
Practical Verification Strategy for Refinement
Conditions in UML Models

Claudia Pons 1,2 and Diego Garcia 3,1

1LIFIA – Facultad de Informática, Universidad Nacional de La Plata
2CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)

3UTN (Universidad Tecnológica Nacional)
La Plata, Buenos Aires, Argentina

{cpons,dgarcia}@sol.info.unlp.edu.ar

Abstract. This paper presents an automatic and simple method for creating
refinement condition for UML models. Conditions are fully written in OCL,
making it unnecessary the application of mathematical languages which are in
general hardly accepted to software engineers. Besides, considering that the
state space where OCL conditions are evaluated might be too large (or even
infinite), the strategy of micromodels is applied in order to reduce the search
space. The overall contribution is to propitiate the performing of verification
activities during the model-driven development process.

1. Introduction

The stepwise refinement technique facilitates the understanding of complex
systems by dealing with the major issues before getting involved in the details. The
system under development is first described by a specification at a very high level of
abstraction. A series of iterative refinements may then be performed with the aim of
producing a specification, consistent with the initial one, in which the behavior is
fully specified and all appropriate design decisions have been made.

Stepwise software development can be fully exploited only if the language used to
create the specifications is equipped with formal refinement machinery, making it
possible to prove that a given specification is a refinement of another specification, or
even to calculate possible refinements from a given specification. Robust refinement
machinery is present in most formal specification languages such as Object-Z [21], B
[11], and the refinement calculus [2], and even in some restricted forms of
programming languages [4]. However, the widely-used standard specification
language UML [15] lacks for a well-defined notion of refinement.

To alleviate this problem most research on the formalization of UML refinements
adhere to the approach of mapping the graphical notation into a formal domain where
properties are defined and analyzed. For example the works presented in [1], [5], [7],
[10], [12], [13] and [22] among others, belong to this group. They are appropriate to
discover and correct inconsistencies and ambiguities of the graphical language, and in
most cases they allow us to verify and calculate refinements of (a restricted form of)

48 Claudia Pons, Diego García

UML models. However, such approaches are non-constructive (i.e., they provide no
feedback in terms of UML), they require expertise in reading and analyzing formal
specifications and generally, properties that should be proved in the formal setting are
too complex or even undecidedly.

In [18] and [19] we explored an alternative approach, as a complement to the
former; well founded refinement structures in the Object-Z formal language were
used to discover refinement structures in the UML, which are (intuitively) equivalent
to their corresponding Object-Z inspiration sources. A similar proposal was presented
in [3], where Boiten and Bujorianu explore refinement indirectly through unification;
the formalization is used to discover and describe intuitive properties on the UML
refinements. On the other hand, Liu, Jifeng, Li and Chen in [14] use a formal
specification language to formalize and combine UML models; then, they define a set
of refinement laws of UML models to capture the essential nature, principles and
patterns of object-oriented design, which are consistent with the refinement definition.

In this article we work further on those proposals by enriching such refinement
patterns with refinement conditions written in OCL (Object Constraint Language)
[16]. The advantage of this approach is that refinement conditions get completely
defined in terms of OCL, making it unnecessary the application of languages which
are usually hardly accepted by software engineers. OCL is a more familiar language
and it has a simpler syntax than Object-Z and other formal languages. Additionally,
OCL is part of the UML 2.0 standard and it will probably form part of most modeling
tools in the near future.

Furthermore, after defining refinement conditions, the next step is to evaluate such
conditions. Ordinary OCL evaluators are unable to determine whether a refinement
condition written in OCL holds in a UML model because OCL formulas are evaluated
on a particular instance of the model, while refinement conditions need to be
validated in all possible instantiations. Therefore, in order to make the evaluation of
refinement conditions possible, we extract from the UML model a relatively small
number of small instantiations, and check that they satisfy the refinement conditions
to be proved. This strategy, called micromodels of software was proposed by Daniel
Jackson in [9] for evaluating formulas written in Alloy. Later on, Martin Gogolla and
colleges in [8] developed a useful adaptation of such technique to verify UML and
OCL models. Here we adapt such micromodels strategy to verify refinement
conditions.

The structure of this document is as follows: sections 2 serves as a brief
introduction to the issue of refinement specification in Object-Z and UML 2.0; section
3 describes the method for creating OCL refinement condition for UML refinement
patterns; section 4 explains how the micromodels strategy is applied to verify
refinements; finally, the paper closes with a presentation of conclusions and future
directions.

2. Refinements Specification in Object-Z and UML

In Object-Z [21], a class is represented as a named box with zero or more generic
parameters. The class schema may include local type or constant definitions, at most

Practical Verification Strategy for Refinement Conditions in UML Models 49

one state schema and an initial state schema together with zero or more operation
schemas. These operations define the behavior of the class by specifying any input
and output together with a description of how the state variables change. Operations
are defined in terms of two copies of the state: one undecorated copy which represents
the before-sate and a primed copy representing the after-state.

For example, figure 1 illustrates the specification of a simple class called Flight,
having a state (consisting of two variables) and only one operation.

Flight

 ¡ (freeSeats, reserve)
 freeSeats: N

canceled: B

INIT
 freeSeats=300

canceled=false

reserve
 D(freeSeats)
 freeSeats>0 ¶ ¬canceled

freeSeats’=freeSeats-1

Figure 1: simple Object-Z schema.

Object-Z is equipped with a schema calculus, that is to say a set of operators
provided to manipulate Object-Z schemas. The schema calculus makes it possible to
create Objects-Z specifications describing properties of other Object-Z specifications.
To deal with refinements we need to apply at least the following operators:

- Operator STATE denotes the set of all possible states (i.e., snapshots or bindings)
of the system under consideration. For example, Flight.STATE = {:freeSeats=x,
canceled=tÚ | 0≤x≤300 ¶ t∈{true, false}}

- Operator INIT denotes the initial states of a given schema. For example,
Flight.INIT = {:freeSeats=300 , canceled=falseÚ | Ú}

- Operator pre returns the precondition of an operation schema; that is to say the set
of all states where the operation can be applied. For example, pre reserve =
{:freeSeats = x, canceled=false Ú | 0<x≤300}

- The conjunction of two schemas S and T (S¶T) results in a schema which
includes both S and T (and nothing else).

- Schema implication (S fi T) denotes the usual logical implication.

In [6] refinement is formally addressed in the context of Object-Z specifications as

follows: an Object-Z class C is a refinement (through downward simulation) of the
class A if there is a retrieve relation R on A.STATE¶C.STATE so that every visible
abstract operation A.op is recasted into a visible concrete operation C.op thus the
following holds:

50 Claudia Pons, Diego García

(Initialization) AC.STATE × C.INIT fi(EA.STATE × A.INIT ¶ R)

(Applicability) AA.STATE × AC.STATE× R fi (pre A.op fi pre C.op)

(Correctness) AA.STATE×AC.STATE×AC.STATE’×
 R ¶ pre A.op ¶ C.op fi E.A.STATE’× R’ ¶ A.op

This definition allows preconditions to be weakened and non-determinism to be

reduced. In particular, applicability requires a concrete operation to be defined
wherever the abstract operation was defined, however it also allows the concrete
operation to be defined in states for which the precondition of the abstract operation
was false. That is, the precondition of the operation can be weakened. Correctness
requires that a concrete operation be consistent with the abstract one whenever it is
applied in a state where the abstract operation is defined. However, the outcome of
the concrete operation only has to be consistent with the abstract, but not identical.
Thus if the abstract operation allowed a number of options, the concrete operation is
free to use any subset of these choices. In other words, non-determinism can be
solved.

On the other hand, the standard modeling language UML [15] provides an artifact
named Abstraction (a kind of Dependency) with the stereotype <<refine>> to
explicitly specify the refinement relationship between UML named model elements.
In the UML metamodel an Abstraction is a directed relation from a client (or clients)
to a supplier (or suppliers) stating that the client (the refinement) depends on the
supplier (the abstraction). The Abstraction artifact has a meta-attribute called mapping
designated to record the abstraction/implementation mappings (i.e., the counterpart to
the Object-Z retrieve relation), which is an explicit documentation of how the
properties of an abstract element are mapped to its refined versions, and on the
opposite direction, how concrete elements can be simplified to fit an abstract
definition. The mapping contains an expression stated in a given language that could
be either formal or not. The definition of refinement in the UML standard [15] is
formulated using natural language and it remains open to numerous contradictory
interpretations.

3. Verification strategy for UML refinement patterns

UML refinement patterns [18] [19] document recurring refinement structures in
UML models. In this section we describe one of those patterns, the state refinement
pattern; then we present an algorithm that can be applied on UML models that
contain such a pattern in order to automatically create an OCL refinement condition to
verify its applicability and correctness. Similar processes were defined to create
refinement condition for other patterns in the catalog, but they are not described here
due to space limitations.

Practical Verification Strategy for Refinement Conditions in UML Models 51

3.1. The state refinement pattern

A State Refinement takes place when the data structures which were used to
represent the objects in the abstract specification are replaced by more concrete or
suitable structures; operations are accordingly redefined to preserve the behavior
defined in the abstract specification.

An instance of the pattern’s structure:

Let M1 be the UML model in figure 2, which is compliant with the structure of the

state refinement pattern [19]. M1 contains information about a flight booking system
where each flight is abstractly described by the quantity of free seats in its cabin; then
a refinement is produced by recording the total capacity of the flight together with the
quantity of reserved seats. In both specifications, a Boolean attribute is used to
represent the state of the flight (open or canceled). The available operations are
reserve to make a reservation of one seat and cancel to cancel the entire flight.
A refinement relationship connects the abstract to the concrete specification. The
OCL language [16] [20] has been used to specify initial values, operation’s pre and
post conditions and the mapping attached to the refinement relationship.

Figure 2: an instance of the state refinement pattern

An instance of the pattern’s refinement condition:

Object-Z refinement conditions - F1 - for UML classes FlightA and FlightC via

some retrieve relation R are automatically generated from the generic refinement

Context FlightA ::
freeSeats init: 300
canceled init: false
reserve() pre: freeSeats>0 and not canceled
 post: freeSeats=freeSeats@pre -1
cancel() pre: not canceled post: canceled

Context FlightC ::
capacity init: 300
reservedSeats init: 0
canceled init: false
reserve()
 pre: capacity-reservedSeats>0
 and not canceled
 post:reservedSeats=reservedSeats@pre+1
 cancel() pre: not canceled post: canceled

flightA.freeSeats = flightC.capacity –
flightC.reservedSeats
and flightA.canceled = flightC.canceled

52 Claudia Pons, Diego García

condition established by the pattern [19], based on the definition of downward
simulation in Object-Z described in [6]. Figure 3 shows the formula F1.

Initialization

AFlightC.STATE ×FlightC.INIT fi(E FlightA.STATE ×FlightA.INIT ¶ R)

Applicability (of operation reserve)

AFlightA.STATE×AFlightC.STATE ×R fi (pre FlightA.reserve fi pre
FlightC.reserve)

Correctness (of operation reserve)
AFlightA.STATE ×AFlightC.STATE × AFlightC.STATE’×
 R¶pre FlightA.reserve ¶ FlightC.reserve fi E.FlightA.STATE’ ×R’ ¶
FlightA.reserve

Figure 3: an instance of the refinement condition for the state refinement pattern

The transformation process from Object-Z to OCL:

Then, Object-Z refinement condition - F1 - is automatically transformed into OCL
expression – F1’ - by applying the transformation T in the context of a UML model
M1. Apart from producing an OclExpression, T returns an OclFile containing
additional definitions, which are created during the transformation process (see the
appendix). The main features of the transformation are as follows,

 Highlight #1: the Object-Z retrieve relation R is replaced by its OCL counterpart.

Graphically, the abstraction mapping (i.e., the retrieve relation) describing the

relation between the attributes in the abstract element and the attributes in the
concrete element is attached to the refinement relationship; however, OCL
expressions can only be written in the context of a Classifier, but not of a
Relationship. On the Z side, the context of the abstraction mapping is the combination
of the abstract and the concrete states (i.e., A.STATE ¶ C.STATE); however, a
combination of Classifiers is not an OCL legal context. Our solution consists in
translating the mapping into an OCL formula in the context of the abstract classifier,
in the following way:

Context flightA:FlightA def :
mapping(flightC : FlightC):Boolean =
flightA.freeSeats= flightC.capacity –
flightC.reservedSeats and
flightA.canceled= flightC.canceled

Practical Verification Strategy for Refinement Conditions in UML Models 53

As a convention, class names in lower case are used to denote instances. It is worth
mentioning that the mapping definition could alternatively have been translated into a
formula in the context of the concrete classifier.

 Highlight #2: Object-Z expression INIT is expressed in terms of an OCL boolean
operation isInit().

 A query operation isInit()is automatically built from the specification of the
attribute’s initial values included in the UML class diagram. It returns true if all of the
instance’s attributes satisfy the initialization conditions. For example:

context FlightA def: isInit(): Boolean =
self.freeSeats = 300 and self.canceled = false

context FlightC def: isInit(): Boolean =
self.capacity=300 and self.canceled=false and
self.reservedSeats=0

 Highlight #3: expressions containing the Object-Z operator “pre” are translated
into the corresponding OCL pre conditions from the UML model.

For example, the Object-Z expression “pre FlightA.reserve” is translated

into “flightA.freeSeats>0 and not flightA.canceled”

While, the expression “pre FlightC.reserve” is translated into

“flightC.capacity-flightC.reservedSeats>0 and not
flightC.canceled”

 Highlight #4: Object-Z expressions containing operation’s invocations are
translated to OCL post conditions from the UML model.

In Object-Z, elements belonging to the pre-state are denoted by undecorated

identifiers, while elements in the post-state are denoted by identifiers with a
decoration (i.e. a stroke). In OCL the naming convention goes exactly in the opposite
direction, that is to say, undecorated names refer to elements in the post-state. Then,
in order to be consistent with the rest of the specification, a decoration (i.e., “_post”)
is added to each undecorated identifier in the post condition and the original
decoration (i.e., @pre) is removed from the rest of the identifiers. For example the
following definition:

Context flightA:FlightA::reserve()
 post: flightA.freeSeats= flightA.freeSeats@pre -1

is renamed in the following way:

Context flightA:FlightA::reserve()
 post: flightA_post.freeSeats= flightA.freeSeats -1

54 Claudia Pons, Diego García

 Highlight #5: logic connectors and quantifiers are translated to OCL operators.

The Z expression AS.STATE×exp is translated to S.allInstances() ->

forAll (s | T(expr)). The Z expression ES.STATE×exp is translated to
S.allInstances()-> exists(s| T(expr)).

Notice that the name of the class, in lower case, is used to name the iterate

variable. Finally, the symbol fi is translated to implies and the symbol ¶ is
translated to and.

The appendix contains the formal definition of transformations T from Object-Z

refinement conditions to OCL expressions. On top of that formalization the
transformation process was fully automated. Table 1 shows the formula F1’ that is the
result of applying the transformation T on both the UML model M1 (figure 2) and the
Object-Z refinement conditions F1 (figure 3).

Table 1: OCL refinement conditions for an instance of the state refinement pattern.

OCL refinement condition

FlightC.allInstances()->forAll(flightC| flightC.isInit()
implies (FlightA.allInstances()-> exists(flightA|
flightA.isInit()and flightA.mapping(flightC))))

FlightA.allInstances-> forAll(flightA|
FlightC.allInstances-> forAll(flightC|
flightA.mapping(flightC) implies (flightA.freeSeats>0 and
not flightA.canceled implies flightC.capacity-
flightC.reservedSeats>0
and not flightC.canceled)))

FlightA.allInstances()-> forAll(flightA|
FlightC.allInstances() -> forAll(flightC|
FlightC.allInstances()-> forAll(flightC_post|
flightA.mapping(flightC)and (flightA.freeSeats>0 and
not flightA.canceled) and (flightC_post.reservedSeats =
flightC.reservedSeats+1) implies FlightA.allInstances()->
exists(flightA_post| flightA_post.mapping(flightC_post)
and flightA_post.freeSeats= flightA.freeSeats -1))))

Practical Verification Strategy for Refinement Conditions in UML Models 55

4. Micromodels for evaluating refinement conditions

Generally, UML models specify an infinite number of instances; even little models
such as the one described in figure 2 (i.e., there is an infinite number of instances of
the type FlightA and an infinite number of instances of the type FlightC); thus to
decide whether a certain property holds or not in the model results generally
unfeasible.

In order to make the evaluation of refinement conditions viable, the technique of
micromodels (or micro-worlds) of software is applied by defining a finite bound on
the size of instances and then checking whether all instances of that size satisfy the
property under consideration (i.e., the refinement condition):

- If we get a positive answer, we are somewhat confident that the property holds in
all instantiations. In this case, the answer is not conclusive, because there could be a
larger instantiation which fails the property, but nevertheless a positive answer gives
us some confidence.

- If we get a negative answer, then we have found an instantiation which violates
the property. In that case, we have a conclusive answer, which is that the property
does not hold in the model.

Jackson’s small scope hypothesis [9] states that negative answers tend to occur in
small worlds already, boosting the confidence we may have in a positive answer.

For example, we will consider micro-worlds of the UML model in figure 2
containing only three instances of Integer and one instance of Boolean. Then we will check
whether all micro-worlds of that size satisfy the refinement condition, that is to say:

Applicability Condition for operation reserve():

Set{ <0,f>,<1,f>,<2,f> }-> forAll (flightA|
Set{<0,0,f>,<0,1,f>,<0,2,f>,<1,0,f>,<1,1,f>,<1,2,f>,<2,0,f>,
 <2,1,f>,<2,2,f>} ->forAll(flightC|

 flightA.mapping(flightC) implies
 (flightA.freeSeats>0 and not flightA.canceled

 implies flightC.capacity-flightC.reservedSeats>0 and
 not flightC.canceled)))

This expression can be easily evaluated by an ordinary OCL evaluator, returning a

positive answer, which gives us some confidence that the property holds.
Lets explore a case where the refinement conditions are not satisfied; lets consider

for example that preconditions were strengthened in class FlightC,

Context flightC:FlightC :: reserve()
pre: flightC.capacity- flightC.reservedSeats>2
 and not flightC.canceled

Then, the property to be checked is as follows,

Set{ <0,f>,<1,f>,<2,f> }-> forAll (flightA|
Set{<0,0,f>,<0,1,f>,<0,2,f>,<1,0,f>,<1,1,f>,<1,2,f>,<2,0,f>,
 <2,1,f>,<2,2,f>} ->forAll(flightC|

56 Claudia Pons, Diego García

flightA.mapping(flightC) implies
(flightA.freeSeats>0 and not flightA.canceled

 implies flightC.capacity-flightC.reservedSeats>2 and
 not flightC.canceled)))

which evaluates false in any micro-world such that flightA=<2,f> and
flightC=<2,0,f> because of the fact that:

 flightA.mapping(flightC) holds,
(flightA.freeSeats>0 and not flightA.canceled) holds,
(flightC.capacity - flightC.reservedSeats > 2) does not hold.

Thus, the presence of such micro-worlds gives us the conclusive answer that the

refinement property does not hold in the UML model.

6. Conclusion

Abstraction is a cognitive means by which software engineers deal with
complexity. The idea promoted by most software development methodologies is to
use models at different levels of abstraction; a series of transformations are performed
starting from an abstract platform-independent model with the aim of making the
model more specific at each step. Each transformation step should be amenable to
formal verification in order to guarantee the correctness of the final product.

However, verification activities require the application of formal modeling
languages with a complex syntax and semantics and need to use complex formal
analysis tools; therefore they are rarely used in practice.

To facilitate the verification task we developed an automatic method for creating
refinement conditions for UML models, written in the friendly and well-accepted
OCL language. The inclusion of verification in ordinary software engineering
activities will be propitiated by avoiding the application of unfamiliar languages and
tools.

To complement such method, we adapted a strategy for reducing the search scope
in order to make the evaluation of refinement conditions feasible. Since the satisfiable
formulas that occur in practice tend to have small models, a small scope usually
suffices and the analysis is reliable.

7. References

[1] Astesiano E., Reggio G. An Algebraic Proposal for Handling UML Consistency”,
Workshop on Consistency Problems in UML-based Software Development. UML
Conference (2003).

[2] Back, R. & von Wright, J. Refinement calculus: a systematic introduction, Graduate texts in
computer science, Springer Verlag. (1998)

Practical Verification Strategy for Refinement Conditions in UML Models 57

[3] Boiten E.A. and Bujorianu M.C. Exploring UML refinement through unification.
Proceedings of the UML'03 workshop on Critical Systems Development with UML, J.
Jurjens, B. Rumpe, et al., editors -TUM-I0323, Technische Universitat Munchen. (2003).

[4] Cavalcanti A. and Naumann D. Simulation and Class Refinement for Java. In proceedings
of ECOOP 2000 Workshop on Formal Techniques for Java Programs. (2000).

[5] Davies J. and Crichton C. Concurrency and Refinement in the Unified Modeling Language.
Electronic Notes in Theoretical Computer Science 70,3, Elsevier, 2002.

[6] Derrick, J. and Boiten,E. Refinement in Z and Object-Z. Foundation and Advanced
Applications. FACIT, Springer. (2001)

[7] Engels G., Küster J., Heckel R. and Groenewegen L. A Methodology for Specifying and
Analyzing Consistency of Object Oriented Behavioral Models. Procs. of the IEEE Int.
Conference on Foundation of Software Engineering. Vienna. (2001).

[8] Gogolla , Martin, Bohling, Jo¨rn and Richters, Mark. Validation of UML and OCL Models
by Automatic Snapshot Generation. In G. Booch, P.Stevens, and J. Whittle, editors, Proc.
6th Int. Conf. Unified Modeling Language (UML'2003). Springer, Berlin, LNCS 2863,
(2003).

[9] Jackson, Daniel, Shlyakhter, I. and Sridharan. A micromodularity Mechanism. In
proceedings of the ACM Sigsoft Conference on the Foundation of Software Engineering
FSE’01. (2001).

 [10] Kim, S. and Carrington, D., Formalizing the UML Class Diagrams using Object-Z,
proceedings UML´99 Conference, Lecture Notes in Computer Sciencie 1723 (1999).

[11] Lano,K. The B Language and Method. FACIT. Springer, (1996).
[12] Lano,K., Biccaregui,J., Formalizing the UML in Structured Temporal Theories, 2nd.

ECOOP Workshop on Precise Behavioral Semantics, TUM-I9813, Technische U. Munchen
(1998).

[13] Ledang, Hung and Souquieres, Jeanine. Integration of UML and B Specification
Techniques: Systematic Transformation from OCL Expressions into B. Procs. of IEEE
Asia-Pacific Software Engineering Conference 2002. December 4-6, (2002).

[14] Liu, Z., Jifeng H., Li, X. Chen Y. Consistency and Refinement of UML Models. 3er
Workshop on Consistency Problems in UML-based Software Development III, event of the
UML Conference, (2004).

[15] UML 2.0. The Unified Modeling Language Superstructure version 2.0 – OMG Final
Adopted Specification.. http://www.omg.org. August 2003

[16] OCL 2.0. OMG Final Adopted Specification. October 2003.
[17] Pons C., Giandini R., Pérez G., et al. Precise Assistant for the Modeling Process in an

Environment with Refinement Orientation. In "UML Modeling Languages and
Applications: Satellite Activities". Lecture Notes in Computer Science 3297. Springer,
(2004).

[18] Pons Claudia. Heuristics on the Definition of UML Refinement Patterns. 32nd
International Conference on Current Trends in Theory and Practice of Computer Science.
SOFSEM (SOFtware SEMinar). January 21 - 27, 2006 . Merin, Czech Republic. Published
in the Springer LNCS (Lecture Notes in Computer Science) by Springer-Verlag. (2006)

[19] Pons Claudia. On the definition of UML refinement patterns. Workshop MoDeVa at
ACM/IEEE 8th Int. Conference on Model Driven Engineering Languages and Systems
(MoDELS) Jamaica. October 2005.

58 Claudia Pons, Diego García

[20] Richters, Mark and Gogolla, Martin. OCL-Syntax, Semantics and Tools. in Advances in
Object Modelling with the OCL. Lecture Notes in Computer Science number 2263.
Springer. (2001).

[21] Smith, Graeme. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers. ISBN 0-7923-8684-1. (2000)

[22] Van Der Straeten, R., Mens,T., Simmonds, J. and Jonckers,V. Using description logic to
maintain consistency between UML-models. In Proc. 6th International Conference on the
Unified Modeling Language. Lecture Notes in Computer Science number 2863. Springer.
(2003).

APPENDIX: transformation from Object-Z to OCL refinement
conditions

Grammar for Z refinement expressions:

This section describes the grammar for Z refinement expressions, which is a subset

of Object-Z grammar presented in [21].
The grammar description uses the EBNF syntax, where terminal symbols are

displayed in bold face. Optional constructs are enclosed by slanted square brackets [].

Predicate::= E SchemaText × Predicate

 | A SchemaText × Predicate
 | Predicate1

Predicate1::= className.INIT

 | pre operationName
 | operationName
 | relationName

 | Predicate1 ¶ Predicate1
 | Predicate1 fi Predicate1

 | (Predicate)
SchemaText::= className.STATE [Decoration]
className::= Word
operationName::= className.Word
relationName::= Word [Decoration]
Word category for undecorated names
Decoration::= ’

Definition for the Transformation:

Practical Verification Strategy for Refinement Conditions in UML Models 59

This section contains the specification of function T that takes a refinement
condition written in Object-Z and returns the corresponding refinement condition
written in OCL. Function T is applied in the context of a UML model M containing
all the elements which are referred to in the Z expressions. Apart from producing an
OclExpression, function T returns an OclFile containing additional definitions that
are created during the transformation.

UML elements are retrieved form M by using standard lookup operations on its
environment as it is defined in [16].

T : Model -> Predicate -> (OclExpression, OclFile)

TM(Predicate1 ¶ Predicate2)= (e,Φ)

Where

TM(Predicate1)= (e1, Φ1)

TM(Predicate2)= (e2, Φ2)
e= e1 “and” e2

Φ = Φ1 merge Φ2

TM(Predicate1 fi Predicate2)= (e,Φ)

Where

TM(Predicate1)= (e1, Φ1)

TM(Predicate2)= (e2, Φ2)
e= e1 “implies” e2

Φ = Φ1 merge Φ2

TM(A className.STATE × Predicate) = (e,Φ)

Where

TM(Predicate)= (e1, Φ)
e=className“.allInstances()->forAll
(”iteratorName“|”e1“)”
iteratorName= toLowerCase(className)

TM(A className.STATE’ × Predicate) = (e,Φ)

Where

TM(Predicate)= (e1, Φ)
e=className“.allInstances()->forAll
(”iteratorName“|”e1“)”
iteratorName= toLowerCase(className) “_post”

TM(E className.STATE × Predicate) = (e,Φ)

Where

60 Claudia Pons, Diego García

TM(Predicate)= (e1, Φ)
e=className“.allInstances()->exists
(”iteratorName“|”e1“)”
iteratorName= toLowerCase(className)

TM(E className.STATE’ × Predicate) = (e,Φ)

Where

TM(Predicate)= (e1, Φ)
e=className“.allInstances()-
>exists(”iteratorName“|”e1“)”
iteratorName= toLowerCase(className) “_post”

TM (className.INIT) =(e,Φ)
Where
e= toLowerCase(className) “.isInit()”

Φ = ”Package” packageName
 "context” className “def: isInit(): Boolean =”

propertyName1“=”exp1“and”...“and”propertyNamen“=”expn
 “endPackage”
Where
packageName = class.package.name
class=M.getEnvironmentWithParents().lookup(className)
Properties = class.allProperties()->select
(p|p.initialValue->notEmpty())

∀j×1≤j≤properties->size()×
 propertyNamej = properties->at(j).name
 expj = properties->at(j).initialValue.body

TM(pre className.operationName) = (e, ∅)1

Where:
e = operation.precondition.specification.body
Where:
operation : UMLOperation =
 M.getEnvironmentWithParents().lookup(className).
 getEnvironmentWithParents()
 .lookupImplicitOperation(operationName, Sequence{})

TM (className.operationName)= (e, ∅)

Where:

1 In this document the symbol ∅ is an abbreviation denoting the empty package.

Practical Verification Strategy for Refinement Conditions in UML Models 61

e =
operation.postcondition.specification.body.renamed()
Where:
operation : UMLOperation =
 M.getEnvironmentWithParents().lookup(className).
 getEnvironmentWithParents()
 .lookupImplicitOperation(operationName,Sequence{})

Where:
function renamed() is applied on an OclExpression returning a copy of the

expression where any undecorated name v has been renamed as v_post and any
decorated name v@pre has been renamed as v.
TM (relationName) = (e,Φ)

Where:
relationName e Word -– it is an undecorated name
e = absInstance “.mapping(” refInstance “)”

Φ = “Package” packageName
 “Context” absInstance “:” AbstractClass “def:”
 “mapping(”refInstance“:”RefinedClass “):Boolean =”
exp “endPackage”
Where:
packageName = d.package.name
d : Abstraction =
M.getEnvironmentWithParents().lookup(relationName)
AbstractClass = d.supplier.name
RefinedClass = d.client.name
absInstance = toLowerCase(AbstractClass)
refInstance = toLowerCase(RefinedClass)
exp = d.mapping.body

TM (relationName’) = (e,∅)

Where:
e = absInstance “.mapping(” refInstance “)”
Where:
d : Abstraction =
M.getEnvironmentWithParents().lookup(relationName)
AbstractClass = d.supplier.name
RefinedClass = d.client.name
absInstance = toLowerCase(AbstractClass) “_post”
refInstance = toLowerCase(RefinedClass) “_post”

