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Abstract. This paper presents an automatic and simple method for creating 
refinement condition for UML models.  Conditions are fully written in OCL, 
making it unnecessary the application of mathematical languages which are in 
general hardly accepted to software engineers.  Besides, considering that the 
state space where OCL conditions are evaluated might be too large (or even 
infinite), the strategy of micromodels is applied in order to reduce the search 
space. The overall contribution is to propitiate the performing of verification 
activities during the model-driven development process. 

1. Introduction 

The stepwise refinement technique facilitates the understanding of complex 
systems by dealing with the major issues before getting involved in the details. The 
system under development is first described by a specification at a very high level of 
abstraction. A series of iterative refinements may then be performed with the aim of 
producing a specification, consistent with the initial one, in which the behavior is 
fully specified and all appropriate design decisions have been made. 

Stepwise software development can be fully exploited only if the language used to 
create the specifications is equipped with formal refinement machinery, making it 
possible to prove that a given specification is a refinement of another specification, or 
even to calculate possible refinements from a given specification. Robust refinement 
machinery is present in most formal specification languages such as Object-Z [21], B 
[11], and the refinement calculus [2], and even in some restricted forms of 
programming languages [4]. However, the widely-used standard specification 
language UML [15] lacks for a well-defined notion of refinement.  

To alleviate this problem most research on the formalization of UML refinements 
adhere to the approach of mapping the graphical notation into a formal domain where 
properties are defined and analyzed. For example the works presented in [1], [5], [7], 
[10], [12], [13] and [22] among others, belong to this group. They are appropriate to 
discover and correct inconsistencies and ambiguities of the graphical language, and in 
most cases they allow us to verify and calculate refinements of (a restricted form of) 
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UML models. However, such approaches are non-constructive (i.e., they provide no 
feedback in terms of UML), they require expertise in reading and analyzing formal 
specifications and generally, properties that should be proved in the formal setting are 
too complex or even undecidedly. 

In [18] and [19] we explored an alternative approach, as a complement to the 
former; well founded refinement structures in the Object-Z formal language were 
used to discover refinement structures in the UML, which are (intuitively) equivalent 
to their corresponding Object-Z inspiration sources. A similar proposal was presented 
in [3], where Boiten and Bujorianu explore refinement indirectly through unification; 
the formalization is used to discover and describe intuitive properties on the UML 
refinements. On the other hand, Liu, Jifeng, Li and Chen in [14] use a formal 
specification language to formalize and combine UML models; then, they define a set 
of refinement laws of UML models to capture the essential nature, principles and 
patterns of object-oriented design, which are consistent with the refinement definition.  

In this article we work further on those proposals by enriching such refinement 
patterns with refinement conditions written in OCL (Object Constraint Language) 
[16]. The advantage of this approach is that refinement conditions get completely 
defined in terms of OCL, making it unnecessary the application of languages which 
are usually hardly accepted by software engineers. OCL is a more familiar language 
and it has a simpler syntax than Object-Z and other formal languages. Additionally, 
OCL is part of the UML 2.0 standard and it will probably form part of most modeling 
tools in the near future.  

Furthermore, after defining refinement conditions, the next step is to evaluate such 
conditions. Ordinary OCL evaluators are unable to determine whether a refinement 
condition written in OCL holds in a UML model because OCL formulas are evaluated 
on a particular instance of the model, while refinement conditions need to be 
validated in all possible instantiations. Therefore, in order to make the evaluation of 
refinement conditions possible, we extract from the UML model a relatively small 
number of small instantiations, and check that they satisfy the refinement conditions 
to be proved. This strategy, called micromodels of software was proposed by Daniel 
Jackson in [9] for evaluating formulas written in Alloy.  Later on, Martin Gogolla and 
colleges in [8] developed a useful adaptation of such technique to verify UML and 
OCL models. Here we adapt such micromodels strategy to verify refinement 
conditions. 

The structure of this document is as follows: sections 2 serves as a brief 
introduction to the issue of refinement specification in Object-Z and UML 2.0; section 
3 describes the method for creating OCL refinement condition for UML refinement 
patterns; section 4 explains how the micromodels strategy is applied to verify 
refinements; finally, the paper closes with a presentation of conclusions and future 
directions. 

2. Refinements Specification in Object-Z and UML 

In Object-Z [21], a class is represented as a named box with zero or more generic 
parameters. The class schema may include local type or constant definitions, at most 
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one state schema and an initial state schema together with zero or more operation 
schemas. These operations define the behavior of the class by specifying any input 
and output together with a description of how the state variables change. Operations 
are defined in terms of two copies of the state: one undecorated copy which represents 
the before-sate and a primed copy representing the after-state. 

For example, figure 1 illustrates the specification of a simple class called Flight, 
having a state (consisting of two variables) and only one operation.  

 
Flight 

 ¡ (freeSeats, reserve)  
 freeSeats: N 

canceled: B 
  

INIT 
 freeSeats=300 

canceled=false 
  

reserve 
 D(freeSeats) 
 freeSeats>0 ¶ ¬canceled 

freeSeats’=freeSeats-1 
 

   

Figure 1: simple Object-Z schema. 

Object-Z is equipped with a schema calculus, that is to say a set of operators 
provided to manipulate Object-Z schemas. The schema calculus makes it possible to 
create Objects-Z specifications describing properties of other Object-Z specifications. 
To deal with refinements we need to apply at least the following operators: 

- Operator STATE denotes the set of all possible states (i.e., snapshots or bindings) 
of the system under consideration. For example, Flight.STATE = {:freeSeats=x, 
canceled=tÚ | 0≤x≤300  ¶ t∈{true, false}} 

- Operator INIT denotes the initial states of a given schema. For example, 
Flight.INIT = {:freeSeats=300 , canceled=falseÚ | Ú} 

- Operator pre returns the precondition of an operation schema; that is to say the set 
of all states where the operation can be applied. For example, pre reserve = 
{:freeSeats = x, canceled=false Ú | 0<x≤300} 

- The conjunction of two schemas S and T (S¶T) results in a schema which 
includes both S and T (and nothing else). 

- Schema implication (S  fi T) denotes the usual logical implication. 
 
In [6] refinement is formally addressed in the context of Object-Z specifications as 

follows: an Object-Z class C is a refinement (through downward simulation) of the 
class A if there is a retrieve relation R on A.STATE¶C.STATE so that every visible 
abstract operation A.op is recasted into a visible concrete operation C.op thus the 
following holds: 
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(Initialization)   AC.STATE × C.INIT fi(EA.STATE × A.INIT ¶ R) 

(Applicability)   AA.STATE ×  AC.STATE× R fi (pre A.op fi pre C.op) 

(Correctness)     AA.STATE×AC.STATE×AC.STATE’×   
                              R ¶ pre A.op ¶ C.op fi E.A.STATE’×  R’ ¶ A.op 
 
This definition allows preconditions to be weakened and non-determinism to be 

reduced. In particular, applicability requires a concrete operation to be defined 
wherever the abstract operation was defined, however it also allows the concrete 
operation to be defined in states for which the precondition of the abstract operation 
was false. That is, the precondition of the operation can be weakened. Correctness 
requires that a concrete operation be consistent with the abstract one whenever it is 
applied in a state where the abstract operation is defined. However, the outcome of 
the concrete operation only has to be consistent with the abstract, but not identical. 
Thus if the abstract operation allowed a number of options, the concrete operation is 
free to use any subset of these choices. In other words, non-determinism can be 
solved. 

On the other hand, the standard modeling language UML [15] provides an artifact 
named Abstraction (a kind of Dependency) with the stereotype <<refine>> to 
explicitly specify the refinement relationship between UML named model elements. 
In the UML metamodel an Abstraction is a directed relation from a client (or clients) 
to a supplier (or suppliers) stating that the client (the refinement) depends on the 
supplier (the abstraction). The Abstraction artifact has a meta-attribute called mapping 
designated to record the abstraction/implementation mappings (i.e., the counterpart to 
the Object-Z retrieve relation), which is an explicit documentation of how the 
properties of an abstract element are mapped to its refined versions, and on the 
opposite direction, how concrete elements can be simplified to fit an abstract 
definition. The mapping contains an expression stated in a given language that could 
be either formal or not. The definition of refinement in the UML standard [15] is 
formulated using natural language and it remains open to numerous contradictory 
interpretations. 

3. Verification strategy for UML refinement patterns 

UML refinement patterns [18] [19] document recurring refinement structures in 
UML models. In this section we describe one of those patterns, the state refinement 
pattern; then we present an algorithm that can be applied on UML models that 
contain such a pattern in order to automatically create an OCL refinement condition to 
verify its applicability and correctness. Similar processes were defined to create 
refinement condition for other patterns in the catalog, but they are not described here 
due to space limitations. 
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3.1. The state refinement pattern 

A State Refinement takes place when the data structures which were used to 
represent the objects in the abstract specification are replaced by more concrete or 
suitable structures; operations are accordingly redefined to preserve the behavior 
defined in the abstract specification. 

An instance of the pattern’s structure: 
 
Let M1 be the UML model in figure 2, which is compliant with the structure of the 

state refinement pattern [19]. M1 contains information about a flight booking system 
where each flight is abstractly described by the quantity of free seats in its cabin; then 
a refinement is produced by recording the total capacity of the flight together with the 
quantity of reserved seats. In both specifications, a Boolean attribute is used to 
represent the state of the flight (open or canceled). The available operations are 
reserve to make a reservation of one seat and cancel to cancel the entire flight. 
A refinement relationship connects the abstract to the concrete specification. The 
OCL language [16] [20] has been used to specify initial values, operation’s pre and 
post conditions and the mapping attached to the refinement relationship. 

 

 
 

 

Figure 2:  an instance of the state refinement pattern 

An instance of the pattern’s refinement condition: 
 
Object-Z refinement conditions - F1 - for UML classes FlightA and FlightC via 

some retrieve relation R are automatically generated from the generic refinement 

Context FlightA ::  
freeSeats init: 300 
canceled init: false 
reserve() pre: freeSeats>0 and not canceled 
          post: freeSeats=freeSeats@pre -1 
cancel()  pre: not canceled  post: canceled 

Context FlightC :: 
capacity init: 300 
reservedSeats init: 0 
canceled init: false 
reserve() 
  pre: capacity-reservedSeats>0 
                and not canceled 
  post:reservedSeats=reservedSeats@pre+1 
 cancel()  pre: not canceled post: canceled 

flightA.freeSeats = flightC.capacity –  
flightC.reservedSeats   
and flightA.canceled = flightC.canceled 
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condition established by the pattern [19], based on the definition of downward 
simulation in Object-Z described in [6]. Figure 3 shows the formula F1. 

 
   
Initialization 

AFlightC.STATE  ×FlightC.INIT fi(E FlightA.STATE ×FlightA.INIT ¶ R) 
 
Applicability (of operation reserve) 

AFlightA.STATE×AFlightC.STATE ×R fi (pre FlightA.reserve fi pre 
FlightC.reserve) 
 
Correctness (of operation reserve) 
AFlightA.STATE ×AFlightC.STATE × AFlightC.STATE’× 
    R¶pre FlightA.reserve ¶ FlightC.reserve fi E.FlightA.STATE’ ×R’ ¶ 
FlightA.reserve 

 

Figure 3: an instance of the refinement condition for the state refinement pattern  

The transformation process from Object-Z to OCL: 
 
Then, Object-Z refinement condition - F1 - is automatically transformed into OCL 
expression – F1’ - by applying the transformation T in the context of a UML model 
M1. Apart from producing an OclExpression, T returns an OclFile containing 
additional definitions, which are created during the transformation process (see the 
appendix). The main features of the transformation are as follows, 
 
    Highlight #1: the Object-Z retrieve relation R is replaced by its OCL counterpart. 

 
Graphically, the abstraction mapping (i.e., the retrieve relation) describing the 

relation between the attributes in the abstract element and the attributes in the 
concrete element is attached to the refinement relationship; however, OCL 
expressions can only be written in the context of a Classifier, but not of a 
Relationship. On the Z side, the context of the abstraction mapping is the combination 
of the abstract and the concrete states (i.e., A.STATE ¶ C.STATE); however, a 
combination of Classifiers is not an OCL legal context. Our solution consists in 
translating the mapping into an OCL formula in the context of the abstract classifier, 
in the following way: 
 
Context flightA:FlightA def : 
mapping(flightC : FlightC):Boolean = 
flightA.freeSeats= flightC.capacity – 
flightC.reservedSeats and  
flightA.canceled= flightC.canceled 
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As a convention, class names in lower case are used to denote instances. It is worth 
mentioning that the mapping definition could alternatively have been translated into a 
formula in the context of the concrete classifier. 

 
   Highlight #2: Object-Z expression INIT is expressed in terms of an OCL boolean 
operation isInit(). 
 
 A query operation isInit()is automatically built from the specification of the 
attribute’s initial values included in the UML class diagram. It returns true if all of the 
instance’s attributes satisfy the initialization conditions. For example: 

 
context FlightA def: isInit(): Boolean = 
self.freeSeats = 300 and self.canceled = false 
 
context FlightC def: isInit(): Boolean =  
self.capacity=300 and self.canceled=false and 
self.reservedSeats=0 

 
   Highlight #3: expressions containing the Object-Z operator “pre” are translated 
into the corresponding OCL pre conditions from the UML model. 

 
For example, the Object-Z expression “pre FlightA.reserve” is translated 

into “flightA.freeSeats>0 and not flightA.canceled” 
 
While, the expression “pre FlightC.reserve” is translated into 

“flightC.capacity-flightC.reservedSeats>0 and not 
flightC.canceled” 

 
   Highlight #4: Object-Z expressions containing operation’s invocations are 
translated to OCL post conditions from the UML model. 

 
In Object-Z, elements belonging to the pre-state are denoted by undecorated 

identifiers, while elements in the post-state are denoted by identifiers with a 
decoration (i.e. a stroke). In OCL the naming convention goes exactly in the opposite 
direction, that is to say, undecorated names refer to elements in the post-state. Then, 
in order to be consistent with the rest of the specification, a decoration (i.e., “_post”) 
is added to each undecorated identifier in the post condition and the original 
decoration (i.e., @pre) is removed from the rest of the identifiers. For example the 
following definition: 

 
Context flightA:FlightA::reserve() 
 post: flightA.freeSeats= flightA.freeSeats@pre -1 
 
is renamed in the following way:  
 
Context flightA:FlightA::reserve() 
 post: flightA_post.freeSeats= flightA.freeSeats -1 
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   Highlight #5: logic connectors and quantifiers are translated to OCL operators. 

 
The Z expression AS.STATE×exp is translated to S.allInstances() -> 

forAll (s | T(expr)). The Z expression ES.STATE×exp is translated to 
S.allInstances()-> exists(s| T(expr)).  

 
Notice that the name of the class, in lower case, is used to name the iterate 

variable. Finally, the symbol  fi is translated to implies and the symbol  ¶ is 
translated to and. 

 
The appendix contains the formal definition of transformations T from Object-Z 

refinement conditions to OCL expressions. On top of that formalization the 
transformation process was fully automated. Table 1 shows the formula F1’ that is the 
result of applying the transformation T on both the UML model M1 (figure 2) and the 
Object-Z refinement conditions F1 (figure 3).  

Table 1: OCL refinement conditions for an instance of the state refinement pattern. 

 
 

OCL refinement condition 

 

 
FlightC.allInstances()->forAll(flightC| flightC.isInit() 
implies (FlightA.allInstances()-> exists(flightA| 
flightA.isInit()and flightA.mapping(flightC)))) 
 

 

 
FlightA.allInstances-> forAll(flightA| 
FlightC.allInstances-> forAll(flightC| 
flightA.mapping(flightC) implies (flightA.freeSeats>0 and 
not flightA.canceled implies flightC.capacity-
flightC.reservedSeats>0 
and not flightC.canceled))) 
 

 
 

 

 
FlightA.allInstances()-> forAll(flightA| 
FlightC.allInstances() -> forAll( flightC| 
FlightC.allInstances()-> forAll( flightC_post| 
flightA.mapping(flightC)and (flightA.freeSeats>0 and 
not flightA.canceled) and  (flightC_post.reservedSeats = 
flightC.reservedSeats+1) implies FlightA.allInstances()-> 
exists( flightA_post| flightA_post.mapping(flightC_post) 
and flightA_post.freeSeats= flightA.freeSeats -1)))) 
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4. Micromodels for evaluating refinement conditions 

Generally, UML models specify an infinite number of instances; even little models 
such as the one described in figure 2 (i.e., there is an infinite number of instances of 
the type FlightA and an infinite number of instances of the type FlightC); thus to 
decide whether a certain property holds or not in the model results generally 
unfeasible.  

In order to make the evaluation of refinement conditions viable, the technique of 
micromodels (or micro-worlds) of software is applied by defining a finite bound on 
the size of instances and then checking whether all instances of that size satisfy the 
property under consideration (i.e., the refinement condition): 

- If we get a positive answer, we are somewhat confident that the property holds in 
all instantiations. In this case, the answer is not conclusive, because there could be a 
larger instantiation which fails the property, but nevertheless a positive answer gives 
us some confidence. 

- If we get a negative answer, then we have found an instantiation which violates 
the property. In that case, we have a conclusive answer, which is that the property 
does not hold in the model. 

Jackson’s small scope hypothesis [9] states that negative answers tend to occur in 
small worlds already, boosting the confidence we may have in a positive answer. 

For example, we will consider micro-worlds of the UML model in figure 2 
containing only three instances of Integer and one instance of Boolean. Then we will check 
whether all micro-worlds of that size satisfy the refinement condition, that is to say: 

 
Applicability Condition for operation reserve(): 
 

Set{ <0,f>,<1,f>,<2,f> }-> forAll (flightA| 
Set{<0,0,f>,<0,1,f>,<0,2,f>,<1,0,f>,<1,1,f>,<1,2,f>,<2,0,f>, 
    <2,1,f>,<2,2,f>} ->forAll(flightC| 

  flightA.mapping(flightC) implies 
  (flightA.freeSeats>0 and not flightA.canceled 

     implies flightC.capacity-flightC.reservedSeats>0 and 
                not flightC.canceled ))) 

 
This expression can be easily evaluated by an ordinary OCL evaluator, returning a 

positive answer, which gives us some confidence that the property holds. 
Lets explore a case where the refinement conditions are not satisfied; lets consider 

for example that preconditions were strengthened in class FlightC,  
 
Context flightC:FlightC :: reserve()  
pre: flightC.capacity- flightC.reservedSeats>2  
     and not flightC.canceled 

 
Then, the property to be checked is as follows, 
 

Set{ <0,f>,<1,f>,<2,f> }-> forAll (flightA| 
Set{<0,0,f>,<0,1,f>,<0,2,f>,<1,0,f>,<1,1,f>,<1,2,f>,<2,0,f>, 
    <2,1,f>,<2,2,f>}  ->forAll(flightC| 
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flightA.mapping(flightC) implies 
(flightA.freeSeats>0 and not flightA.canceled 

   implies flightC.capacity-flightC.reservedSeats>2 and 
   not flightC.canceled ))) 
 

which evaluates false in any micro-world such that flightA=<2,f> and 
flightC=<2,0,f>  because of the fact that: 

 
 flightA.mapping(flightC)     holds,  
(flightA.freeSeats>0 and not flightA.canceled) holds,  
(flightC.capacity - flightC.reservedSeats > 2) does not hold. 

 
Thus, the presence of such micro-worlds gives us the conclusive answer that the 

refinement property does not hold in the UML model. 

6. Conclusion 

Abstraction is a cognitive means by which software engineers deal with 
complexity. The idea promoted by most software development methodologies is to 
use models at different levels of abstraction; a series of transformations are performed 
starting from an abstract platform-independent model with the aim of making the 
model more specific at each step. Each transformation step should be amenable to 
formal verification in order to guarantee the correctness of the final product.  

However, verification activities require the application of formal modeling 
languages with a complex syntax and semantics and need to use complex formal 
analysis tools; therefore they are rarely used in practice.  

To facilitate the verification task we developed an automatic method for creating 
refinement conditions for UML models, written in the friendly and well-accepted 
OCL language. The inclusion of verification in ordinary software engineering 
activities will be propitiated by avoiding the application of unfamiliar languages and 
tools.  

To complement such method, we adapted a strategy for reducing the search scope 
in order to make the evaluation of refinement conditions feasible. Since the satisfiable 
formulas that occur in practice tend to have small models, a small scope usually 
suffices and the analysis is reliable. 
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APPENDIX:  transformation from Object-Z to OCL refinement 
conditions 

 
Grammar for Z refinement expressions: 
 
This section describes the grammar for Z refinement expressions, which is a subset 

of Object-Z grammar presented in [21].  
The grammar description uses the EBNF syntax, where terminal symbols are 

displayed in bold face. Optional constructs are enclosed by slanted square brackets []. 
 

Predicate::=  E SchemaText ×  Predicate 

  | A SchemaText × Predicate  
  | Predicate1 

Predicate1::=  className.INIT 

  | pre operationName 
  | operationName 
  | relationName  

  | Predicate1 ¶ Predicate1  
  | Predicate1 fi Predicate1  

  | (Predicate) 
SchemaText::=  className.STATE [Decoration] 
className::=  Word 
operationName::=  className.Word 
relationName::=  Word [Decoration] 
Word   category for undecorated names 
Decoration::=   ’ 
 
Definition for the Transformation: 
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This section contains the specification of function T that takes a refinement 
condition written in Object-Z and returns the corresponding refinement condition 
written in OCL. Function T is applied in the context of a UML model M containing 
all the elements which are referred to in the Z expressions.  Apart from producing an 
OclExpression, function T returns an OclFile containing additional definitions that 
are created during the transformation. 

UML elements are retrieved form M by using standard lookup operations on its 
environment as it is defined in [16]. 
 
T : Model -> Predicate -> (OclExpression, OclFile) 

 

TM(Predicate1 ¶ Predicate2)= (e,Φ) 

Where  

TM(Predicate1)= (e1, Φ1) 

TM(Predicate2)= (e2, Φ2) 
e= e1 “and” e2 

Φ = Φ1 merge Φ2 

TM(Predicate1 fi Predicate2)= (e,Φ) 

Where 

TM(Predicate1)= (e1, Φ1) 

TM(Predicate2)= (e2, Φ2) 
e= e1 “implies” e2 

Φ = Φ1 merge Φ2 

TM( A className.STATE × Predicate) = (e,Φ) 

Where 

TM(Predicate)= (e1, Φ) 
e=className“.allInstances()->forAll 
(”iteratorName“|”e1“)”  
iteratorName= toLowerCase(className) 

TM( A className.STATE’ × Predicate) = (e,Φ) 

Where 

TM(Predicate)= (e1, Φ) 
e=className“.allInstances()->forAll 
(”iteratorName“|”e1“)”  
iteratorName= toLowerCase(className) “_post” 

TM( E className.STATE × Predicate) = (e,Φ) 

Where 
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TM(Predicate)= (e1, Φ) 
e=className“.allInstances()->exists 
(”iteratorName“|”e1“)” 
iteratorName= toLowerCase(className) 

TM( E className.STATE’ × Predicate) = (e,Φ) 

Where 

TM(Predicate)= (e1, Φ) 
e=className“.allInstances()-
>exists(”iteratorName“|”e1“)” 
iteratorName= toLowerCase(className) “_post” 

TM (className.INIT) =(e,Φ) 
Where 
e= toLowerCase(className) “.isInit()” 

Φ = ”Package” packageName 
   "context” className “def: isInit(): Boolean =” 
    
propertyName1“=”exp1“and”...“and”propertyNamen“=”expn 
   “endPackage” 
Where 
packageName = class.package.name 
class=M.getEnvironmentWithParents().lookup(className) 
Properties = class.allProperties()->select 
(p|p.initialValue->notEmpty()) 

∀j×1≤j≤properties->size()× 
 propertyNamej = properties->at(j).name  
 expj = properties->at(j).initialValue.body 

TM(pre className.operationName) = (e, ∅)1 

Where: 
e = operation.precondition.specification.body 
Where: 
operation : UMLOperation  =  
 M.getEnvironmentWithParents().lookup(className). 
   getEnvironmentWithParents() 
 .lookupImplicitOperation(operationName, Sequence{}) 

TM (className.operationName)= (e, ∅) 

Where: 

                                                            
1  In this document the symbol ∅ is an abbreviation denoting the empty package. 
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e = 
operation.postcondition.specification.body.renamed() 
Where: 
operation : UMLOperation  =  
 M.getEnvironmentWithParents().lookup(className). 
   getEnvironmentWithParents() 
   .lookupImplicitOperation(operationName,Sequence{}) 

Where: 
function renamed() is applied on  an OclExpression returning a copy of the 

expression where any undecorated name v has been renamed as v_post and any  
decorated name v@pre has been renamed as v. 
TM (relationName) = (e,Φ) 

Where: 
relationName e Word -– it is an undecorated name 
e = absInstance “.mapping(” refInstance “)” 

Φ = “Package” packageName 
   “Context” absInstance “:” AbstractClass  “def:”  
   “mapping(”refInstance“:”RefinedClass “):Boolean =” 
exp    “endPackage” 
Where: 
packageName = d.package.name 
d : Abstraction =       
M.getEnvironmentWithParents().lookup(relationName) 
AbstractClass  = d.supplier.name 
RefinedClass = d.client.name  
absInstance = toLowerCase(AbstractClass) 
refInstance = toLowerCase(RefinedClass) 
exp = d.mapping.body 

TM (relationName’) = (e,∅) 

Where: 
e = absInstance “.mapping(” refInstance “)” 
Where: 
d : Abstraction =  
M.getEnvironmentWithParents().lookup(relationName) 
AbstractClass  = d.supplier.name  
RefinedClass = d.client.name  
absInstance = toLowerCase(AbstractClass) “_post” 
refInstance = toLowerCase(RefinedClass)  “_post” 


