SECURITY ISSUES IN THE TUPLE-SPACE
COORDINATION MODEL

Mario Bravetti Nadia Busi Roberto Gorrieri

Roberto Lucchi Gianluigi Zavattaro
Dipartimento di Scienze dell’Informazione, Universitg degli Studi di Bologna,
Mura Anteo Zamboni 7, 1-40127 Bologna, Italy.

{bravetti busi,gorrieri,lucchi,zavattar} @cs.unibo.it

Abstract We present some security issues that emerge when the tuple-space coordination
model is used in open systems. Then we describe SecSpaces, a tuple-space
based language, which supports secure coordination in untrusted environments.
Finally, we will discuss some real examples of applications interacting via tu-
ple spaces by showing how to support some of the main security features with
SecSpaces.

1. Introduction

New networking technologies are moving to support applications for open
systems (e.g., peer-to-peer, ad-hoc networks, Web services), in which the enti-
ties that will be involved in the application are unknown at design time. Fur-
ther, the connectivity is exploding: a growing number of devices need to com-
municate with each other and the new challenge is how to design and to pro-
gram the communication among devices.

Coordination models and languages, which advocate a distinct separation
between the internal behaviour of the entities and their interaction, represent
a promising approach for the development of this class of applications. The
interaction is programmed by means of a coordination infrastructure that ab-
stracts away from the exact name/location of the components and the underly-
ing network.

One of the most prominent coordination languages is Linda [Computing
Associates, 1995] in which a shared space, containing tuples of data, is used
by agents to collaborate. Agents can insert new tuples into the space, con-
sume or read tuples from the space thus implementing the so-called generative
communication, in which tuples are independent of their producers.

2 Formal Aspects of Security and Trust

We present some security issues that emerge when Linda is used in open
systems, where any agent can access the tuple space. In this scenario, where
the presence of malicious agents may compromise the behaviour of the system,
designers have to deal with security. Unfortunately, Linda is not expressive
enough to provide security solutions, because any agent can read, remove and
reproduce any tuple available in the shared space.

We present the SecSpaces [Busi et al., 2002, Bravetti et al., 2003] coor-
dination language, based on the tuple-space coordination model introduced
by Linda, that supports security in untrusted environments by providing some
access control mechanisms on tuples with a granularity at the level of single
tuples. The proposed solution follows a data-driven approach: the access to
a tuple is subordinated to the proof of knowledge of certain data stored into
the tuple. In a few words, to access a tuple it is necessary to provide special
data, that we call control fields, that must match the ones stored inside the tu-
ple. We also describe how such control fields can be implemented and, finally,
how to define the matching rule. The proposed solution has also been devel-
oped [Lucchi and Zavattaro, 2004] in the context of Web Services technology,
which represents the emerging networking technology for programming Inter-
net applications.

In order to show how the SecSpaces mechanisms can be exploited for sup-
porting some security features (e.g., secrecy, entity authentication) we consider
real examples of applications where the interaction is programmed via tuple
spaces.

The paper is structured as follows. Section 2 describes the Linda coordina-
tion primitives and SecSpaces with particular care to the security mechanisms
obtained by decorating tuples with control fields. Section 3 describes some real
examples where the SecSpaces model is used to support some forms of secure
interaction. Finally Section 4 reports the main related works and concludes the

paper.

2. SecSpaces

The SecSpaces language is an extension of Linda supporting security. In
order to introduce SecSpaces we first present the Linda primitives. The Linda
language provides coordination primitives that allow processes to insert new
tuples into the tuple space (TS for short) or to access the tuples already stored
in the shared tuple space. More precisely, a tuple is a sequence of typed val-
ues [Computing Associates, 1995] and a TS is a multiset of tuples.

Processes can exchange tuples through introducing them into the TS. The
primitive out(e) permits to add a new occurrence of the tuple e to the TS.

The data-retrieval primitives permit processes, by specifying a template ¢,
to access tuples available in the TS that match the template. More precisely,

Security Issues in the Tuple-spaceCoordination Model 3

a template is a sequence of fields that can be either actual or formal: a field
is actual if it specifies the type and a value, while it is formal if the type only
is given. Two typed values match if they have the same value, while a typed
value matches a formal fields if it has the type specified in the latter. A tuple e
matches the template ¢ if t and e have the same arity and each field of e matches
the corresponding field of ¢.

The in(t) is the blocking input primitive: when a tuple e matching the tem-
plate t is available in the TS, an occurrence of e is removed from the TS and
the primitive returns e. The rd(t) primitive is the blocking read primitive: dif-
ferently from the in(t), when a tuple e matching the template ¢ is in the TS, it
returns e without removing it from the TS.

Linda also provides the non-blocking version of the data-retrieval primi-
tives: the inp and the rdp are the non-blocking version of the in and the rd,
respectively. If the tuple e is in the TS, their behavior is the same as for the
blocking operations, otherwise they return a special value indicating the ab-
sence of e in the TS.

Recent distributed applications such as Web services, applications for Mo-
bile Ad Hoc Networks (MANETS), Peer to Peer Applications (P2P) are inher-
ently open to processes, agents, components that are not known at design time.
When the Linda coordination model is exploited to program the coordination
inside this class of applications (see e.g. Lime [Murphy et al., 2001] in the
context of MANETSs and PeerSpaces [Busi et al., 2003] for P2P applications)
new critical aspects come into play such as the need to deal with a hostile
environment which may comprise also untrusted components.

The main issues are related with the fact that, in such a context, any entity
is allowed to perform insertion, read and removal of tuples to and from the
tuple space. In particular this means that any process can maliciously insert an
unbounded number of tuples; in such a way, since the manager of the space has
to handle any out operation, a process can generate a denial of service attack.

Another denial of service attack is due to the fact that any process can mali-
ciously read/remove any tuples from the space, thus compromising the applica-
tions interacting via tuple-space. Indeed any entity can, by using the wildcard,
generate a template that matches with any tuple having th same arity. There-
fore, for example, a template having two wildcard fields can be used to read
or remove any tuple containing two data fields. Moreover, since any entity can
read/remove/reproduce any tuple from and into the space in such a model, we
cannot authenticate neither the producer, nor the receiver of tuples. The threat
of such lacks, that SecSpaces aims to cover, will be highlighted in the follow-
ing section, but it should be rather clear that such state is to be avoided in open
systems, where the applications interact by using the same tuple space and the
availability of the tuples they produce is necessary to guarantee their correct
behavior.

4 Formal Aspects of Security and Trust

SecSpaces introduces an access control to the tuple-space coordination
model which follows the data-driven mechanism. More in detail, Linda tu-
ples are decorated with two kind of control fields: the partition key and the
asymmetric key. Each tuple contains, for each possible operation the process
can perform on the tuple (i.e. read and removal), a pair of control fields com-
posed of a partition and an asymmetric key. Control fields are evaluated in the
matching rule which is responsible for controlling the access to the tuple: the
access to a tuple is allowed only to the entities which provide control fields
matching those of the tuple associated with the operation the entity is perform-
ing. Two partition keys match if they are equal, while two asymmetric keys
match if one is the co-key of the other one.

Formally, let M ess, ranged over by m, n, . . ., be an infinite set of messages,
Partition C Mess, ranged over by ¢, ¢, . . ., be the set of partition keys and
AKey C Mess, ranged over by k, k', k¢, . . ., be the set of asymmetric keys.
We also assume that Partition (resp. AKey) contains a special default value,
say # (resp. 7), used to allow any entity to access the space. Let = : AKey —
AKey be a function such that ? = ? and if & = &’ then ¥’ = k. Informally,
such function maps asymmetric keys to the corresponding co-keys. Moreover,
as in the public-key mechanism, we assume that given an asymmetric key it is
not possible to guess its co-key. In the following, we use d to denote a finite
sequence of data fields.

The tuple structure in SecSpaces is defined as follows:

[e]ralc'lin
[K]ralk'}in

e=<d>
where d is a finite sequence of data fields whose values range over Mess,
¢,c’ € Partition and k, k' € AKey. The sequence of data fields in d repre-
sents the content of standard Linda tuples, while ¢ and k (resp. ¢’ and k') are
the control fields used when such tuple is accessed by a read (resp. removal)
operation. In the following we use the function key(e, op) (resp. akey(e, op))
as the one that given op € {rd,in} and a tuple e returns the partition key (resp.
asymmetric key) of e associated to op.
Templates are decorated with one occurrence of control fields, that will be
associated to the operation the process is performing:

e TSl

t=<dt >[kt]

where dt is a finite sequence of data fields, c¢; € Partition is the partition key

and k; € AKey is the asymmetric key associated to ¢. Differently from tuples,

data fields contained in dt can also be set to the wildcard value denoted with
null: the wildcard is used to match with all field values.

Security Issues in the Tuple-spaceCoordination Model 5

DEFINITION 1 (MATCHING RULE) Let e =< dy;da;...;d, >{Z]]:‘Z[[‘Z,]]’; be

a tuple, t =< dty;dto;...;dty, >{Zi]] be a template and op € {rd,in} be
an operation. We say that e matches t (denoted with e >op t) if the following
conditions hold:

I m=n

2 dti=d;ordt;=null,1<i<n
3 key(e,op) = ¢t

4 They(e op) = ke

Condition 1. and 2. rephrase the classical Linda matching rule, that is test if
e and t have the same arity and if each data field of e is equal to the corre-
sponding field of t or if this latter one is set to wildcard. Condition 3. tests
that the partition key of the tuple associated to the operation op is equal to that
of the template. Condition 4. checks that the asymmetric key of the template
corresponds to the co-key of the asymmetric key of the tuple associated to the
operation op.

Essentially partition keys are a special kind of data field that do not accept
wildcard in the matching evaluation. In this way, such keys logically partition
the space and the access to a partition is restricted to those processes that know
the associated key. Indeed, in order to perform an operation on the partition
containing all the tuples with a certain partition key, processes must know the
key which identifies that partition.

Differently from partition keys, the asymmetric keys make it possible to
discriminate the permission of write, read and remove of a tuple. For instance,
to read a tuple with asymmetric key k the process must provide a template
with asymmetric key set to k. It is worth noting that by using such keys the
knowledge used to produce a tuple (k) is different from the one used for re-
trieving that tuple (k). Therefore, by properly distributing these values we can
assign processes the permission to perform a subset of the possible operations
on that tuple, thus discriminating among the processes that can produce, read
or remove that tuple.

EXAMPLE 2 Some matching example follow (e ¥ t means that e does not

match with t):

<d >{Z]]: ‘;[[i,]]’; brg < null >

%]
e ralc’)in i
<d >[k]:1{k’]in Prqg < null >[P]

[eralelin o r ']
<d >[k]rd{k;']in Pin < d >[P]

6 Formal Aspects of Security and Trust

DEFINITION 3 (RETURN VALUE) The rd (resp. in) primitive with template
t terminates when a tuple e such that e >pq t (resp.e by, t) is available in the
tuple space and the return value is composed of the data fields contained in
e, while control fields are not returned. For example, if the matching tuple is
<d >{Z]]Td[c,,]i_" the return value is < d >.
rd [k]l'n

By such definition it follows that dynamic privileges acquisition can happen
only when control fields values are stored inside the sequence of data fields.

SecSpaces implementation

The study of all the issues related with a secure implementation of the
SecSpaces model has been investigated in [Lucchi and Zavattaro, 2004]. Here
we just report the way we use to implement control fields.

The implementation of partition keys is rather easy and similar to symmet-
ric cryptography; the only assumption is that a process should not be able to
guess an unknown partition key used by other processes. Similarly to symmet-
ric encryption keys (see e.g. [Schneier, 1996]), we need to implement the set
Partition so that to guess one of its values has low probability. Such feature
can be realized, e.g., by encoding partition keys with data composed by a large
number of bits (say 512 bits).

The main problem we have to tackle when we implement asymmetric keys
is how to satisfy the function ~". Such function must guarantee that: i)it is
possible to check whether two keys k and &’ match (i.e. to verify if ¥’ = k),
and ii)it is not possible for a process to guess k starting from the knowledge
of k. To implement such keys we exploit the public-key cryptographic mech-
anism. Formally, let PlainText, ranged over by p, p’... ., be the set of plain-
texts, Key, ranged over by PrivK, PubK, ..., be the set of encryption keys
containing private and public keys. In the following, when we refer to pairs
of private and public keys (PrivK, PubK), we assume that a plaintext en-
crypted with PubK (resp. PrivK) can be decrypted only by using PrivK
(resp. PubK). Let Ciphertext, ranged over by s, s,. . ., be the set of cipher-
texts obtained by encrypting plaintexts with encryption keys (we denote with
{p}r the encryption of p with key k).

We encode any asymmetric keys, except the default value ? encoded with
?, with a triple (p, PubK, s). The following implementation of ~ satisfies the
requirements of asymmetric keys:

= given 7/, we have that 7 = 7;
= giventhe triple (p, PubK, s), we have that (p, PubK, s) = (p/, PubK',)
if s = {p'} priv and 8" = {p} privi.

Obviously, the correctness of such implementation is to be subordinate to a
perfect implementation of cryptographic operations.

Security Issues in the Tuple-spaceCoordination Model 7

3. Examples

In this section we consider some real applications and we show how to man-
age the interaction by using the SecSpaces model. We show how SecSpaces
makes it possible to guarantee some of the main security properties like se-
crecy, producer/receiver authentication and data availability. In particular we
present two examples that we take from the use cases of [Gigaspaces]. For each
of them, we proceed as follows: i)we describe how it works, ii)we describe the
security lacks if the interaction is programmed with Linda, and iii)we describe
how to support security by using SecSpaces.

Distributed Session Sharing

This example shows how to exploit a tuple-space repository for implement-
ing a service for managing user sessions, e.g., the sessions used to control
business activities.

The use case we consider consist of a customer that intends to reserve a car
from one agency and a flight from another one. The car and flight reserva-
tion systems are located in separate servers. Both systems need to be able to
share the user session, so that from the customer’s point of view it is a single
transaction. Since these services are distributed, we exploit the tuple space
to implement a distributed session server that makes it possible to share the
user session. The solution we are going to discuss is depicted in Fig. 1. The
idea is that at any customer sessions the travel agency collects user data (shop-
ping card, user id, etc.) and invokes (without a specific order) three services:
i)the car service, ii)the flight service, and iii)the billing service, by passing as
parameters the user session, shopping card and the user preferences. The infor-
mation the travel agency receives from such services consists of, respectively:
i)the ordered car, ii)the flight, and iii)the bill of the transaction. The car and
flight services supply the corresponding request and then insert a tuple con-
taining the fee of the supplied service and the user session id that is used as
key field by the billing service that consumes both tuples and then returns the
bill to the travel agency.

The main security problem is that the tuples inserted in the space are avail-
able to anyone, thus someone could maliciously use that id to perform, e.g.,
another business activity or to alterate the service fee. Indeed, let us sup-
pose that car and flight services produce tuples with the following structure:
< userid, fee, pre ferences, serviceinfo >, and that the billing service col-
lects such tuples by performing two in with < wuserid, null, null,null >
as template. The threat is that such tuples can be removed/manipulated by,
e.g., a malicious process, that can use the user id in a different context or can
change the service fee, the user preferences or the identifier of the service
(servicein fo) supplying the requested task.

8 Formal Aspects of Security and Trust

J———

Insert a tuple containing

. CarService '« carreservation information
[o
/ Insert a tuple containing S

fightinformation ~_~—=< 7 7 v
a y \
7" Tuple space A
S ~

Yo

S, ; Consume the tuple produced
by car and flight services

Customer | *= | Travel Agency ‘-‘ Flight Sewice%

 Billing Service |

Figure 1. Distributed user sessions managed with a tuple space

The security issues explained above can be tackled by exploiting SecSpaces.
In particular, the properties that should be guaranteed are: i)secrecy of ex-
changed data, and ii)receiver authentication. The former is needed to guarantee
that the exchanged information are not used by unauthorized users while the
latter is used to guarantee that the only process which is allowed to consume
the tuples < userid, fee, preferences, serviceinfo > is the billing service.

Let ¢ and ¢’ be two partition keys and k be an asymmetric key. To support
such properties, we assume that:

m cis a private partition key shared by the car and the billing service (i.e.
only those services know c¢),

» (¢ is a private partition key shared by the flight and the billing service
(i.e. only those services know ¢’), and

= £ is a private data of the billing service, while & is a public data.

In this paper we do not tackle the problem of how to distribute in a secure way
such values. A possible solution is to exploit classic public-key infrastructure
[Schneier, 1996].

The tuples produced (and then inserted into the space by an out) respec-
tively by the car and by the flight service are now the following:

(elralclin
[k]ralk)in

[S']rd[_cl]in
[K]ralk]in

< userid, car fee, pre ferences, carserviceinfo >

< userid, flight fee, preferences, carserviceinfo >

To access such tuples it is necessary to provide a template having ¢ (or ¢’) as
partition key and k as asymmetric key. In particular, the billing service perform
in(< userid, null, null, null >} and in(< userid, null, null, null >{)
to read (and remove) the tuple containing information produced by the car and
by the flight service, respectively. The secrecy of the data exchanged via the

Security Issues in the Tuple-spaceCoordination Model 9

tuple space is guaranteed because only the two involved services (car-billing or
flight-billing) know the partition key, while the authentication of the receiver
directly follows by the fact that only the billing service is able to provide k as
asymmetric key.

Brokered messaging

The use case we consider here is a messaging service where the interaction
between the parties is mediated by a broker. Service producers (masters) pro-
duce messages about instructions or other information such as images, files,
specifying also the receiver of such messages. A special service, the broker, is
responsible for analysing submitted requests such as to determine which con-
sumer service it should be sent to. It can possibly modify or insert additional
data (e.g., a timestamp) into the message and then to deliver it to the relevant
service consumer.

Such interaction can be programmed by exploiting a tuple space: i)masters
insert a tuple containing all the information into the space with a certain struc-
ture that the broker knows, e.g., < broker,msg,to > where broker is the
key used to identify tuples that the broker should take into account, msg
is the information represented by the message and to specifies the receiver
(we assume receivers can be unequivocally identified by an id), ii)the bro-
ker reads (and removes) submitted tuples by performing an in operation with
< broker,null, null > as template, it analyses the information about the mes-
sage and the receiver and, after having performed some controls on submit-
ted data, inserts a the tuple < to, msg, timestamp > into the space where
timestamp indicates when the message has been receiver by the broker, and
iii)any consumers whose id is consid performs an ¢n by using < consid, null,
null > as template; in this way it obtains the transmitted object and its times-
tamp. The interaction schema of such application is described in Fig. 2.

There are several kinds of aspects that a secure implementation should take
into account like the secrecy of exchanged data (in order to guarantee the con-
fidentiality), or the authentication of the message producers and consumers
that can be managed by following an approach similar to the one used in the
previous example. Here we just describe how to support another aspect: the
fairness between producer and consumer. Indeed, any consumer (not only the
proper consumer) can consume any tuples submitted by the producer thus pre-
venting the broker to analyse such tuple. Essentially, the problem is that we
cannot guarantee non-repudiation. In such a way, for example, the consumer
can take an advantage w.r.t. the producer because it can also repudiate that it
has received such message.

By assuming that the broker logs the exchanged messages we can exploit
asymmetric keys of SecSpaces to cover this security lack by managing the

10 Formal Aspects of Security and Trust

Receive
Producer 1 g%message W Consumer 1
2 e N { Consumer2 |
. \,.!) ¢ >
{_ Tuple space " H

S ~ /S s \ r——
Consum :
Producer n § °a i Consumerm |

message submitted message

\

Broker
§

i

Figure 2. Brokered messaging managed with a tuple space

authentication of the receiver (the broker) for the tuples submitted by the pro-
ducers. Moreover, we could manage the receiver authentication (the proper
consumer) for the tuples inserted by the broker. In this way we guarantee that
only the broker can consume (and then analyse) the tuples submitted by the
producers and that only the receiver specified by the producer can consume
the corresponding message. Technically, let &k, and k; fori = 1,...,m be
asymmetric keys; we make the following assumptions:

m [y is a private information of the broker,
m k; is a private information of the consumer 7,

m ky, k; fori = 1,...,m are public data.

The producers insert tuples with asymmetric keys (both for rd and in) set to
ks, say < broker,msg,to > orlralFolin that only the broker can access since
it is the only one that knows kjp, which is needed to match the tuple. The
broker consumes and analyses such tuples and by evaluating the field to selects
the public key corresponding to the consumer, say k;, and insert the tuple <
to, msg, titmestamp >) that only the proper consumer can take since it is
the only which knows k;.

The example can be furtherly extended. Let us suppose the case where
the producer can also specify that the message can be read but not removed
because, e.g., it is necessary to track the execution of a complex activity or
protocol. In this case the broker can set to k; the asymmetric key of the tuple
associated to the rd and to set to another value that consumers cannot match
(e.g., ky) the one associated to the in. In this way consumers can only generate
templates that match such tuple when it is accessed with read operations.

Security Issues in the Tuple-spaceCoordination Model 11

4. Conclusion

We have described the main security issues that emerge when Linda is used
in open systems and described SecSpaces that make it possible to support
some of the main security properties (e.g., secrecy, producer/receiver authenti-
cation). The adequacy of such proposal has been proved by considering some
real examples of usage of tuple spaces in the interaction.

Other proposals supporting security are available in literature. The most
interesting ones that deserve to be mentioned are Klaim [De Nicola et al.,
1998] and SecOS [Vitek et al., 2003]. The former exploits a classic access
control mechanism in which permissions describe, for each entity, which are
the operations it is allowed to perform (insertion, read and removal of tuples),
while the latter is based on access keys stored on tuples, which has inspired the
SecSpaces language. Another approach is presented in [Handorean and Ro-
man, 2003] where a password-based system on tuple spaces and tuples permits
the access only to the authorized entities, that is those that know the password.
In particular, password-based access permissions on tuples can be associated
to the read and to the removal operations. Differently from SecSpaces, if an
entity is allowed to remove a tuple (i.e. it knows the password associated to
the removal operations), it has also the permission of reading that tuple.

We consider that the data-driven approach followed by SecOS and subse-
quently by SecSpaces is more suitable for open systems w.r.t. to classic one
used in Klaim. In a few words, we identify the problem in the fact that to know
all the possible entities that may enter in the system is a difficult task. Since in
Klaim access permissions refer to entities, such task is necessary. On the other
hand, the data-driven mechanism makes it possible to avoid such task since
the access permissions are simply based on the proof of knowledge the entities
provide when they perform coordination primitives.

The main contribution of SecSpaces is a refinement of the SecOS access
permissions on tuples that make it possible to discriminate between the per-
missions of producing, reading and consuming a tuple. For example, in SecOS
a process that can consume a tuple is also able to reproduce that tuple, thus in
permission inherits out permissions. If we consider the brokered messaging
example, we cannot guarantee non-repudiation of the messages received by
the consumers.

References

[Bravetti et al., 2003] Bravetti, M., Gorrieri, R., and Lucchi, R. (2003). A formal approach for
checking security properties in SecSpaces. In Ist International Workshop on on Security
Issues in Coordination Models, Languages and Systems, volume 85.3 of ENTCS.

[Busi et al., 2002] Busi, N., Gorrieri, R., Lucchi, R., and Zavattaro, G. (2002). Secspaces: a
data-driven coordination model for environments open to untrusted entities. In /st Interna-
tional Workshop on Foundations of Coordination Languages and Software Architectures,
volume 68.3 of ENTCS.

[Busi et al., 2003] Busi, N., Manfredini, C., Montresor, A., and Zavattaro, G. (2003).
PeerSpaces: Data-driven Coordination in Peer-to-Peer Networks. In Proc. of ACM Sympo-
sium on Applied Computing (SAC’03), pages 380-386. ACM Press.

[Computing Associates, 1995] Computing Associates, S. (1995). Linda: User’s guide and ref-
erence manual. Scientific Computing Associates.

[De Nicola et al., 1998] De Nicola, R., Ferrari, G., and Pugliese, R. (1998). KLAIM: A Kernel
Language for Agents Interaction and Mobility. IEEE Transactions on Software Engineer-
ing, 24(5):315-330. Special Issue: Mobility and Network Aware Computing.

[Gigaspaces] Gigaspaces. Use cases. http://www.gigaspaces.com/usecases.htm/.

[Handorean and Roman, 2003] Radu Handorean and Gruia-Catalin Roman (2003). Secure
Sharing of Tuple Spaces in Ad Hoc Settings. In Ist International Workshop on on Se-
curity Issues in Coordination Models, Languages and Systems, volume 85.3 of ENTCS.

[Lucchi and Zavattaro, 2004] Lucchi, R. and Zavattaro, G. (2004). WSSecSpaces: a Secure
Data-Driven Coordination Service for Web Services Applications. In Proc. of ACM Sym-
posium on Applied Computing (SAC’04), pages 487-491. ACM Press.

[Murphy et al., 2001] Murphy, A., Picco, G., and Roman, G.-C. (2001). A middleware for
physical and logical mobility. In 21st International Conference on Distributed Computing
Systems, pages 524-533.

[Schneier, 1996] Schneier, B. (1996). Applied Cryptography. Wiley.

[Vitek et al., 2003] Vitek, J., Bryce, C., and Oriol, M. (2003). Coordinating Processes with
Secure Spaces. Science of Computer Programming, 46:163—193.

