. If it fails, one
of the backup replicas is selected to become the new primary. For instance, [5]
presents a scheduling algorithm that tolerates one processor fault.
Bus faults. Techniques proposed to tolerate exclusively buses faults are
based on proactive or reactive schemes. In the proactive scheme [7, 8], multiple
redundant copies of a message are sent along distinct buses. In contrast, in the
reactive scheme [9], only one copy of the message, called primary, is sent; if it
fails, another copy of the message, called backup, will be transmitted.
Processor and bus faults. Few techniques have been proposed to tolerate
both processor and bus faults [10–12]. In [10], faults of buses are tolerated
using a TDMA (Time Division Multiple Access) communication protocol and
an active redundancy approach, while faults of processors are tolerated using a

Transient processor/bus fault tolerance for embedded systems 3

hardware redundancy approach. The approach proposed in [11] tolerates only
a specified set of processor and bus permanent faults. The method proposed
in [12] is only suited to one class of algorithms called fan-in algorithms. Our
approach is more general since it uses only software redundancy solutions, i.e.,
no extra hardware is required, because hardware resources in embedded sys-
tems are limited. Moreover, our approach can tolerate up to a fixed number
of arbitrary processor and bus transient faults. This is important since tran-
sient faults [13] are increasingly the majority of faults in logic circuits, due to
radiation, energetic particles, and so on.

3. System description

In this section, we present the system models (algorithm and architecture),
and define the execution characteristics of the algorithm on the architecture.
Algorithm model. The algorithm is modeled by a data-flow graph, called
algorithm graph and noted Alg . Each vertex of Alg is an operation and each
edge is a data-dependency. A data-dependency (o1 . o2) corresponds to a data
transfer from a producer operation o1 to a consumer operation o2, defining a
partial order on the execution of operations. We say that o2 is a successor of o1,
and that o1 is a predecessor of o2. An operation of Alg can be either an external
input/output operation or a computation operation. Operations with no prede-
cessor (resp. no successor) are the input interfaces (resp. output), handling the
events produced by the sensors (resp. actuators). The inputs of a computa-
tion operation must precede its outputs. Moreover, computation operations are
side-effect free, i.e., the output values depend only of the input values.

Figure 1(left) is an example of Alg , with seven operations: In1 and In2

(resp. Out1) are input (resp. output) operations, while A, B, C and D are
computation operations. The data-dependencies between operations are de-
picted by arrows. For instance the data-dependency (A.D) can correspond to
the sending of some arithmetic result computed by A and needed by D.

P3

c11Out1

In1

A

B

In2

op3m3

c31c32

C

D op1 op2m2

c22c21

m1

s1 s2

P1 P2

c12

Figure 1. Example of an algorithm graph (left) and an architecture graph (right).

Architecture model. The architecture is composed of two principal com-
ponents: a processor and a bus. A processor Pi consists of an operator opi,
a memory resource mi of type RAM (Random Access Memory), and several
communicators cij . A bus Bi consists of one communicator for each existing

4 Alain Girault, Hamoudi Kalla, and Yves Sorel

processor and one memory resource si of type SAM (Sequential Access Mem-
ory). Each operator executes sequentially a set of operations of Alg , and reads
and writes data from and into its local memory. Each communicator of each
processor cooperates with each other in order to execute sequentially transfers
of data stored in the memory between processors through a SAM.

The architecture is modeled by a non-directed graph, called architecture
graph and noted Arc. Vertices of Arc are: operators, communicators, and
memory resources. Edges of Arc are connections between these components.
Figure 1(right) gives an example of Arc, with three processors P1, P2, and
P3, and two buses B1={s1, c11, c21, c31} and B2={s2, c12, c22, c32}, where
each processor Pi is made of one operator opi, one local memory mi, and two
communicators ci1 and ci2.
Execution characteristics. We target systems based on a cyclic execution
model; this means that a fixed schedule of the operations of Alg is executed
cyclically on Arc at a fixed rate. This schedule must satisfy one real-time
constraint Rtc and a set of distribution constraints Dis . In our execution
model Exe , we associate to each operator op a list of pairs 〈o, d/op〉, where d is
the worst case execution time (WCET) of the operation o on op. Also, we as-
sociate to each communicator c a list of pairs 〈dpd, d/c〉, where d is the worst
case transmission time (WCTT) of the data-dependency dpd on c. Since we
target heterogeneous architecture, WCET (resp. WCTT) for a given operation
(resp. data-dependency) can be distinct on each operator (resp. communica-
tor). Specifying the distribution constraints Dis amounts to associating the
value “∞” to some pairs of Exe: 〈o,∞/op〉 meaning that o cannot be executed
on op. Finally, since we produce static schedules, we can compute their length
and compare it to the real-time constraint Rtc.

4. Fault model and scheduling problem definition

In our fault hypothesis, we assume only hardware faults and a fault-free
software. We consider only transient processor and bus faults. Transient faults,
which persist for a “short” duration, are significantly more frequent than other
faults in systems [13]. Permanent faults are a particular case of transient faults.
We assume at most Npf processor faults and Nbf buses faults can occur in
the system, and that the architecture includes at least Npf +1 processors and
Nbf +1 buses. Our problem is therefore formally stated as:
Problem 1 Given:

a distributed heterogeneous architecture Arc composed of a set P of
processors and a set B of buses: P = {. . . , Pi, . . .}, B = {. . . , Bj , . . .}
an algorithm Alg composed of a set O of operations and a set E of
data-dependencies: O = {. . . , oi, . . . , oj , . . .}, E = {. . . , (oi . oj), . . .}
all the execution characteristics Exe of the algorithm components of Alg

on the architecture components of Arc,

Transient processor/bus fault tolerance for embedded systems 5

a real-time constraint Rtc (schedule length), and several distribution
constraints Dis ,
a number Npf < |P| of processor faults that may affect the system,
a number Nbf < |B| of bus faults that may affect the system,

find a multiprocessor static schedule of Alg on Arc, which minimizes the
schedule length, and tolerates up to Npf processor and Nbf bus faults with
respect to Rtc, Exe, and Dis .

5. The proposed approach

Our solution is based on hybrid redundancy and data fragmentation tech-
niques. In the aim to minimize communication overhead, we use active re-
dundancy to tolerate processor faults, and passive redundancy to tolerate bus
faults. The reason why to use data fragmentation is to minimize the fault de-
tection latency, i.e, the time it takes to detect a fault.
Hybrid redundancy and data fragmentation. In order to tolerate Npf

processor and Nbf bus faults, each operation is replicated in Npf +1 replicas
scheduled on Npf +1 distinct processors. The replica with the earliest ending
time is the primary replica, while the other ones are the backup replicas. The
earliest ending time is the sum of the earliest starting time (computed in ab-
sence of faults) plus the operation’s WCET. The data of each data dependency
is fragmented into Nbf +1 packets, sent by the primary replica of the data-
dependency source via Nbf +1 distinct buses to each of the Npf +1 replicas of
the data-dependency destination. For example, in the schedule of Figure 2b,
operations o1 and o2 of Figure 2a are replicated into three replicas to tolerate
two processors faults (Npf =2), and the data of the data-dependency (o1 . o2)
are fragmented into two packets to tolerate one bus fault (Nbf =1).

data

(b) Multiprocessor schedule of Alg onto Arc.(a) Alg .

tim
e

o1

data2

o3
2

data1

o1
1

o1
2

P2B1P1 B2 P3 P4

o2
1

o2
2

o3
1

o2

Figure 2. Tolerating two processors and one bus faults.

Figure 3 illustrates these principles in the general case where Npf ≥1 and
Nbf≥1. Only the primary replica of each operation oj sends all the fragmented
data “datam”, of each of its data outputs, in parallel via Nbf +1 buses to all the
replicas of all its successor operations in Alg .
Communication mechanism. Each operation receives each of its data in-
puts via Nbf +1 buses; when it has received all the packets of each data in-
put, it defragments these packets and starts its execution. In some cases, the

6 Alain Girault, Hamoudi Kalla, and Yves Sorel

replica of an operation will only receive some of its inputs once, through an
intra-processor communication; this will occur whenever one of its predeces-
sor operations has one of its replicas scheduled on the same processor.

. . .data

data

backups

primary

(b) Multiprocessor schedule of Alg onto Arc.(a) Alg .

.

. . .

data1
data2

Npf +1 Npf +1
oi

Nbf +1

P1

P2 PNpf +1 P ′
1 P ′

Npf +1

data = data1 • . . . • dataNbf +1

oioj

B2

o1
i

B1BNbf +1

o1
j

o2
j oj

Figure 3. Tolerating Npf processors and Nbf buses faults.

Transient fault recovery and handling. In Figure 3, three cases can occur:
1. All the packets datam sent by o1

j are received: in this case, each replica
of oi defragments these packets and starts its execution. Also, each replica
of oj receives a copy of these packets, which it ignores.
2. None of the packets datam sent by o1

j are received: this concerns Nbf +1
packets, and as no more than Nbf buses faults may occur in the system (by
hypothesis), this means the failure of the processor P1 executing the replica o1

j .
To deal with this failure, one backup replica among the Npf other replicas of
oj is selected to re-send all the packets datam via the same buses. Since the
fault of processor P1 can be transient, it is not marked as faulty by the other
processors. This scheme can be improved by deciding that, if a processor
remains faulty during some number of consecutive executions of the schedule
(e.g., 5), then its fault is permanent and this processor is permanently removed
from the schedule.
3. Some packets {datam, . . . , datak} sent by o1

j are not received: let data−

be this set of missing packets, and B−={Bm, . . . , Bk} be the set of the buses
that were supposed to transmit them. Since other packets have been received,
it means that P1, the processor executing o1

j is not faulty, and hence that the
buses of B− are faulty. Therefore, the same replica o1

j re-sends the packets
data− via other buses chosen among the set B \ B−. Since the fault of the
buses of B− can be transient, they are not marked as being faulty. This scheme
can be improved with a similar approach as in step 2.

In summary, this communication mechanism yields three advantages: ➀ fast
fault detection; ➁ fast distinction between processor and bus faults; and ➂ fast
fault recovery.

We have implemented these principles in a greedy list scheduling heuristic,
called FT-AAA (Fault-Tolerant Adequation Algorithm Architecture). In the
following algorithm of FT-AAA, the superscript numbers in parentheses refer
to the steps of the heuristic, e.g., O

(n)
sched:

Transient processor/bus fault tolerance for embedded systems 7

ALGORITHM FT-AAA
- Inputs = Alg , Arc, Npf , Nbf , Exe , Rtc , and Dis;

- Output = a fault-tolerant multiprocessor static schedule; INITIALIZATION
Initialize the sets of candidate operations Ocand and scheduled operations Osched:

O
(1)
cand := {operations of Alg without predecessors};

O
(1)
sched := ∅;

While O
(n)
cand 6= ∅ do SELECTION

- Select for each candidate operation ocand of O
(n)
cand a set Pbest of Npf +1 processors that

minimizes the dependable schedule pressure (Equation (1));

- Select for each candidate operation ocand of O
(n)
cand, among the processors Pbest(ocand),

the best processor Pbest that maximizes the dependable schedule pressure;

- Select, among all the pairs (ocand, Pbest), the best pair (obest, Pbest) that maximizes the
dependable schedule pressure;

DISTRIBUTION AND SCHEDULING
- Let Pbest(obest) be a best set of Npf +1 processors of obest computed at the “Selection”

step;

- For each oj , predecessor of obest, fragment the data of the data-dependency (o1
j . obest)

into Nbf +1 packets datam;

- Schedule the packets datam of each data-dependency on Nbf +1 distinct buses;

- Add Npf replicas of obest into Alg;

- Schedule each replica ok
best on the processor P k

best of Pbest(obest).
UPDATE SETS

- Update the sets of candidate and scheduled operations for the next step (n + 1):

O
(n+1)
sched := O

(n)
sched ∪ {obest};

O
(n+1)
cand := O

(n)
cand − {obest} ∪

n

onew ∈ {successors of obest} | {predecessors of onew} ⊆ O
(n+1)
sched

o

;

end While END OF THE ALGORITHM

The algorithm of FT-AAA is divided in four main steps:
Initialization step. The set of candidate operations O

(1)
cand is initialized as

the operations without predecessor. Later, an operation is said to be a candidate
if all its predecessors are already scheduled. The set of scheduled operations
O

(1)
sched

is initially empty.
Selection step. For each candidate operation ocand ∈ O

(n)
cand

, a set Pbest

of Npf +1 processors is selected among all the processors of P to schedule
Npf +1 replicas of ocand. The selection rule is based on the dependable sched-
ule pressure function, noted σ(n). It is computed, for each operation oi∈O

(n)
cand

and each processor Pj ⊂ P , as follows:

σ(n)(oi, Pj) := S
(n)
oi,Pj

+ S
(n)
oi

− R(n−1) (1)

8 Alain Girault, Hamoudi Kalla, and Yves Sorel

where S
(n)
oi,Pj

is the earliest time at which operation oi can start its execution

on processor Pj , S
(n)
oi

is the latest start time from end of oi (defined to be the
length of the longest path from the output operations to oi), and R(n−1) is the
schedule length at step (n−1). The set Pbest of each ocand∈O

(n)
cand is composed

of the Npf +1 processors that minimize σ(n). Then, among all O
(n)
cand, the most

urgent candidate obest, with a processor Pbest ∈ Pbest(obest) that maximizes
this function, is selected to be replicated and scheduled.
Distribution and scheduling step. This step involves first replicating the
best candidate obest into Npf + 1 replicas, and second scheduling each replica
ok
best of obest respectively on the processor P k

best of Pbest. Before scheduling
each of these replicas, the data of each data-dependency are fragmented into
Nbf +1 packets that are scheduled on Nbf +1 distinct buses.
Updating step. The scheduled operation obest is removed from O

(n)
cand, and

the operations of Alg which have all their predecessors in the new set of sched-
uled operations are added to this set.

6. Simulations

To evaluate FT-AAA, we have implement it in SYNDEX, a CAD tool for
optimizing and implementing real-time embedded systems (http://www.
syndex.org). Then, we have applied the FT-AAA heuristic to a set of ran-
domly generated algorithm graphs and an architecture graph composed of five
processors (|P| = 5) and four buses (|B| = 4). In our simulations, we study
the impact of Npf , Nbf , the number of operations N , and CCR (Communi-
cation to Computation Ratio) on the schedule length overhead introduced by
FT-AAA, computed by Equation (2):

overhead =
length(FT-AAA(Npf ,Nbf)) − length(AAA)

length(AAA)
(2)

where FT-AAA takes as parameter the numbers of processor and bus faults
(Npf ,Nbf), AAA is exactly FT-AAA(0, 0), and “length” is a function that
computes the schedule’s length.
Impact of Nbf and N . We have plotted in Figure 4 the average overheads
on the schedule length of 100 random algorithm graphs for each N , Npf =0,
CCR=1, and Nbf =1, 2, 3. This figure shows that the average overhead is very
low (between 6% and 18%) and increases slightly with N . This is due first
to Npf =0, i.e., operations of Alg are not replicated, and second to the use of
passive redundancy of communication. Also, for the three values of Nbf , the
heuristics FT-AAA(0,1), FT-AAA(0,2) and FT-AAA(0,3) bear almost similar
results with no significant advantage between the three variants.
Impact of Npf and N . We have plotted in Figure 5 the average overheads
on the schedule length of 100 random Alg for each N , Nbf =0, CCR=1,

Transient processor/bus fault tolerance for embedded systems 9

and Npf =1, 2. This figure shows that the average overhead when Npf =1
is 45%, while for Npf =2 it is 75%. These figures are much lower than the
expected 100% when all computations are scheduled twice, and 200% when
all computations are scheduled thrice. It also shows that the performances of
FT-AAA decrease when Npf increases. This is due to the fact that FT-AAA
uses the active redundancy of operations. However, for the two values of Npf ,
FT-AAA(Npf ,0) produces almost no significant difference between the over-
heads obtained for the different values of N .
Impact of CCR. We have plotted in Figure 6 the average overheads on
the schedule length of 100 random Alg for N=40, Npf =1, Nbf =1,2,3, and
each CCR. Thanks to the data fragmentation, this figure shows that, when the
communications are less expensive than the computations (CCR <1), the per-
formances are almost identical for Nbf =1 to 3. In contrast, when the communi-
cations are more expensive (CCR >1), the performances decrease when Nbf

increases. Also, for Nbf≤2, CCR has no significant impact on the perfor-
mances of FT-AAA; again this is due to the data fragmentation. It is not true
anymore when Nbf≥3, because the number of buses, 4, becomes limitative.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

!
!
!
!"�"�"�"
"�"�"�"
#�#�#
#�#�#

$
$
$
$
%
%
%
%

0.0 .

20 40 60 80 100

0

0.04

0.08

0.12

0.16

0.20

0.24

0.28

20 40 60 80 100

0

0.04

0.08

0.12

0.16

0.20

0.24

0.28

N

A
ve

ra
ge

 o
ve

rh
ea

ds

Npf =0 & Nbf =3
Npf =0 & Nbf =2
Npf =0 & Nbf =1

Figure 4. Impact of Nbf and N

&'&
&'&
&'&
&'&
&'&
&'&
&'&
&'&
&'&
&'&
&'&

('(
('(
('(
('(
('(
('(
('(
('(
('(
('(
('(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

-'-
-'-
-'-
-'-
-'-
-'-
-'-
-'-
-'-
-'-
-'-
-'-

.
.
.
.
.
.
.
.
.
.
.
.

/'/
/'/
/'/
/'/
/'/
/'/
/'/
/'/
/'/
/'/
/'/

0'0
0'0
0'0
0'0
0'0
0'0
0'0
0'0
0'0
0'0
0'0

1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1
1'1

2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2
2'2

3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3
3'3

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

5'5
5'5
5'5
5'5
5'5
5'5
5'5
5'5
5'5
5'5
5'5

6
6
6
6
6
6
6
6
6
6
6

7'7
7'7
7'7
7'7
7'7
7'7
7'7
7'7
7'7

8
8
8
8
8
8
8
8
8

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

;';<'<
='=>'>

0

1

.

20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

ve
ra

ge
 o

ve
rh

ea
ds

N

Npf =2 & Nbf =0
Npf =1 & Nbf =0

Figure 5. Impact of Npf and N

? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?

@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @

A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A
A'A

B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B
B'B

C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C
C'C

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E
E E E

F F
F F
F F
F F
F F
F F
F F
F F
F F
F F
F F
F F
F F
F F
F F

G
G
G
G
G
G
G
G
G
G
G
G
G
G

H
H
H
H
H
H
H
H
H
H
H
H
H
H

I
I
I
I
I
I
I
I
I
I
I
I
I
I

J
J
J
J
J
J
J
J
J
J
J
J
J
J

K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K

L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L

M
M
M
M
M
M
M
M
M
M
M

N
N
N
N
N
N
N
N
N
N
N

O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O

P'P
P'P
P'P
P'P
P'P
P'P
P'P
P'P
P'P
P'P
P'P

Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q

R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R

S'S
S'S
S'S
S'S
S'S
S'S
S'S
S'S
S'S
S'S
S'S
S'S
S'S

T
T
T
T
T
T
T
T
T
T
T
T
T

U'U
U'U
U'U
U'U
U'U
U'U
U'U
U'U
U'U
U'U
U'U

V
V
V
V
V
V
V
V
V
V
V

W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W
W W W

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y
Y'Y

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

['[
['[
['[
['[
['[
['[
['[
['[
['[
['[
['[
['[
['[

\'\
\'\
\'\
\'\
\'\
\'\
\'\
\'\
\'\
\'\
\'\
\'\
\'\

]']']^'^'^
_ _ _ _` ` `

a'ab'b

1 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50.1 0.5

A
ve

ra
ge

 o
ve

rh
ea

ds

CCR

Npf =1 & Nbf =1
Npf =1 & Nbf =2
Npf =1 & Nbf =3

Figure 6. Impact of CCR

7. Conclusion

We have proposed in this paper a solution to tolerate transient faults of
both processors and communication media in distributed heterogeneous ar-
chitectures with multiple-bus topology. Our solution, based on hybrid redun-
dancy and data-fragmentation strategies, is a list scheduling heuristic, called

10 Alain Girault, Hamoudi Kalla, and Yves Sorel

FT-AAA. It generates automatically a multiprocessor static schedule of a given
algorithm on a given architecture, which minimizes the schedule length, and
tolerates up to Npf processors and up to Nbf buses faults, with respect to
real-time and distribution constraints. The communication mechanism, based
on data-fragmentation, allows the fast distinction between processor and bus
faults, the fast detection of faults, and the fast handling of faults. Simulations
show that our approach can generally reduce the schedule length overhead.
Currently, we are working on an improved solution to take sensors/actuators
faults into account.

References
[1] P. Jalote. Fault-Tolerance in Distributed Systems. Prentice Hall, Englewood Cliffs, New

Jersey, 1994.
[2] K. Hashimoto, T. Tsuchiya, and T. Kikuno. Effective scheduling of duplicated tasks for

fault-tolerance in multiprocessor systems. IEICE Trans. on Information and Systems,
E85-D(3):525–534, March 2002.

[3] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An algorithm for automatically ob-
taining distributed and fault-tolerant static schedules. In International Conference on De-
pendable Systems and Networks, DSN’03, San-Francisco, USA, June 2003. IEEE.

[4] K. Ahn, J. Kim, and S. Hong. Fault-tolerant real-time scheduling using passive repli-
cas. In Pacific Rim International Symposium on Fault-Tolerant Systems, Taipei, Taiwan,
December 1997.

[5] X. Qin, H. Jiang, and D. R. Swanson. An efficient fault-tolerant scheduling algorithm for
real-time tasks with precedence constraints in heterogeneous systems. In International
Conference on Parallel Processing, pages 360–386, Vancouver, Canada, August 2002.

[6] Y. Oh and S. H. Son. Scheduling real-time tasks for dependability. Journal of Operational
Research Society, 48(6):629–639, June 1997.

[7] N. Kandasamy, J.P. Hayes, and B.T. Murray. Dependable communication synthesis for
distributed embedded systems. In International Conference on Computer Safety, Reliabil-
ity and Security, SAFECOMP’03, Edinburgh, UK, September 2003.

[8] S. Dulman, T. Nieberg, J. Wu, and P. Havinga. Trade-off between traffic overhead and
reliability in multipath routing for wireless sensor networks. In Wireless Communications
and Networking Conference, 2003.

[9] B. Kao, H. Garcia-Molina, and D. Barbara. Aggressive transmissions of short messages
over redundant paths. IEEE Trans. on Parallel and Distributed Systems, 5(1):102–109,
January 1994.

[10] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, October 2003.

[11] C. Dima, A. Girault, and Y. Sorel. Static fault-tolerant scheduling with “pseudo-
topological” orders. In Joint Conference FORMATS-FTRTFT’04, volume 3253 of LNCS,
Grenoble, France, September 2004. Springer-Verlag.

[12] R. Vaidyanathan and S. Nadella. Fault-tolerant multiple bus networks for fan-in algo-
rithms. In International Parallel Processing Symposium, pages 674–681, April 1996.

[13] M. Pizza, L. Strigini, A. Bondavalli, and F. Di Giandomenico. Optimal discrimination
between transient and permanent faults. In 3rd IEEE High Assurance System Engineering
Symposium, pages 214–223, Bethesda, MD, USA, 1998.

