A LOGIC FOR AUDITING ACCOUNTABILITY
IN DECENTRALIZED SYSTEMS*

R. Corin!, S. Etalle’'2, J. den Hartog!, G. Lenzini' and I. Staicu®
1 Department of Computer Science, University of Twente, The Netherlands
2 CWI, Center for Mathematics and Computer Science, Amsterdam, The Netherlands

{corin,sietalle,hartogji,Ienzinig.staicu}@cs. utwente.nl

Abstract We propose a language that allows agents to distribute data with usage
policies in a decentralized architecture. In our framework, the com-
pliance with usage policies is not enforced. However, agents may be
audited by an authority at an arbitrary moment in time. We design
a logic that allows audited agents to prove their actions, and to prove
their authorization to posses particular data. Accountability is defined
in several flavors, including agent accountability and date accountabil-
ity. Finally, we show the soundness of the logic.

1. Introduction

Consider the following scenario: Alice gives marketing company Big-
Brother some personal information (e.g., her spending patterns, music
preferences or part of her medical record), in exchange for some bonus
miles. In addition, Alice allows BigBrother to sell to a third party a piece
of this information, but only if anonimized and under provision that she
will receive 10 percent of the revenues. The problem here is, how can we
make sure that the data is being used only according to Alice’s wishes.
Notice that in the above scenario BigBrother might sell Alice’s data to
BigSister, who in turn might sell part of it to SmallNephew, and so on.

This problem is not only that of privacy protection in a distributed
setting. In fact, modern scenarios of digital asset delivery (where a
digital asset can be anything ranging from a piece of private information
to a movie or a character in a multiplayer game) are departing from
the usual schemas in which the assets are equipped with an immutable

*This work is partly funded by the EU under project nr. IST-1-507394-1F, by 10P GenCom
under project nr. IGC03001 and by Telematica Institute under project nr. 10190

188 Formal Aspects of Security and Trust

usage policy that applies to the whole distribution chain. Instead, we
are moving towards a situation in which information brokers collect,
combine and redistribute digital assets. The question that needs to be
answered here is how can we describe and enforce usage policies in such
a decentralized dynamic, evolving context.

In this paper we present a logic data access and agent accountability
in a setting in which data can be created, distributed and re-distributed.
Using this logic, the owner of the data attaches a usage policy to the
data, which contains a logical specification of what actions are allowed
with the data, and under which conditions. This logic allows for different
kind of accountability and it is shown to be sound.

Part of problem we are tackling is that of enforcing that agents actu-
ally follow the behavior that policies dictate; in general, this is a difficult
task, typically requiring continuous monitoring of agents, which is usu-
ally infeasible. Therefore, we consider an alternative to policy enforce-
ment, based on an analogy with the real world, where people are not
always controlled for correct behavior. Instead, eventually an agent (say
Alice) might be suspected of incorrect behavior; in that case, an author-
ity would query Alice for a justification of her actions. This justification
can be supported by evidence, that the authority can check.

2. System, Syntax and running example

Our system consists of a group of communicating agents which create
and share data and an authorization authority which may audit agents.
The creation of data, as well as the communication between agents, is
assumed to leave some evidence and hence is observable from the per-
spective of the authorization authority (this is discussed in more detail
in section 4). As we do not continuously monitor agents, the internal
computations of agents are not considered to be observable. However,
when auditing an agent, the data and policies currently stored by an
agent become visible to the authorization authority. Thus, the model of
an agent consists of storage, (unobservable) internal computation and
(observable) actions such as communication.

ExAMPLE 1 As a running example we consider a scenario with three
agents, a content provider Alice (a), a reviewer/distributer Bob (b) and
a user Charlie (c). In this setting Alice creates content data (d) and
sends 1t to Bob for review with permission for Bob to read the data but
not to retransmit it, in effect protecting the data with a non-disclosure
agreement (NDA). After some time Alice lifts the NDA by giving Bob
permission to resend the data to Charlie. Bob sends the data to Charlie
with permission to read it. Charlie does not produce any observable
actions but the policy allowing him to read the data is in his storage
after Bob sends 1it.

A Logic for Auditing Accountability in Decendralized Systems

The following subsections introduce the logical language used to express
policies and describe the system in more detail.

2.1 The syntax

For the formal model we will use a set of agents G ranged over by a,b
and ¢ and a set of data objects D ranged over by d. As the order of
actions can be relevant we also introduce a notion of (global discrete)
time described by using a well-founded totally ordered set 7', ranged
over by t (in examples we will use the natural numbers for 7).

The policy formulae, expressing data usage policies, further require
a set of predicates C, ranged over by p, which express basic operations
that can be performed on data. For example, read(a, d) and print(a, d)
respectively indicate that user a may read and print data d. For read-
ability we will restrict our definitions to binary predicates taking a single
agent and a single data object.

DEFINITION 2 The set of policy formulae @, ranged over by ¢ and 1,
is defined by the following grammar (with a,b€ G, d € D, p€ C):

¢ == p(a,d)|aownsd|asaysptob|dNd|dVd|d— ¢

First, a policy formula can be a simple predicate p(a,d), such as
read(a,d) mentioned above. Second, we have the a owns d formula.
This formula indicates that a is the owner of data object d. As we will
see below, an owner of data can create usage policies for that data. A
third construction is a says ¢ to b which expresses the claim that agent a
is allowed to give policy ¢ to agent b. The ‘says’ contains a target agent
to which the statement is said instead of the broadcast interpretation
used for a similar construct in e.g. [7, 1]. This allows us to provide a
precise way of expressing policies to certain agents. Finally, the logic
constructions and, or and implication have their usual meaning.

The base data set of a policy formula ¢, denoted dv(¢), consists of
the data objects the policy refers to. It is defined as one would expect:

dv(a owns d) = dv(p(a,d)) := {d}
dv(a says ¢ to b) dv(9)
dv(¢ Np) = dv(oV) = dv(¢ - ¢) = dv(¢)Udv(y)
We denote a formula ¢ whose base data set is D, i.e. dv(¢) = D, as

¢[D]. If D is a singleton set, i.e. D = {d}, we simply write ¢[d]. Note
that the base data set of a formula is always non-empty.

Examprre 3 The policy which allows Bob to read the data d is expressed
as read(b,d). Allowing agent Bob to send to data on to Charlie provided
he already has permission to read it is expressed by read(b,d) — b says
read(c,d) to c.

189

190 Formal Aspects of Security and Trust

create(0, a, d) (0) comm(‘B, a = b, read(b, d) — b says(read(c, d)) to c) (3)

comm(2,b = ¢, read(c, d)) (2) NS
camn;(4, b = c,read(c,d)) (4)

Figure 1. The actions of Alice (a), Bob (b) and Charlie (¢) in our example. Solid
arrowed lines represent communications, dashed lines represent observable events.

Beside usage policies we also have the observable actions of agents.
We will use evidence formulae to describe observable actions. As men-
tioned above, communication and creation of data are the observable
actions possible in our system. For simplicity we will only consider
these two types of observable actions though extension with other types
of observable actions is possible.

DErFINITION 4 The set of evidence formulae EV, ranged over by ev, is
defined by the grammar (witht € T a,b€ G, d €D and ¢ € D):

ev = creates(t,a,d) | comm(t,a = b,)

First, we have the creates(t,a,d) evidence formula which states that
an agent a has created a piece of data d at time t. As we shall see
later, this will automatically make a the owner of d. Secondly, we have
a communication evidence formula comm(t,a = b, ¢), which states that
agent b has received a policy formula ¢ from agent a at time t. To refer
to the time of an evidence formula we define the function time: EV — T
as time(creates(t, a,d)) = time(comm(t,a = b, ¢)) :=t.

EXAMPLE 5 The formula creates(0, a, d) expresses that Alice created data
d at time 0. The formula comm(1,a = b,read(b,d)) expresses that Alice
sent the permission for Bob to read d to Bob at time 1.

2.2 The model

The observable actions executed by agents (in a run of the system) are
combined in the so called evidence set £. We will simply use evidence
formulae to describe these observable actions, i.e. £ C FV. We make
the natural restriction that only finitely many actions can be executed
at any given moment in time.

As mentioned before, agents may be audited by an authorization au-
thority, say at time T'. At this time each agent a € G has a state S,,
representing a’s storage, which contains her present data policies. Note

A Logic for Auditing Accountability in Decentralized Systems

that we do not assume that the store retains all internal actions per-
formed by the agent.

EXAMPLE 6 Let assume the actions of the agents be the one in Figure 1.
where Bob actually sends the read permission for the data to Charlie
twice: the second time this is fine but the first time violates the NDA.
This gives the following evidence set:

E = {create(0,a,d), comm(1,a = b,read(b,d)), comm(2,b = c, read(c, d)),
comm(3,a = b,read(b,d) — b says(read(c, d)) to c), comm(4,b = c,read(c,d))}

When Charlie is audited at time 5 his storage S, contains (among oth-
ers) read(c,d). This is discovered e.g by the authority examining his
storage. Apparently Charlie has done some (unobservable) internal com-
putation to arrive at the conclusion that he may read d. The question
now is, did Charlie correctly conclude that he was allowed to read d and
has anything unauthorized happened to the data. We will address this
issue in the next section.

3. Using usage policies: The proof system

This section describes the proof system used to derive the actions on
data that are allowed by the policies that a user possesses. We first
give the inference rules followed by the notion provable. Note that each
agents locally reasons about policies therefore the rules include the sub-
ject, i.e. the agent doing the reasoning. Inference rules have the format
premises/ conclusions where a premise can be either a policy formula
(in @) or an evidence formula (in EV), conclusion is a policy formula.
Moreover we subscript each rule with a subject i.e., an agent in G. The
rules of our proof system are presented in two parts. The first, includes
standard rules from the propositional logic:

/\I¢ ’LZ) a /\EL¢A/¢) a /\ER¢/\¢ a \/IL_¢‘"a
PNY ¢ (U ¢V
(] [¢'] [¥]
VIR ¢ a VE¢V¢/ wwa MPQS_‘)Q[} ¢a —I ¢ a
YpVe (] P Y-

We have the standard rules for respectively and introduction and elim-
ination, or introduction and elimination and implication introduction
and elimination (modus ponens). An overscript [¢] above 9 says that ¢
is required as temporary assumption in the proof of 1». The second part
of proof system consist of the following rules which deal with creation

191

192 Formal Aspects of Security and Trust

of policies and with the delegation of responsibility.

comm(t,a = b, d) creates(t, a, d)
o, says ¢ to b b CREATES ™ owns d
a says ¢ to b aownsdy ... aownsd,
SAY — b DERPOL
P B[{d1,-..,dn}] ¢

Note that these rules do not take time or existence of evidence into
account. This will be done in our notion of (authorization) proofs.
Rule (COMM) states that if agent b has received message ¢ from an
agent a at some time, then b may conclude the corresponding a says
¢ to b formula. Rule (CREATES) expresses that by creating a piece of
data, the agent becomes the owner of that data. Rule (SAY) expresses
delegation of responsibility. If agent a says ¢ to b then b can assume ¢
to hold. It is a’s responsibility to show that it had permission to give ¢
to b. Note that in our current setup it would also have been possible to
omit this rule and derive ¢ directly in rule (COMM). We expect, how-
ever, that with extension of our logic the separation of these two steps
will become useful. Rule (DERPOL) allows the creation of policies. An
agent a can create any usage policy for data that she owns.

3.1 Building Proofs

We are ready to introduce proofs built from our logic system. The
first definition states what is in fact a proof for some agent z.

DeriNiTION 7 A proof P of ¢ for x is a finite derivation tree such that:
(1) each rule of P has x as its subject; (2) each rule of P belongs to one
of the above rules (8) the root of P is ¢.

Given a proof P, we write prem(P) for the set of premises in the
initial rules of P which are not temporary assumptions (like in rules VE
and — I). We also write conc(P) to denote the conclusion of the last
rule of P, and subject(P) to denote the subject.

For auditing purposes, we want to restrict to proofs that only have ev-
idence formulae as premises and whose time of the evidences is bounded.
We call such proofs justification proofs.

DEFINITION 8 A proof P is called a justification proof (of ¢ for x) at
time t if every formula in prem(P) is an evidence formula ev satisfying
time(ev) < t. We denote the set of all justification proofs with J.

Note that a justification proof at time ¢ is just a proof which is poten-
tially valid at time ¢. Any evidence formula can be used as a premise.
To check whether the proof is indeed valid, a link has to be made with
the actions observed, i.e. those in the set £. This will be done in the

A Logic for Auditing Accountability in Decentralized Systems

next section. It is easy to see that justification proofs are monotonic,
i.e. any proof that is a justification at time ¢t is also a justification at
time ¢’ for any ' > t.

As an aside, our policy language is negation free and all proofs have a
‘constructive’ flavor. For extensions of the logic, it may be necessary to
go to intuitionistic or linear logic altogether. The constructive nature of
the proofs inherently means that the derivation system is not complete:
For example, read(c,d) — print(c,d) can hold simply because read(c, d)
does not. However, there is no constructive derivation for this (Also, as
soon as read permission is obtained, the predicate may no longer hold.)

ExXAMPLE 9 In our running ezample agent Charlie can provide an jus-
tification proof for read(c,d) at time 5 as follows.

comm(4,b = ¢, read(c, d))
P1 com b says read(c, d) to ¢
SKY read(c, d) i

Note that replacing the first premise by comm(0,b = ¢, read(c,d)) also
gives a justification proof for read(c,d) at time 5. This second proof
should not be accepted by the authorization authority as Bob did not
actually send anything to Charlie at time 0. The next section will treat
what agents should prove and which proofs are accepted by the authority.

4. Accountability

As noticed in the example in the previous section, agents can poten-
tially provide different justification proofs. We model an agent providing
a proof of ¢ at time ¢ as a function Pr: ® x G x T — J U {L}. Here
the value | represents that the agent cannot provide a proof.

We present two notions of accountability. The first notion, agent
accountability, focuses on whether the actions of a given agent where
authorized. The second notion, data accountability, expresses that a
given piece of data was not misused.

Recall that in our system, an agent a can be audited at time 7" at which
point S,, the storage of a, becomes visible to the authorization authority.
The observable actions performed in the system are collected in £. For
both notions of accountability, it is important to link proofs to actual
observable actions. To this end we introduce the notion of authorization
proof, which is a justification proof that is backed by actual evidence.

DeriNITION 10 We say that a justification proof P of ¢ for a at time t
is authorized, written Aut(P), when prem(P) C E. In this case we call
P an authorization proof of ¢ for a at time t.

193

194 Formal Aspects of Security and Trust

An agent is accountable for the policies she possesses and for the usage
policies she gives to others. Thus to pass the audit, the agent needs to
authorize her storage and her communication.

DEFINITION 11 (ACCOUNTABILITY OF a) We say that agent a is au-
thorized to have ¢ at time t, denoted Autgy(a,t), if she provides an au-
thorization proof, i.e. Pr(¢,a,t) # L and Aut(Px(¢,a,t)).

We write Aut(a) if a is authorized to have all usage policies in her
storage at the time T of auditing, i.e. V¢ € S, : Auty(a,T)

We write ComAut(a) if a was authorized to send all the policies that
she did send, i.e. Vcomm(t,a = b,9) € £ : Aut, saps ¢ to 5(a,).

Finally, we say that agent a passes the accountability test, written
Acc(a), if both Aut(a) and ComAut(a) hold.

EXAMPLE 12 In our running ezample Charlie can show to be authorized
for having read(c,d) by providing the proof from Example 9. Assuming
he is also authorized for other policies in his storage we have Aut(c)
and also Acc(c) as Charlie did not send any messages (so ComAut(c) is
emptily satisfied).

Bob, on the other hand, cannot pass the accountability test as he can-
not provide an authorization for b says read(c,d) — ¢ at time 2.

Checking authorization, Aut(c), is relatively easy: The agent has to
provide the proof and it is in the agents interest to show that the com-
munications used in the proof have indeed happened. Thus a setup with
undeniable communications, e.g. through use of some non-repudiation
scheme, will be sufficient. To check ComAut(c), a setup with a much
stronger authority is needed as the authority to find and check all com-
munications of the agent looking e.g. at communication logs. (Note that
the authority does not need to be able to decryption messages, the agent
can be required to do this at the time of the audit.) Missing commu-
nications may cause an unauthorized communication of the agent to go
unnoticed but will not cause the system to break down completely. Also,
the unauthorized communication may still be discovered if the agent re-
ceiving the communication is audited.

Agent accountability is useful to check the behavior of a single agent.
However, a data owner may be more interested in whether a specific
piece of data (with corresponding usage policy) was obtained correctly.
To describe this we introduce the notion of data accountability.

4.1 Data Accountability

Data accountability describes the authorization requirements for a
single data usage policy. Unlike agent accountability, this may require
authorizations from several different agents. We first introduce weak
data accountability, which describes that a given usage policy may have

A Logic for Auditing Accountability in Decentralized Systems

been obtained correctly. We will then discuss some potential issues with
this notion and introduce the notion of strong data accountability.

Weak data accountability expresses that an agent must provide a au-
thorization proof and that all delegated responsibilities must also be
accounted for, i.e. for any received policies used to derive the policy,
there is data accountability for sending of that policy at the sending
agent.

DEFINITION 13 (WEAK DATA ACCOUNTABILITY) We say that ¢ at a
passes the weak data accountability test at time t, written Dac(¢,a,t)
if a is authorized to have ¢ at time t (i.e. a provides an authoriza-
tion proof) and for all communications in the premise of the provided
authorization proof, comm(t',b = a,¢) € prem(Pr(é,a,t)), we have
Dac(b says ¢ to a,b,t’).

We write Dac(,a) for weak data accountability at the time T of the
audit, i.e. for Dac(¢,a,T).

Note that this recursive definition is unproblematic, as time must
decrease (t' < t) by definition of authorization proof and time is well
founded. Weak data accountability corresponds to either of the proofs
depicted in solid or dashed lines (but not both) derivations in Figure 2-
(C). Intuitively, after checking authorization of ¢, we ‘recurse’ to the
sending agents where data accountability is checked for the policy which
allowed sending the communication.

If data accountability does not hold, then we can deduce that, at
some point, some agent did not provide an authorization proof. Clearly
this agent does not pass the agent accountability test. The proof of the
following proposition is straightforward.

PROPOSITION 14 IfDac(¢) does not hold, then 3a € G such that Acc(a)
does not hold.

EXAMPLE 15 Weak data accountability of read(c,d) at ¢ implies that
Charlie needs to provide an authorization proof. If Charlie provides the
proof given in ezample 9 then data accountability of b says read(c,d) to ¢
for Bob at time 4 will be required. Bob can indeed provide an authoriza-
tion proof: read(b,d) — (b says (read(c,d)) to c).

comm(1,a = b, read(b, d)) comm(3,a = b,v)
Py M a says read(b,d) to b PPy M asaysptobd
SAY read(b, d) b SAY —w—_— b

MP b (1)

b says read(c, d) to ¢

Clearly Alice can provide authorization proofs for the two policies she
sent as she, being the owner of the data, may create any policy. Thus

195

196 Formal Aspects of Security and Trust

we have Dac(read(c,d),c,5). We do not have Dac(read(c,d),c,3). The
only authorization proof Charlie can provide uses the fact that Bob sent
read permission at time 2. As we have seen before, Bob cannot authorize
sending this permission at time 2.

The example above shows an issue with weak data accountability.
The result of the data accountability check depends on the authorization
proof that Charlie provides. Both the proof using Bobs read permission
at time 2 and at time 4 could be used by Charlie. If Charlie and Bob
are working together to try to hide that Bob did something wrong, the
weak data accountability test of read(c, d) for Charlie at time 5 will not
reveal that Bob violated the NDA.

To capture situations like this we introduce the notion of strong data
accountability. As the internal computations of an agent are not visible,
the authority cannot check if the provided proof is the proof an agent
actually used to arrive at a policy. Or even if the agent created a correct
proof at all before using the policy. The fact that there is no way to
check this is an unpreventable limitation due to the unobservability of
some of the agents actions. We can, however, check all correct proofs an
agent could have used to obtain a policy. This will allow us to prevent
situation as in the example above where Charlie behaves correctly but
can still hide Bobs violation of the NDA. With strong data accountability
we do not look at the authorization proof the agent provides but instead
look at all (reasonable) proofs. In this way we force checking of all
communication that may have been used to derive a policy.

A minimal proof P of ¢ is a proof of ¢ for which there are no unneces-
sary premises, i.e. there is no proof of ¢ using a strict subset of prem(P)
as premises.

DEFINITION 16 (STRONG DATA ACCOUNTABILITY) We say that ¢ ata
passes the strong data accountability test at time t, written SDac(¢, a,t)
if a is authorized to have ¢ at time t and for all minimal authorization
proofs P of ¢ for a at time t and all comm(t',b = a, 1)) in prem(P), we
have SDac (b says ¥ to a,b,t').

We write SDac(¢,a) for strong data accountability at the time T of
the audit, i.e. for SDac(¢,a,T).

Strong data accountability corresponds to following both the solid or
dashed lines in Figure 2-(C). If we assume that agents provide minimal
proofs, strong data accountability is a stronger notion that weak data ac-
countability. However, as with checking ComAut(c), a setup with a much
stronger authority that is able to monitor communication is needed.

EXAMPLE 17 We do not have strong data accountability of read(c, d) for
Charlie at time 5. Although Charlie can provide authorization, checking

A Logic for Auditing Accountability in Decendralized Systems

all possible minimal proofs will also lead to checking the communication
from Bob to Charlie at time 2 which Bob cannot authorize.

5. Semantics

Even though the meaning of our logic operators is intuitive, in this
section we shall make that more precise and define a semantic evaluation
function |= for policy formulae. Recall that the truth value of a policy
formula depends on the time, the agent doing the reasoning and the
observable actions in the system.

DEFINITION 18 (SEMANTIC EVALUATION OF POLICY ¢ € ®) The seman-

tic function =: G X P(EV) x T x & — {true, false}, denoted € =, ¢, is
defined as the least function (false < true) satisfying:

E E. ¢ when ever £ =L b says ¢ to a for somebe G

! ¢[D] when ever £ =t a owns d for all d € D

L @V ezactly when € =L ¢ and € =L o

EL ¢ A evactly when € =L ¢ or € EL 4

EL ¢ — 9 ezactly when £ =° ¢ implies £ =L 1)

! a owns d when ever creates(t';a,d) € £ for some t' <t

EL b says ¢ to a when ever (comm(t',b = a,v)) € € for somet’ <t

M M t T T M

One can construct = basically by building it starting from what fol-
lows directly from the evidence set (the last 2 rules) and then repeatedly
adding formulae using the other rules. A complication with implication
requires that this construction is done by induction on the number of
implications in a formula. We omit further details of this construc-
tion. Note that agents “do not care” about communications and data
of other agents; For instance, formula b says ¢ to ¢ will not be valid for
a other than b or ¢, unless somebody explicitly tells a about this (e.g.,
by c says (b says ¢ to ¢) to a. However, even in this case a is not able to
use ¢.)

We have that our logic is sound for this semantics.

THEOREM 19 (SOUNDNESS) If P is a authorization proof of a for ¢ at
time t, then £ =L, ¢.

Proof. By induction on the length of P. O

6. Related Work

Our discussion of related work is brief due to space constraints. A
more complete discussion may be found in the extended version of this
paper (http://www.ub.utwente.nl/webdocs/ctit/1/000000fe.pdf).

197

198 Formal Aspects of Security and Trust

/ levnl leviy]

evn

(B)
(©)
Figure 2. (A) An authorization proof of ¢ for a is a derivation tree whose leaves

are evidence formulae e.g., ev; ... evy, which are supported by (global) evidences (here
with [evi we indicate that ev € £); (B) accountability requires authorization for every
connmunication for which there is evidence that a sent it; (C) weak data accountability
of ¢ for a, requires a global proof which prove the authorization of ¢ back along all the
communication events; There can be more than one path, as illustrated here in solid
and dashed arrows. Sirong data accountability requires that all paths are accountable.

[10] was extended by Samarati and De Capitani di Vimercati [11] to
allow the transfer of object privileges when an associated copy flag was
present. By contrast, we allow subjects to transfer privileges even if
the subject does not have a right. Abadi presents in [1] a logic based
method to represent the AM model where subjects can make statements
or delegate part of their rights. This is somewhat similar to ours, differ-
ing in our formula a says ¢ to b, emphasizing the target agent. Appel
and Felten [2] propose a distributed authentication framework based
on proof-carrying proofs from a higher order logic. The agents are au-
thenticated and authorized to access other users’ resources, based on
the proofs they construct (similarly to a centralized approach). On the
other hand, our proposal is decentralized, with the data and usage poli-
cies flowing between the agents. Moreover, proofs of accountability are
only required when a specialized authority inquires a proof, and not con-
tinuously. More similar to ours is the work of DeTreville 7], introducing
the language Binder, designed to express statements in a distributed sys-
tem. In that work, statements from any context can be exported from
any other context. This implies a total network connectivity, which we
do not require. Sandhu and Samarati [12] mention the importance of
auditing and having a decentralized administration of authorizations. In
a similar vein, Blaze et al. [5] study trust-management systems. These

A Logic for Auditing Accountability in Decentralized Systems

systems support, like in our approach, delegation and policy specifica-
tions. The recent work of Chun and Bavier [6] presents an approach to
continuously monitor the trust relations over time, and the use of ac-
countability to check the behavior of users along a chain of trust. How-
ever, implementing this approach is expensive and sometimes infeasible.
On the other hand, our lightweight approach can be easily deployed,
thanks to the fact that we avoid the monitoring of agents. Our system
can be used to protect private data, in the vein of Karjoth et al. [9]
and Ashley et al. [3], which have also introduced the Enterprise Privacy
Authorization Language(EPAL) [4]. However, EPAL is more suitable
for a centralized approach, in which the users are forced to accept the
policy of the company. This applies also to the work of Gunter, May
and Stublebine [8], where agents are required to follow the privacy rights
guarding its actions.

7. Conclusions and Future Work

We have presented a logic for data access and agent accountability in
a distributed, heterogeneous setting in which data can be created, dis-
tributed and re-distributed. This framework can be used for distributing
personal data as well as valuable digital assets. In our system, the owner
of the data attaches a usage policy to the data, which contains a logical
specification of what actions are allowed with the data, and under which
conditions it can be (re-) distributed. This logic allows for different kind
of accountability. We have also demonstrated the soundness of the logic.

We are working on extensions of our system, which can be explained as
follows. Suppose Alice gives to BigBrother her personal data d together
with a policy ¢; ¢ might allow BigBrother to re-sell d to BigSister with
a policy ¢/. In our setting ¢ must incorporate ¢’ in some way. In
other words, ¢/ must be determined by Alice (the owner of the content)
in the first place. In a more realistic scenario, however, BigBrother
might legitimately want to supply a ¢’ devised by himself, and what we
should check is whether ¢’ complies with Alice’s wishes (encoded in ¢).
For instance ¢ might say that each time that BigBrother resells d to
someone, Alice should receive a dollar, so everything we should check
about ¢’ is whether ¢’ has such a provision. The crucial feature of this
extension is that of allowing non-owners to define policies on a content,
provided that these policies are in accordance to the owner’s wishes. In

199

200 Formal Aspects of Security and Trust

extend our logic with variables and quantifiers. The use of conditions
should allow us to model policies such as the chinese wall security pol-
icy. The second extension will consist in adding obligations (e.g., the
obligation to pay the creator a dollar for each used/resent/... / or to
notify the creator/owner if the data is resent/ resold/, etc.). This will
be done by extending the notion of observable action. Once conditions
and obligations are in place, we can allow non-owners to define a policy;
in the example above, the crucial condition we need to check is that ¢’ is
not more liberal than ¢; e.g., that each time that ¢’ allows for an action
under certain conditions and obligations, then (a derivative of) ¢ allows
the same action under the same conditions and obligations.

Notes

1. This work is partly funded by the EU under project nr. IST-1-507894-1P, by 10P GenCom
under project nr. IGC03001 and by Telematica Institute under project nr. 10190

2. This work is partly funded by the EU under project nr. 1ST-1-507894-1P, by IOP GenCom
under project nr. IGC03001 and by Telematica Institute under project nr. 10190

3. This work is partly funded by the EU under project nr. 1ST-1-507894-1P, by 10P GenCom
under project nr. IGC03001 and by Telematica Institute under project nr. 10190

4. This work is partly funded by the EU under project nr. 1ST-1-507894-1P, by IOP GenCom
under project nr. IGC03001 and by Telematica Institute under project nr. 10190

5. This work is partly funded by the EU under project nr. 1ST-1-507894-1P, by IOP GenCom
under project nr. IGC03001 and by Telematica Institute under project nr. 10190

6. This work is partly funded by the EU under project nr. 1ST-1-507894-1P, by IOP GenCom
under project nr. IGC03001 and by Telematica Institute under project nr. 10190

References

{11 M. Abadi. Logic in access control. 18th IEEE Symposium on Logic in Computer
Science, June 2003.

i2] A. W. Appel and E. W. Felten. Proof-carrying authentication. Proceedings
of the 6th ACM Conference on Computer and Communications Security, pages
52-62, November 1999.

{3] P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-p3p privacy policies and
privacy authorization. Proceeding of the ACM workshop on Privacy in the Elec-
tronic Society, 2002.

i4] P. Ashley, S. Hada, C. Powers, and M. Schunter. Enterprise privacy authoriza-
tion language (EPAL). Research Report 3485, IBM Research, 2003.

5] M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role of trust management
in distributed systems security. Secure Internet Programming, Security Issues
for Mobile and Distributed Objects, pages 185-210, 1999.

{6] B. N. Chun and A. C. Bavier. Decentralized trust management and account-
ability in federated systems. 37th Hawaii International Conference on System
Sciences, January 2004.

{71 J. DeTreville. Binder, a logic-based security language. IEEE Symposium on
Security and Privacy, pages 105-113, May 2002.

81 C. A. Gunter, M. J. May, and S. G. Stubblebine. A formal privacy system
and its application to location based services. In Proc. of the 4th Workshop on

A Logic for Auditing Accountability in Decentralized Systems

g

110}

1)

Privacy Enhancing Technologies (PET 2004), LNCS, Toronto, Canada, 26-28
May 2004. Springer—Verlag.

G. Karjoth, M. Schunter, and M. Waidner. Platform for enterprise privacy
practices: Privacy-enabled management of customer data. Privacy Enhancing
Technologies, 2002.

B. W. Lampson. Protection. In Proc. Fifth Princeton Symposium on Informa-
tion Sciences and Systems, pages 437-443, March 1971. Reprinted in Operating
Systems Review, 8,1, January 1974, pp. 18-24.

P. Samarati and S. De Capitani di Vimercati. Access control: policies, mod-
els, and mechanisms. Foundations of Security Analysis and Design, LNCS,
2171:137-196, 2001.

! R. S. Sandhu and P. Samarati. Authentication, access control, and intrusion

detection. The Computer Science and Engineering Handbook, pages 1929-1948,
1997.

201

