
An Infrastructure for UML-based Code Generation 
Tools 

Marco A. Wehrmeister1, Edison P. Freitas3, Carlos E. Pereira2 

1 Instituto de Informática, 2 Dep. de Engenharia Elétrica 
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil 

mawehrmeister@inf.ufrgs.br, cpereira@ece.ufrgs.br 
3 School of Information Science, Computer and Electrical Engineering,  

Halmstad University, Halmstad, Sweden  
edison.pignaton@hh.se 

Abstract. The use of Model-Driven Engineering (MDE) techniques in the 
domain of distributed embedded real-time systems are gain importance in order 
to cope with the increasing design complexity of such systems. This paper 
discusses an infrastructure created to build GenERTiCA, a flexible tool that 
supports a MDE approach, which uses aspect-oriented concepts to handle non-
functional requirements from embedded and real-time systems domain. 
GenERTiCA generates source code from UML models, and also performs 
weaving of aspects, which have been specified within the UML model. 
Additionally, this paper discusses the Distributed Embedded Real-Time 
Compact Specification (DERCS), a PIM created to support UML-based code 
generation tools. Some heuristics to transform UML models into DERCS, 
which have been implemented in GenERTiCA, are also discussed. 
 

Keywords: UML, Aspect-Oriented Design (AOD), code generation, aspects 
weaving, distributed embedded real-time systems 

1 Introduction 

The design of embedded systems is not a trivial task. The domain of embedded real-
time systems presents many specific requirements (e.g. deadlines for tasks 
accomplishment, energy consumption, reduced footprint, etc.) that do not specify 
system’s functionalities but are tightly related to them. Such requirements are called 
non-functional requirements. Traditional approaches, such as object-orientation or the 
structured analysis, do not have specific abstractions to deal with these requirements, 
whose treatment is usually found intermixed with the handling of functional 
requirements. This situation leads to problems such as tangled and scattered handling, 
which hinder the reuse of previously developed artifacts (e.g. models or code). To 
solve the above-mentioned problems, some proposals can be found in the literature, 
such as subject-oriented programming [2] and Aspect-Oriented (AO) programming 
[3], which provide special constructions to specify and encapsulate non-functional 
requirements handling into single elements. 



2 Marco A. Wehrmeister1, Edison P. Freitas3, Carlos E. Pereira2 

However, solving these problems only at implementation level is not sufficient to 
deal with the mentioned complexity. Abstraction level increase is an old but widely 
accepted idea to help with such quest. Thus, embedded systems community is looking 
for new techniques/approaches, such as Model-Driven Engineering (MDE) [1], 
aiming at the management of complexity in the design of distributed embedded real-
time systems. An important issue to allow the use of MDE in embedded systems 
design is tool support [1]. Automatic transformation from a Platform Independent 
Model (PIM) to a Platform Specific Model (PSM) is a key issue to make models the 
main artifact during the whole development cycle instead of source code. 
Additionally, it avoids errors coming from manual transformations, and also helps to 
keep specification and implementation synchronized. Code generation from high-
level models can be seen as a transformation of PIM into PSM, but instead of using 
meta-model to meta-model transformations (i.e. transforming meta-model elements 
from a PIM into PSM meta-model elements), it applies the translation of meta-model 
elements into text representing source code in a target language. 

The aim of this paper is to extend the discussion presented in [18] by providing 
details on key elements of a tool called Generation of Embedded Real-Time Code 
based on Aspects (GenERTiCA). GenERTiCA has been developed to support the 
Aspect-oriented Model Driven Engineering for Real-Time systems (AMoDE-RT) 
approach [4], which uses concepts from the AO paradigm to deal with non-functional 
requirements since early design phases. Besides code generation, GenERTiCA also 
performs aspects weaving into both the generated code and the input model to provide 
non-functional requirements handling as specified in aspects’ adaptations. Therefore, 
in addition to the discussion on code generation and aspects weaving processes, this 
text also presents the Distributed Embedded Real-Time Compact Specification 
(DERCS), a PIM created to represent system’s structure, behavior, and non-functional 
requirements handling (in terms of AO elements). Moreover, heuristics to transform 
UML into DERCS models are also discussed. 

This text is organized as follows: section 2 provides details on DERCS; section 3 
presents the transformation from UML to DERCS models; section 4 discusses 
GenERTiCA’s code generation and aspects weaving processes; section 5 discusses 
some related works. Concluding remarks and future work are discussed in section 6. 

2 Meta-Model for Code Generation and Aspects Weaving 

AMoDE-RT approach [4] uses UML as specification language for systems’ PIM, 
representing its structure, behavior, and non-functional requirements handling in a 
platform independent fashion using aspects provided by the Distributed Embedded 
Real-time Aspects Framework (DERAF) [7]. Furthermore, designers use MARTE 
profile [8] to specify real-time features. UML has been chosen due to its acceptance 
as a standard, wide use in software community, and increasing interest by embedded 
systems community. Additionally, there are several academic and commercial CASE 
tools (supporting UML modeling) available to be used. However, for code generation 
purposes, UML has a weakness: its meta-model is huge and ambiguous, i.e. the same 



An Infrastructure for UML-based Code Generation Tools  3 

feature can be specified in distinct perspectives using distinct diagrams, which most 
often overlap each other making it a source of inconsistencies. Such inconsistencies 
could be partially verified using model consistency checking/testing techniques. 
However, despite its importance, this paper does not discuss model checking. 

To address the mentioned specification problem, GenERTiCA transforms UML 
models into a new PIM called Distributed Embedded Real-time Compact 
Specification (DERCS). DERCS’ meta-model is simpler than the UML one, but it 
provides the same information as UML models, i.e. system’s structure, behavior and 
non-functional requirements handling, which is specified independently from 
functional requirements handling by using AO constructions. In addition, it is worth 
to mention that DERCS has been proposed to assist code generation tools design. 

In DERCS, system structure is specified in the same way as in UML, i.e. objects 
are the fundamental entity. They represent system’s elements, whose interaction and 
performed actions provide the expected functionality. Objects can be active or 
passive. The former kind represents objects that have their own execution flow (i.e. 
their own thread), such that they execute actions concurrently with other active 
objects. Usually, the active objects are compared to concurrent processes, and hence 
also have characteristics such as execution pattern (e.g. periodic, aperiodic, or 
sporadic), priority, deadlines, and others. On the other hand, passive objects execute 
actions sequentially as response to messages sent by other objects (passive or active). 
Additionally, objects can be deployed in different nodes, representing computing 
resources (i.e. a unit with processor, memory, network infrastructure, etc.) or a 
hardware unit upon which object execute their behavior. These concepts are similar to 
those available in UML and MARTE meta-models. 

The behavior semantics of DERCS is to execute a sequence of actions in response 
to: (i) messages exchanged among objects, (ii) application events or (iii) state-related 
events. Objects, which can be deployed in the same (i.e. local objects) or different 
nodes (i.e. remote objects), interact by exchanging messages. After receiving a 
message, an object executes the behavior associated with this message. In DERCS, 
this behavior semantics is always the same, independently if the message has been 
sent from a remote or local object. The description on “how” to implement this 
communication is defined in the mapping rules according the target platform. 
GenERTiCA selects (based on DERCS information) the appropriate script for each 
sending message action. For events, the behavior semantics is similar, i.e. the 
behavior associated with an event is triggered after the recognition of this event’s 
occurrence.  

Furthermore, DERCS can represent not only send message action, but also other 
actions, such as assignments, evaluation of expression, state transitions, creation and 
destruction of objects. These actions represent an adaptation of UML 2.x meta-
model’s behavioral elements (e.g. actions). 

The most important difference between DERCS and UML 2.x meta-model is the 
representation of aspects and their adaptations. Fig. 1 shows a fragment of DERCS 
meta-model that is related to AO concepts. Aspects provide structural and behavioral 
adaptations, which modify system’s elements that have been selected through joint 
points. Inside the UML model, joint points are specified as Join Point Designation 



4 Marco A. Wehrmeister1, Edison P. Freitas3, Carlos E. Pereira2 

Diagrams (JPDD) [9]. JPDDs are “compiled” during the UML-to-DERCS 
transformation to create instances of the JoinPoint, which contain a list of elements 
selected by the JPDD. The following elements can be selected: (i) classes, (ii) 
attributes, (iii) methods, (iv) behaviors, (v) actions, (vi) objects, and (vii) nodes. All of 
these elements are descendents of the BaseElement meta-model class. 

 
Fig. 1. DERCS elements related to non-functional requirements 

Aspects’ adaptations are linked with join points through Pointcut instances, which 
are obtained from Aspects Crosscutting Overview Diagram (ACOD) [4][10]. 
Adaptations are applied in the selected element at a RelativePostion, which can be 
before or after a certain point in the execution flow, or enclosing a behavior or action, 
or even modifying the structure or adding new features to an element. In this sense, 
DERAF aspects provide pre-defined adaptation semantics that shall be used to specify 
the non-functional requirements handling. StructuralAdaptations and 
BehavioralAdaptations are created according to aspects’ adaptations that have been 
specified in ACOD. 

Finally, it is important to highlight that DERCS tries to simplify the meta-model of 
UML 2.x by grouping structural and behavioral information, instead of having this 
information spread over different meta-model elements of different diagrams. More 
specifically, the modeled dynamic behavior (i.e. action sequences) described in 
different diagrams (i.e. activity, interaction and state diagrams) are grouped together 
into an instance of Behavior meta-model element. Moreover, AO-related meta-model 
elements separate the handling of function from non-functional requirements already 
in modeling level. Hence, this separation can be carried until the aspects weaving 
phase. This is an important contribution for the improvement of model elements 
reusability, as presented in [10]. Additionally, this separation is also helpful to 
mapping rules description since it allows designers to concentrate efforts in one 
concern at each time. 



An Infrastructure for UML-based Code Generation Tools  5 

3 UML-to-DERCS Transformation 

Once the distributed embedded real-time system is modeled using UML, MARTE and 
DERAF, it is possible to transform the UML model into a DERCS model. 
GenERTiCA performs this transformation automatically using pre-defined heuristics.  

GenERTiCA has been implemented as a plug-in to the Magic Draw CASE tool 
[15], which provides an API to access the UML 2.x meta-model. Hence, the 
transformation from UML to DERCS (as well as DERCS meta-model itself) was 
written as “normal Java code” instead of using transformations frameworks, such as 
Acceleo [13] and OpenArchitectureWare [14]. The main reason for this choice was 
the possibility to access full information from the UML model and its diagrams using 
an MOF [17] API (provided by the modeling tool). Using the mentioned tools, the 
UML model must be exported as XMI to be imported as other representation, such as 
EMF [16], which could introduce XMI version incompatibility problems. However it 
is worth to mention that GenERTiCA implementation is not constrained to be a plug-
in for a specific case tool. Its source code is modular enough to allow the replacement 
of the current transformation engine implementation to other one using different 
transformation frameworks as the ones mentioned. 

The transformation of structural specification from the UML meta-model to 
DERCS meta-model is straightforward, i.e. is a one-to-one mapping, as depicted in 
Table 1. However a remark concerning relationships of classes must be written. For 
one to many relationships, an array attribute is created in the “one relationship-end” to 
represent the “many relationship-end”. Further, for composition associations, methods 
to add or remove elements to/from this array are also created in the DERCS model. 

Table 1.  Mappings between structural elements of UML and DERCS meta-model. 

UML meta-model DERCS meta-model 
Class Class 
Property Attribute 
Type ou PrimitiveType DataType sub-class 
VisibilityKind Visibility 
Operation Method 
 decorated with <<getter>> Method, Behavior, ReturnAction 

 decorated with <<setter>> Method, Parameter, Behavior, 
AssignmentAction 

Parameter Parameter 
ParameterDirectionKind ParameterKind 

Association Attribute, Method, Behavior, ReturnAction, 
AssignmentAction, Parameter 

 if any association end defines 
AggregationKind as composite 

Além dos acima, CreateObjectAction, 
DestroyObjectAction 

Lifeline ou InstanceSpecification  
 related to class decorated with 

<<SchedulableResource>> ActiveObject 

 classes without stereotype or decorated with 
<<MutualExclusionResource>> or 
<<Resource>>  

PassiveObject 

 
Considering the behavior specified in the UML model, GenERTiCA analyzes 

sequence diagrams to find actions that are executed within the context of methods. It 



6 Marco A. Wehrmeister1, Edison P. Freitas3, Carlos E. Pereira2 

also identifies branches in the execution flow as well as loops. This is achieved using 
a call stack-based mechanism similar to one implemented in computer programs. 
Reserved words are used to indicate actions that are different from message sending, 
allowing the specification of assignments or expression evaluations actions within 
sequence diagrams. During the evaluation of sequence diagrams, objects are also 
“discovered”. On the other hand, their deployment is performed according to 
information obtained from deployment diagram.  

Fig. 2 depicts a sequence diagram that illustrates an example of system behavior 
modeling. From this diagram, transformation heuristics can infer the behavior of three 
methods: (i) MovementController.run(); (ii) Actuator.setActValue(); (iii) Movement 
Information.processInfo(). For (i), the behavior has two send message actions (related 
to messages 2 and 10). The behavior of (ii) is more complex having a object creation 
action (message 3), a branch, three send message actions (messages 4-8) and an 
assignment action (message 9). Considering (iii), its behavior has two send message 
actions (messages 11 and 13), an assignment action (message 12) and a branch. 

 

Fig. 2. Specification of system behavior using a sequence diagram 

An important part of UML-to-DERCS transformation heuristics is the creation of 
AO related elements in DERCS model. Aspects are specified in ACOD, which is a 
special kind of class diagram. Each class annotated with <<Aspect>> stereotype is 
transformed into an aspect. Structural and behavioral adaptations, and also pointcuts 
are represented as instances of the Operation meta-class in the UML meta-model. 
They are transformed into instances of, respectively, StructuralAdaptation, 
BehavioralAdaptation and Pointcut meta-classes of DERCS.  



An Infrastructure for UML-based Code Generation Tools  7 

However the most critical part of the transformation is the evaluation of JPDDs to 
create JoinPoint instances, and also to select elements according the search criteria 
specified by JPDD. In spite of the expressiveness provided by JPPD to select join 
points, in current version of the UML-to-DERCS transformation heuristics, JPDD 
specification is constrained to simple selections. Hence, DERCS elements that can be 
selected are: (i) Class; (ii) Attribute; (iii) Method; (iv) Node; (v) SendMessageAction; 
(vi) ReturnAction; (vii) CreateObjectAction; (viii) DestroyObjectAction; (ix) 
Behavior. Fig. 3 depicts a JPDD that selects the active objects’ behaviors that are 
associated to methods that are executed cyclically. Therefore, when this JPPD is 
evaluated, all instances of DERCS’ Behavior meta-model element, which match with 
the specified selection criteria, are gathered into the join point created to represent this 
JPDD. 

 

 
Fig. 3. JPDD: selection of active objects’ behavior that is triggered periodically 

4 Code Generation and Aspects Weaving 

GenERTiCA is a tool created to support the AMoDE-RT [4], which separates 
concerns related to requirements handling by using aspects from DERAF [7] along 
with UML and MARTE profile [8]. At modeling phase the (informal) semantics of 
each aspect adaptation are platform independent, i.e. it is defined how the system is 
affected by adaptations but there are no definitions on how to implement such 
adaptations in a given platform. These adaptations implementations are done as 
mapping rules scripts that use services and constructions available in the target 
platform. A discussion on aspects implementation has been provided in [18] and [20].  

GenERTiCA’s code generation approach is based on mapping rules scripts that are 
described in XML files. Mapping rules for different platforms can be specified in a 
single XML file. GenERTiCA chooses the appropriate mapping rules according to 
objects deployment information available in DERCS model. Fig. 4 depicts 
organization of mapping rules in the XML file. 

There are two kinds of mapping rules: Application and Platform Configuration. 
The former represents the mapping rules to generate the application source code, i.e. 
code that implements system’s expected behavior according to application 
requirements; code describing how objects are connected and how they interact, as 
well as how the application handles system’s non-functional requirements. On the 
other hand, the Platform Configuration branch contains scripts that are responsible to 



8 Marco A. Wehrmeister1, Edison P. Freitas3, Carlos E. Pereira2 

customize services provided by the platform, onto which the application runs. Such 
customization can be seen as an “on/off switch” for platform services. Depending on 
how the platform can be customized, GenERTiCA can create configuration files, 
and/or to tailor APIs’ source code, using information from DERCS model, e.g. list of 
aspects specified in the ACOD. 

 
Fig. 4. Strcuture of mapping rules XML files 

The XML format was chosen due to its organization, as a tree structure, that 
facilitates the reuse of previously developed scripts, as well as the organization of the 
produced scripts. Leafs contain scripts, which are in fact the ones responsible to 
perform the translation from DERCS elements to source code, and also to weave 
aspects adaptations into the generated code or input model (i.e. DERCS model). By 
using XML, the designer can create repositories to store implementations of DERAF 
aspects, as well as mapping rules that have been previously created and validated. It is 
an easy task to describe a script to map, for example, actions that represent message 
exchanged between remote objects using a given API, and reuse it in a futher project 
that uses the same API and/or target platform. 

Simplicity was one of the aims for the description on how to map DERCS elements 
into source code. GenERTiCA adopts an approach that uses small scripts that are 
responsible to generate fragments of source code (for each single element of DERCS), 
which are combined into source code files. On other words, scripts in XML tree’s 
leafs need only to access information from few elements (or just a single one), 
keeping the focus and aim of the mapping rule, instead of creating complex scripts 



An Infrastructure for UML-based Code Generation Tools  9 

that can generate the whole source code. The scripting language used in GenERTiCA 
is the Velocity Template Language (VTL) [11], an open source and wide used 
scripting language. VTL was chose because it allows writing any kind of text, into 
which one can specify simple commands to customize the text produced after script 
execution. Thus, VTL accomplishes GenERTiCA requirement for generating code for 
different languages. For examples of VTL scripts, interested readers are referred to 
[18] and [20]. 

To perform the code generation/aspects weaving, GenERTiCA implements the 
algorithm depicted as an activity diagram in Fig. 5. GenERTiCA traverses the list of 
DERCS’ elements (e.g. classes, attributes, methods, behaviors, etc.), looking for a 
script that matches with the selected element, according to the tree hierarchy of the 
XML file. Once the script is found, it is executed, generating a fragment of text 
representing the source code for the selected element. In addition, GenERTiCA 
verifies if any aspect affects the selected element, i.e. it checks if this element is 
contained in the selection list of any join point. If this is the case, all pointcuts, which 
are related to that join point, are evaluated to find which adaptations must be applied 
in the selected element. Adaptations’ scripts are executed and modify the generated 
code fragment, i.e. the aspect weaving is performed. This algorithm repeats until all 
elements are evaluated. 

 
Fig. 4. Code-generation and aspects weaving algorithm



10 Marco A. Wehrmeister1, Edison P. Freitas3, Carlos E. Pereira2 

 

It is important to highlight that, due to VTL, leaf nodes contain scripts that allow 
the generation of source code fragments for different languages such as C/C++, Java, 
VHDL, SystemC, and others. These generated code fragments are merged to create 
source code files, which are compiled or synthesized by external tools. The script 
language has full access to information about system objects using DERCS meta-
model (see section 2). Therefore, it is possible to construct specialized and also 
complex mapping rules. 

VTL allows scripts to access methods available by any object registered in the 
scripting engine. Therefore, aspect adaptation scripts can perform modifications in the 
DERCS model (i.e. aspects model weaving) by means of accessing methods available 
in DERCS API. Aspects model weaving allows an early evaluation of the impact 
caused by aspects adaptations in the model. Thus, tools such as design space 
exploration tools could evaluate different implementations of the same aspect in order 
to chose one that best fits with system requirements. For details on design space 
exploration at modeling level using UML, interested readers should refer [12]. 

5 Related Work 

Code generation is not a new topic. The idea of using computers to generate code 
from some higher abstract specification comes since the beginning of the use of 
computers. Several works aiming at distinct domains have been done in this subject. 
In general, it can be stated that techniques vary from the sort of input specification, 
passing through the way to perform code generation, until the amount of generated 
code and the target language. In order to keep the focus on the generation of code for 
distributed embedded real-time systems, this section discusses a small fraction of 
recent related works. 

CoSMIC [5] provides generative tools that work with a set of Domain Specific 
Modeling Languages (DSML) in order to provide a component-based implementation 
for a distributed embedded real-time system. DSML are interesting options for 
distributed embedded real-time systems design, however user-made languages 
introduce some problems due to the lack of standardization for concepts and language 
constructions. In our approach we use a standard and well-accepted modeling 
language like UML that overcomes such problems. Besides, the CoSMIC’s AO-
related tools work with aspect like AO languages does, i.e. aspects, joinpoints, 
pointcuts are specified as text instead of using a graphical notation as our approach 
does. However, besides not using graphic representations for AO concepts, these tools 
can also modify the input model. 

SysWeaver [6] is a toolset for analyzing non-functional requirements, automating 
design choices (design space exploration), and also to generate code for distributed 
embedded real-time systems, which are specified using Mathlab/Simulink. Basically, 
the difference from that work is that our work deals with distributed embedded real-
time systems specification in terms of OO and AO concepts, instead of specifying 



An Infrastructure for UML-based Code Generation Tools  11 

functional and para-functional properties. In addition, our code generation approach 
seems to be more flexible to generate code for different target languages due to ability 
of VTL’s scripting engine, which recognizes commands within any normal text, and 
also due to the approach of using small script dedicated to a specific element of the 
input model. 

6 Conclusions and Future Work 

The proposed work addresses the problem of automatic code generation for 
distributed embedded real-time systems. The presented infrastructure deals with 
functional and non-functional requirements using concepts of AO paradigm in order 
to improve the separation of concerns on their handling.  

GenERTiCA is a code generation tool capable to deal with aspects during the code 
generation process. The adopted approach uses small scripts to produce code 
fragments that are merged to create source code files. Besides code generation, 
GenERTiCA can also perform aspects weaving at model and implementation levels. 
Hence, it is possible to perform aspects weaving in the input model, as well as in the 
generated source code. GenERTiCA’s approach supports the use of AO concepts 
together with non-AO languages, e.g. C/C++, SystemsC, VHDL, since AO concepts 
are specified in the model, and aspects are implemented as mapping rules that uses 
constructions available in the target laguage. 

GenERTiCA takes a UML model as input, transforming it into a DERCS model, 
which has a simplified meta-model (compared with the UML one) to provide 
information on system structure, behavior, and non-functional requirements handling 
(as DERAF aspects). Additionally, a set of mapping rules organized in a XML file is 
also used as input to GenERTiCA. With this approach, scripts previously developed 
can be easily reused in further projects [20], reducing the design time. Once a set of 
mapping rules is created and validated to a given platform, it can be easily reused into 
other projects that use the same target platform. As presented in [20], GenERTiCA 
has been successfully used in some case studies to generate RTSJ code from UML 
models, as well as C++ code for the ORCOS [21].  

As future work, other case studies are being developed, as well as mapping rules 
for other target platforms (e.g. EPOS [19], RTAI, and VHDL) are being created. The 
implementation of transformation heuristics needs to be improved to support other 
JPDD selections. Other possible future work is to modify GenERTiCA 
implementation to use one of the open source transformation engines mentioned in 
this text. Additionally, the presented methodology is intended to guide the 
development of adaptable and flexible middleware aiming at its use in wireless sensor 
networks. The use of aspect-oriented concepts will allow the aggregation of different 
features to the middleware as they are required, and this way, promoting the desired 
flexibility and adaptability. 



12 Marco A. Wehrmeister1, Edison P. Freitas3, Carlos E. Pereira2 

References 

1. Selic, B. The Pragmatics of Model-Driven Development. IEEE Software, v.20, n.5, pp.19--
25 (2003). 

2. Ossler, H., and Tarr, P. Using Subject-Oriented Programming to Overcome Common 
Problems in Object-Oriented Software Development/Evolution. In: 21st International 
Conference of Software Engineering, IEEE Computer Society Press, pp. 687--688 (1999). 

3. Kiczales, G. et al. Aspect-Oriented Programming. In: European Conference for Object-
Oriented Programming, LNCS, vol. 1241, Springer-Verlag, pp. 220--240 (1997). 

4. Wehrmeister, M.A. et al. An Aspect-Oriented Approach for Dealing with Non-Functional 
Requirements in a Model-Driven Development of Distributed Embedded Real-Time 
Systems. In: 10th IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing, IEEE Computer Society, pp. 428--432 (2007). 

5. Gokhale, A. et al. Model Driven Middleware: A New Paradigm for Deploying and 
Provisioning Distributed Real-time and Embedded Applications. Journal of Science of 
Computer Programming: Model-Driven Architecture (2004). 

6. Niz, D. et al. Model-based Development of Embedded Systems: The SysWeaver Approach. 
In: 12th IEEE Real-time and Embedded Technology and Applications Symposium, IEEE 
Computer Society, pp. 231--242 (2006). 

7. Freitas, E.P. et al. DERAF: A High-Level Aspects Framework for Distributed Embedded 
Real-Time Systems Design. In: 10th International Workshop on Early Aspects, AOSD 
2007, LNCS, vol. 4765, pp. 55--74 (2007). 

8. OMG. UML Profile for Modeling and Analysis of Real-time and Embedded Systems 
(MARTE), http://www.omg.org/cgi-bin/doc?ptc/2007-08-04 (2005) 

9. Stein, D. et al. Expressing Different Conceptual Models of Join Point Selections in Aspect-
Oriented Design. In: 5th International Conference on Aspect-Oriented Software 
Development, ACM Press, pp. 15--26 (2006). 

10. Wehrmeister, M.A. et al. A Case Study to Evaluate Pros/Cons of Aspect- and Object-
Oriented Paradigms to Model Distributed Embedded Real-Time Systems. In: 5th 
International Workshop on Model-based Methodologies for Pervasive and Embedded 
Software, IEEE Computer Society, pp. 44--54, (2008). 

11. The Apache Velocity Project, http://velocity.apache.org/ engine/releases/velocity-1.5/ 
12. Oliveira, M.F.S et al. Early Embedded Software Design Space Exploration Using UML-

Based Estimation. In: 7th IEEE International Workshop on Rapid System Prototyping, 
IEEE Computer Society, pp. 24--32 (2006). 

13. Acceleo, http://www.acceleo.org 
14. openArchitectureWare, http://www.openarchitectureware.org/ 
15. Magic Draw tool, http://www.magicdraw.com/ 
16. Eclipse Modeling Framework, http://www.eclipse.org/ modeling/emf/ 
17. OMG, “Meta Object Facility (MOF)”, http://www.omg.org/mof/ 
18. Wehrmeister, M.A. et al. GenERTiCA: A Tool for Code Generation and Aspects Weaving. 

In: 11th IEEE International Symposium on Object and Component-Oriented Real-Time 
Distributed Computing, IEEE Computer Society, pp. 234—238 (2008). 

19. Fröhlich, A.A., Wanner, L.F. Operating System Support for Wireless Sensor Networks. 
Journal of Computer Science, v.4, n.4, pp. 272--281 (2008). 

20. Wehrmeister, M.A. An Aspect-Oriented Model Driven Engineering Approach for 
Distributed Embedded Real-Time Systems, Ph.D. Thesis, Federal University of Rio Grande 
do Sul, Brazil (2009). 

21. Organic Reconfigurable Operating System, https://orcos.cs.uni-paderborn.de/orcos/ 


