
Systematic Model-in-the-Loop Test
of Embedded Control Systems

Alexander Krupp and Wolfgang Mueller

Paderborn University/C-LAB, Fuerstenallee 11, 33102 Paderborn, Germany
alexander.krupp@c-lab.de, wolfgang.mueller@c-lab.de

Abstract. Current model-based development processes offer new op-
portunities for verification automation, e.g., in automotive development.
The duty of functional verification is the detection of design flaws. Cur-
rent functional verification approaches exhibit a major gap between re-
quirement definition and formal property definition, especially when ana-
log signals are involved. Besides lack of methodical support for natural
language formalization, there does not exist a standardized and accepted
means for formal property definition as a target for verification planning.
This article addresses several shortcomings of embedded system verifica-
tion. An Enhanced Classification Tree Method is developed based on the
established Classification Tree Method for Embeded Systems CTM/ES
which applies a hardware verification language to define a verification
environment.

1 Introduction

Verification cost has become a major cost factor in mechatronic systems de-
velopment and in electronic design. Verification cost mitigation has become a
priority, and any efficiency increase in verification contributes substantially to
overall development efficiency.

This article describes an approach which supports the definition of a func-
tional verification plan for mechatronic systems with full support for testbench
automation, traceability, visibility, and repeatability. We introduce a method-
ology to close the gap between requirements and test definition by means of
an enhanced classification tree method (CTM). It supports functional stimulus
patterns, acceptance criteria which are compatible to the stimulus definition,
and test quality criteria. The latter relate to requirements and they enable re-
quirements coverage. Horizontal and vertical reuse is facilitated by the unified
notation of the enhanced CTM. A concept for automation of the testbench execu-
tion is presented to reduce cost- and time -intensive manual human intervention
in the verification process. Ideally, this leads to higher throughput of test cases
due to reduced setup times for faster or more intense testing.

1.1 Mechatronic vs. Electronic Systems Design

Todays mechatronic systems development processes are increasingly dealing with
a formal model of the mechatronic system, which enables code generation as well

as early verification of system features. Currently, model-based development is
an accepted methodology in mechatronics systems design, which is being estab-
lished in industry. The use of models and associated code generation replaces
traditional manual coding for electronic control units. The increasing develop-
ment productivity enables the creation of models of increasing complexity. While
code generation removes many sources of coding errors, it cannot remove flaws
in the models themselves. However, the use of models in mechatronic systems
development opens up additional opportunities for verification. E.g., the auto-
motive industry applies test and simulation environments at several levels of ab-
straction. Model-In-The-Loop (MIL) environments are applied to tests at model
level with, e.g., MATLAB/Simulink. The integration of hardware and software
on an embedded control unit (ECU) is being tested by means of a Hardware-
In-The-Loop (HIL) environment. Sometimes additional abstraction levels, such
as Software-In-The-Loop (SIL) and Processor-In-The-Loop (PIL) technologies
are applied. Recently, with increasing computation power, the construction of
virtual prototypes, i.e., a combination of behavioral and geometrical models, has
become feasible. The focus of existing technology is on efficiency gains in the de-
velopment and in the integration of models and hardware rather than extensive
verification. The existence of a formal mechatronic model, however, paves the
way towards extensive verification beyond the capabilities of a physical proto-
type. With formal verification for mechatronic systems being introduced mostly
at research level, the most widespread mode of verification remains simulation
and testing. Existing test tools by, e.g., National Instruments, dSPACE, Etas,
Vector, and MBtech are rather specialized and apply proprietary languages and
proprietary concepts.

Todays test patterns for mechatronic systems are either defined manually
as fixed waveforms, or generated automatically from models. Automatic test
pattern generation for mechatronic systems either derives test patterns from the
model-under-test itself, or it requires the redundant creation of a reference model
at the same level of abstraction [22]. The drawback of the first approach is that it
does not support the generation of test patterns to detect missing functionality.
The drawback of the second approach is that it requires the development of
another model of similar complexity as the model-under-test. Both approaches
derive their test patterns from models instead of from requirements. The relation
of requirements to a model and, consequentially, to generated test patterns,
remains unspecified.

Classification Tree Method CTM and CTM/ES Classification Trees were
introduced during the early 90s by Grimm and Grochtmann for the structured
representation of test cases [10, 11]. The construction of classification trees
and their associated combination tables is supported by the Classification-Tree
Method (CTM), which is derived from the category-partition method [19]. In
its basic form, a classification tree and the accompanying combination table de-
scribe abstract high-level test cases in a graphical manner without an explicit
notion of time. Since 1999, the method and notion has been enhanced by Con-

rad and Fey to accommodate the description of time-dependent test scenarios
termed test sequences [5, 4]. These extensions are known as the Classification-
Tree Method for Embedded Systems CTM/ES. The CTM/ES has recently been
successfully employed in different control software development projects [17].
One of the main application areas is the testing of in-vehicle software developed
in a model-based way [21]. Strengths of the CTM/ES approach are the descrip-
tion of time-continuous test patterns [6], it may also be applied as a front-end
to Time Partition Testing [18].

The CTM/ES is mainly applied in the automotive domain. Several tools ex-
ist for editing classification trees (CTE/XL, Razorcat CTE) and for test data
derivation support (MTest). The syntax of classification trees is a simple graph-
ical notation. Its main advantage is the combination of discrete and continuous
elements by means of interpolation for stimuli generation. Randomized stimuli
instantiation is supported. However, it does not provide a gradual path towards
directed test data definition.

Functional Verification In the domain of electronic design the concept of
model-based engineering across several levels of abstraction has been employed
for several decades. Formal verification, simulation and testing are employed on
a regular basis. The increasing demand for verification at an early abstraction
level, like system level, has led to the creation and introduction of methods and
languages for functional verification. Functional verification is a methodology,
which encompasses formal verification as well as simulation approaches. It builds
on the declarative formulation of design properties as formal requirements, which
provide a redundant path from natural language and semi-formal requirements
to the design to enable consistency checks. Once defined, the formal properties
can be applied for formal verification as well as for verification by simulation.
Meanwhile, libraries and methodological guidelines have become available to sup-
plement the tooling and standardization efforts, such as the Verification Method-
ology Manual for SystemVerilog and the Open Verification Methodology. Today,
the domain of electronic design is able to apply a rather complete methodology
for functional verification of digital designs [2].

2 Shortcomings of Mechatronic System Verification

Model-based development requires a thorough verification approach at modeling
level before any code generation and implementation on an execution platform
is performed. Generally, for verification purposes a requirements document in
model-based development has to be accompanied by a verification document,
the so-called verification plan. This document captures information, which does
not belong into the requirements document, but is yet essential for successful im-
plementation of a substantial verification task. As shown in figure 1, requirements
guide the development of a mechatronic system model, whereas the verification
plan determines verification goals, which are derived from the requirements as

Fig. 1. Verification Plan, Requirements and Mechatronic Model

well. For testing purposes, the verification plan also needs to determine the ac-
tual system interfaces from the actual model-under-test. On application to the
model-under-test, execution of the verification plan connects a testbench to the
model interfaces, which then provides stimuli to the model-under-test, obtains
measurements from it and provides verification results to the verification engi-
neer.

In comparison to the electronic design verification approach, we observe sev-
eral methodical shortcomings in mechatronic system verification.

1. Support for traceability and visibility is limited.
2. A methodical gap exists between requirements and testbench definition for

mechatronic systems. This is due to
(a) missing methodical support for the derivation of test descriptions from

natural language requirements,
(b) missing stimulus patterns which describe requirements,
(c) missing requirements-based acceptance criteria,
(d) missing test quality criteria for requirements coverage, which are easily

derived,
3. Missing horizontal and vertical re-use of test definitions.

The limited support for traceability and visibility is due to the lack of func-
tional coverage definitions, which can provide an independent means of require-
ment coverage measurement for tracing tested requirements, and for visibility
of the current state of verification. The methodical gap from requirements ex-
ists for several reasons: a methodical support for derivation of test descriptions
requires a suitable target. As most requirements allow an infinite number of pos-
sible stimuli, a directed stimulus definition cannot capture such a requirement,
as it represents a single instance of stimulus only. However, the CTM/ES pro-
vides a first step for the definition of functional stimulus patterns. The definition
of requirements based acceptance criteria for automatic acceptance evaluation
is only possible usually by definition of accepting predicates. Existing predi-
cate languages do not cover the definition of characteristic acceptance criteria
for continuous systems. Existing proposals for test quality criteria are usually

Fig. 2. Modules of the RailCab Shuttle

based on structural coverage criteria, which do not easily relate to requirements.
Moreover, the re-use of test descriptions is only possible with high effort. Similar
drawbacks have been described for mixed-signal verification in [3].

3 Example System: RailCab Suspension-Tilt Module

RailCab is a linear motor driven train system developed by the University of
Paderborn [23]. RailCab is based on shuttles, which are composed of mod-
ules, which are arranged as shown in figure 2. The coach body is mounted on
two suspension-tilt modules, which are used for active suspension and tilting.
The suspension-tilt modules are coupled to the active guidance modules via air
springs. The active guidance modules can actively rotate the axles relative to
the rails to avoid striking the flange against the rail head, they also facilitate the
driving through passive shunting switches. The rotors of the linear motor form
the driving modules which provide propulsion and braking force. The active sus-
pension system of the shuttle does without passive dampers in order to avoid
the propagation of high-frequency disturbance into the coach body. The forces
necessary for the damping are computed by the control and transferred to the
body by displacing the spring bases via hydraulic cylinders [9].

The suspension-tilt module is the sub-system which links the active guid-
ance modules and the coach body of the shuttle. A model of the system exists
as a MATLAB/Simulink model. The model captures the functionality of one
suspension-tilt module. It also contains a model of the coach body, and a model
of the hydraulic system. The model controls the body position relative to the
guidance modules. The elevation, the lateral position of the body, and its angle
relative to the longitudinal axis is controlled. The controller and plant is influ-
enced by the hydraulic pressure, and by disturbing forces. The coach body is to
be controlled to provide maximum comfort for the passengers.

4 Concept for Systematic Testing of Mechatronic
Systems

Main goal of this new approach to systematic testing of mechatronic systems
is to narrow the methodical gap between requirements and testbenches. Exist-
ing methods for functional verification and testing of mechatronic systems lack
in expressiveness and do not cover all areas of functional verification. More-
over, there is no accepted and standardized test definition language for control
systems. An important precondition for a clean verification process is a plan.
The concept of a verification plan is not new, however, current concepts and
tools for testing mechatronic systems do only support a limited subset of the
aspects of a verification plan. A verification plan has to support traceability,
visibility, and repeatability. Traceability of the verification plan is provided by
links between requirements and verification plan artifacts, namely stimulus def-
initions, test quality criteria and acceptance criteria. As the purpose of testing
is bug hunting, requirement violations are traced from violated acceptance cri-
teria. Test “completeness” is traced from test quality criteria, which describe
covered requirements. Visibility of the state of verification is provided by such
requirements coverage. Repeatability in model-based development is maintained
through a deterministic simulation and test environment.

Similar to the functional requirements document as a design specification, the
verification plan assumes the role of the verification specification. This document
captures information, which does not belong into the requirements document,
but is yet essential for successful implementation of a substantial verification
task. While the requirements are being implemented, concurrently the verifi-
cation plan has to be implemented. The implementation of a verification plan
frequently consumes resources in the order of the design and model implemen-
tation. Increased efficiency in the process of verification plan generation and
execution therefore results in substantial savings in the overall development pro-
cess.

Figure 3 gives an overview of the new concept for systematic testing of mecha-
tronic systems. The verification plan is based on the requirements and a so-called
principle solution, which is a first step in requirements formalization [1]. For in-
creased flexibility and precision of stimulus definition, constraints are applied for
declarative stimulus definition, supported by a graphical notation similar to the
CTM/ES. A new approach to acceptance criteria definition is introduced, which
applies a graphical notation similar to CTM/ES. A new CTM/ES-like notation
is applied for functional coverage definition.

Stimulus definition with constraints allows requirement based stimulus pat-
tern definitions, which can be more accurately targeted for improved test qual-
ity: The declarative nature of the constraint-based stimulus patterns enables
automatic generation of a wide range of stimuli. As more implementation de-
tails become available, the declarative stimulus patterns can be adapted in a
straightforward manner. The new notation for acceptance criteria complements
the stimulus pattern definition and it enables automatic acceptance criteria gen-
eration together with stimuli generation for fully automatic testbench execution.

Fig. 3. Verification Plan for Systematic Testing

Moreover, the level of abstraction of the acceptance criteria definition is different
from that of the model-under-test. The expensive creation of a reference model at
the same level of abstraction can therefore be avoided for automatic acceptance
evaluation. Test quality criteria define verification goals. These criteria encom-
pass structural coverage metrics, usually. Structural coverage metrics, however,
do not enable the derivation of requirements coverage. Recently, in the domain of
electronic design, additional test quality criteria have been introduced by means
of functional coverage. There are no approaches to functional coverage definition
for mechatronic systems, which seamlessly fit into a verification process. A new
approach to functional coverage definition for mechatronic systems is defined,
which relates to requirements and enables requirements coverage derivation.

The definition of a unified CTM/ES notation for stimulus, acceptance cri-
teria, and test quality criteria immediately enables exchange and re-use of in-
formation between, e.g., the stimulus and functional coverage aspects of the
notation. Functional coverage definition is a tedious process usually, which can
be alleviated by the derivation from previous stimulus pattern definitions.

The test control is described by means of the verification languages for ex-
ecution of the testbench elements. Current industrial approaches to automatic
testbench generation and execution are able to extract a subsystem from a sim-
ulation model for, e.g., MATLAB/Simulink. The extracted subsystem interfaces
are then mapped into a testbench for automatic execution. One example of such
a system is AutomationDesk from dSPACE. The automotive testbench features
lack in expressivity though in comparison to state-of-the-art “intelligent test-
benches” as exist for electronic design [2, 14].

4.1 Enhanced CTM for Constraint-based Stimulus Patterns

The original CTM/ES stimuli generation process is rather monolithic and inflex-
ible. It takes a classification tree, instantiates it by means of certain heuristics,

Fig. 4. CTM/ES vs. Enhanced CTM Stimuli Generation Process

interpolates between synchronization points and discretizes the stimulus for test
input as illustrated in figure 4. The enhanced CTM provides a new syntax for
the constraint based definition of synchronization points, which allows an the
definition of constraints between synchronization point timing and value instan-
tiation.

The new and enhanced stimuli generation process is based on a verification
language (VL). The classification tree and constraints are mapped to the ver-
ification language, which controls the further generation process of constraint
solving, interpolation, and discretization. A randomized constraint solver re-
places the former instantiation step. Then, interpolation and discretization are
performed under control of the verification language. The mapping and inte-
gration of the CTM syntax to a verification language allows to use verification
language elements such as additional constraints with the classification tree. This
provides a higher control over the value instantiation, as it enables the definition
of dependencies between classifications and synchronization point times. The
enhancements over CTM/ES are summarized in table 1.

CTM/ES Enhanced CTM

Randomized instantiation + +
Constraint based randomized instantiation - +
Synchronization Points with fixed time + +
Synchronization Points with constraint based time - +
Integration with Verification Language - +

+ : supported
- : unsupported

Table 1. Stimulus pattern definition with enhanced CTM

Stimulus Patterns This section illustrates the definition of stimulus patterns.
First, the interface definitions are captured by a classification tree. Based on the
interface definition, a raw classification tree is partly automatically derived as de-
scribed for the CTM/ES, where interfaces become combinations, signals become

4 stepz_pressvarlow

4.1 0s

4.2 +2s

4.3 +4s

4.4 +4s

4.5 +4s

4.6 +4s

4.7 +4s

Stimulus Acceptance Coverage

testbench

phi_Anr

[mrad]

y_Anr

[mm]

z_Anr

[mm]

]0,20[

20

−20

0

]−20,0[
]0,90[

]125,150[

90

100

120

]90,100[

0

]100,120[

p_Versorgung

[bar]

]120,125[
125

150

eval1_ifstim1_if

Fig. 5. Classification Tree for Stimulus

classifications and classes are setup heuristically for the signal range described for
the interface. The tree is then manually readjusted to the feature descriptions of
the interface. The resulting tree is shown in figure 5. It shows four classifications
related to the input signals of the interface stim1 if. For the three signals z Anr,
y Anr, and phi Anr the tree shows the automatically derived classes. They cover
the signal range as defined for the interface. Three corner cases are generated by
the CTM/ES heuristics: the two corner cases of the range, and the value 0. The
fourth classification for the hydraulics pressure, p Versorgung, has been modified
according to the requirements. In addition to the two standard corner cases, it
defines, e.g., the nominal pressure of 120 bar. The nominal pressure range gen-
erates two more corner cases at 100 bar, and at 125 bar. Another corner case is
determined by a low pressure emergency shutdown at 90 bar.

Figure 5 shows a classification tree with one stimulus pattern on the stim-
ulus interface stim1 if. The test sequence performs step transitions on a sin-
gle axis (z Anr), while the hydraulic pressure drops with each movement. The
test sequences are translated to SystemVerilog constraints as input to a stimu-
lus generator with constraint solver. Multiple test runs are constraint-randomly
generated from a single stimulus pattern with different value instantiations. Ad-
ditional constraints formulated in SystemVerilog can be inserted for increased
control over the stimuli generation. This provides a seamless transition from
constraint-randomized to directed stimuli generation.

1 stepz_pressvarlow

1.1 0s

1.2 +2s

1.3 [1.2]+20ms

1.4 [1.2]+100ms

1.5 [1.2]+150ms

1.6 [1.2]+350ms

1.7 +4s

−20

0

eval1_if:evaluator

testbench

20

stim1_if

]0,20[

z_ul

]−20,0[

z_Anr z_ll

Stimulus Acceptance

l3

u2
u1l1

u3

l2

Fig. 6. Classification Tree for Acceptance Criteria

4.2 Enhanced CTM for Acceptance Criteria

Automatic acceptance evaluation is performed by correlation to a reference
model or by predicate evaluation [12, 13]. The definition of continuous, inter-
polated behavioral boundaries is not covered by current assertion languages,
therefore a reference model is required for correlation purposes. The new accep-
tance criteria based on an enhanced CTM notation can provide such a reference
model at the same level of abstraction as the stimulus pattern definition with en-
hanced CTM. This replaces the effort of redundant creation of a reference model
at the same abstraction level as the model-under-test. The acceptance criteria
do not attempt to capture the exact behavior of the complete model-under-test,
they rather set acceptable behavioral boundaries for a certain operational range
of the model-under-test. From the CTM representation an acceptance evaluator
in a verification language like SystemVerilog is generated. Assertions provided
by the verification language supplement the acceptance criteria for reporting test
results. They provide the link to the testbench evaluation infrastructure of the
underlying execution environment.

This section illustrates the definition of acceptance criteria, which fit the
stimulus defined in figure 5. The acceptance criteria define a functional relation
between stimulus and response. They are defined by an additional classification
tree synchronized to the stimulus classification tree for automatic generation of
an evaluator (cf. figure 6). The acceptance tree is associated to the response
interface eval1 if of the testbench. The acceptance aspect of the tree is derived
from the interface such that for each signal, a supremum- and an infimum signal
is defined as a class. Waveforms generated for these signals enable the formula-
tion of control theoretic system response criteria, such as rise times, transient
overshoot, and stabilization time as described in [8, 7].

The acceptance classification tree in figure 6 starts from a root node which
represents the testbench. On the left hand side, the next lower node represents
the stimulus interface stim1 if, and, on the right hand side, the next lower node
represents the evaluation interface eval1 if for the evaluator. The evaluator an-
notation announces the different syntax and semantics of this part of the tree for
generation of the evaluator. In the example tree, for the input interface stim1 if
only the signal z Anr is shown for brevity. Below this node the combination
table shows the test sequence stepz pressvarlow. The response signal aufbauZ
of the interface eval1 if is to be evaluated. The signal itself is not present in
the classification tree, visually. Instead, the limits for aufbauZ are defined be-
low the combination node eval1 if:evaluator. A lower limit of aufbauZ is defined
as classification z ll in the classification tree, and an upper limit is defined as
classification z ul.

In classes, functions are specified (l1, l2, ...) instead of intervals. They de-
scribe the expected functional input-output relation of the model-under-test for
a specific operational range. At each acceptance criteria synchronization point,
a functional relation is selected, which is then evaluated in relation to the syn-
chronization points of the stimulus. The acceptance criteria represent properties
derived from the requirements and from control-theoretic quality criteria, such
as transient overshoot, and stabilization time. The definition of a functional re-
lation to certain stimuli definitions enables an exact and automatic evaluation
of the system behavior for automatically generated stimuli.

4.3 Enhanced CTM for Functional Coverage

The concept of functional coverage definition [20] has been transferred to classi-
fication trees [15, 16] for the definition of functional coverage criteria for mecha-
tronic systems. A classification tree with its value ranges and associated combi-
nation table provides the basis for the definition of relevant functional coverage
criteria. The concept encompasses the coverage definition for value intervals on
specific signals, the cross-coverage of value intervals on several signals, and the
(cross-) coverage of transition sequences between the value intervals. The benefit
of using classification trees for this purpose is twofold: they alleviate the task
of initial formulation of functional coverage criteria and they enable hierarchical
reuse of classification tree based stimuli definitions, e.g., from previous test def-
initions for sub-systems. The operational ranges of mechatronic controls can be
captured as test quality criteria, without dependency on a concrete implementa-
tion of the system. In short, the CTM stimulus aspect controls the operational
ranges of a system, whereas the CTM functional coverage aspect observes the
activated operational ranges of a system for independent test quality evaluation.

The new CTM notation for functional coverage definition builds on the con-
cept of coverpoints employed by the major hardware verification languages in
electronic design. Coverpoints are associated to one or more signals and measure
the occurrence of several ranges of values, or sequences thereof. Cross cover-
points deal with multiple signals and their value combinations. Figure 7 shows
a cross coverpoint definition in classification tree notation as a sub-tree. The

11 ccp_pnormzystepmax: cross cps_pnorm, cps_zstepmax, cps_ystepmax

11.1 samelow

11.1.1

11.1.2

11.2 samem

11.2.1

11.2.2

11.3 samelow

11.3.1

11.3.2

Coverage

nstep

cps_ystepmax: coverpoint y_Anr

cps_zstepmax: coverpoint z_Anr

cross cps_pnorm, cps_zstepmax, cps_ystepmax

nstep

pstep

pstepphighplow

cps_pnorm: coverpoint p_Versorgung

pm

Fig. 7. Classification Tree for Sequence Cross Coverage

top node defines a cross coverpoint over three coverpoints associated to sig-
nals p Versorgung, y Anr, z Anr. These coverpoints with their value sequences
plow,pm,phigh,pstep,nstep have been defined elsewhere in the classification tree
in the usual CTM notation for sequences. The combination table then describes
a coverage of pairwise disturbance of the suspension-tilt platform axes y and
z in the same direction. The pairwise movement is also crossed with the three
nominal pressure classes. For the cross coverpoint ccp pnormzystepmax in line
11, the coverpoints to be crossed are duplicated as nodes beneath an additional
classification tree node (cross cps pnorm, cps zstepmax, cps ystepmax) which
selects the crossed signals. On line 11.1, the bin samelow captures disturbance
movement in the same direction for the low nominal pressure range by select-
ing <plow, pstep, pstep>, or <plow, nstep, nstep> on the next two lines.
The pattern is repeated for the next two bins samem, and samehigh for the two
pressure ranges pm, and phigh. Similar patterns define functional coverage for
opposite movement of the suspension-tilt platform. By means of measurements
defined by this functional coverage metric, it can be determined, whether move-
ment of the platform has been stimulated in selected directions with 3 different
ranges of hydraulic pressure. Stimulus definitions can be used as a basis for such
metric definitions, as the syntax of the combination table remains identical.

5 Conclusion

This article introduced a new methodology and formalism for the systematic ver-
ification of embedded control systems. The formalism enables the definition of
formal behavioral properties for a model-based functional verification approach.
The formalism applies the new Enhanced Classification Tree Method, which
was developed based on the established Classification Tree Method for Embeded

Systems CTM/ES. A current hardware verification language was applied to def-
inition and control of a verification environment. The new methodology provides
improved traceability and visibility for the verification process. It closes the gap
between requirements and testbench definition for embedded control systems
(i) by support for stimulus patterns capturing requirements, (ii) by support for
requirements-based acceptance criteria for automatic acceptance evaluation com-
patible to the stimulus definition avoiding the creation of a reference model at
the same level of abstraction as the model, and (iii) by support for test quality
criteria, which relate to specific requirements and enable requirements cover-
age. Furthermore, horizontal and vertical re-use of test definitions is enabled by
means of a unified notation. The method has been implemented in the context
of the CRC614, where it was used to verify a mechatronic function module of a
railway shuttle system.

Acknowledgement This work has been partly supported by the DFG Sonder-
forschungsbereich 614 and by the German Ministry for Education and Research
(BMBF) through the ITEA2 project TIMMO (01IS07002).

References

[1] P. Adelt, J. Donoth, J. Gausemeier, J. Geisler, S. Henkler, S. Kahl, B. Klöpper,
A. Krupp, E. Münch, S. Oberthür, C. Paiz, H. Podlogar, M. Porrmann, R. Rad-
kowski, C. Romaus, A. Schmidt, B. Schulz, H. Vöcking, U. Witkowski, K. Witting,
and O. Znamenshchykov. Selbstoptimierende Systeme des Maschinenbaus – Defi-
nitionen, Anwendungen, Konzepte., volume Band 234. HNI-Verlagsschriftenreihe,
Paderborn, 2008.

[2] Brian Bailey, Grant Martin, and Andrew Piziali. ESL Design and Verification: A
prescription for electronic system-level methodology. Morgan Kaufmann series in
systems on silicon. Elsevier, San Francisco, CA, USA, 2007.

[3] Hamilton B. Carter and Shankar G. Hemmady. Metric Driven Design Verification.
Springer, 2007.

[4] M. Conrad, H. Dörr, I. Fey, and A. Yap. Model-based Generation and Structured
Representation of Test Scenarios. In Workshop on Software-Embedded Systems
Testing (WSEST), Gaithersburg, USA, November 1999.

[5] Mirko Conrad. The Classification-Tree Method for Embedded Systems. In
Dagstuhl Seminar Proceedings 04371, 2005.

[6] Mirko Conrad and Alexander Krupp. An Extension of the Classification-Tree
Method for Embedded Systems for the Description of Events. In Second Workshop
on Model Based Testing, MBT 2006, Vienna, Austria, March 2006.

[7] F. Dörrscheidt and W. Latzel. Grundlagen der Regelungstechnik. Leitfaden der
Elektrotechnik. B.G. Teubner, Stuttgart, second edition, 1993.

[8] Otto Föllinger. Nichtlineare Regelungen II. R. Oldenbourg, Wien, seventh edition,
1993.

[9] J. Geisler. Auslegung und Implementierung der verteilten Aktor- und Aufbau-
regelung für ein aktiv gefedertes Schienenfahrzeug. Master’s thesis, University of
Paderborn, Germany, 2006.

[10] K. Grimm. Systematisches Testen von Software - Eine neue Methode und eine
effektive Teststrategie (Systematic Software Testing – A new method and an ef-
fective test strategy). Number 251 in GMD-Report. GMD, Oldenbourg, 1995.

[11] Matthias Grochtmann and Klaus Grimm. Classification Trees for Partition Test-
ing. volume 3(2) of Software Testing, Verification and Reliability, pages 63–82,
1993.

[12] J. Grossmann, M. Conrad, I. Fey, A. Krupp, K. Lamberg, and C. Wewetzer.
TestML – A Test Exchange Language for Model-based Testing of Embedded Soft-
ware. In Automotive Software Workshop ’06, San Diego, March 2006.

[13] J. Grossmann and W. Mueller. A Formal Behavioral Semantics for TestML. In
Proc. of IEEE ISoLA 06, Paphos Cyprus, pages 453–460, 2006.

[14] ITRS. International technology roadmap for semiconductors 2008 UP-
DATE. http://www.itrs.net/Links/2008ITRS/Update/2008 Update.pdf, Decem-
ber 2008.

[15] A. Krupp and W. Müller. Classification Trees for Random Test and Functional
Coverage. In Design, Automation and Test in Europe (DATE 2006), Munich,
Germany, March 2006.

[16] A. Krupp and W. Müller. Systematic Testbench Specification for Constrained
Randomized Test and Functional Coverage. In 21st European Conference on Mod-
elling and Simulation ECMS 2007, Prague, Czech Republic, June 2007.

[17] Klaus Lamberg, Michael Beine, Mario Eschmann, Rainer Otterbach, Mirko Con-
rad, and Ines Fey. Model-based Testing of Embedded Automotive Software using
MTest. SAE 2004 Transactions, Journal of Passenger Cars - Electronic and Elec-
trical Systems, 7:132–140, 2005.

[18] E. Lehmann. Time partition testing: A method for testing dynamic functional
behaviour. In Proceedings of TEST2000, London, UK, May 2000.

[19] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating fuctional tests. Commun. ACM, 31(6):676–686, 1988.

[20] Andrew Piziali. Functional Verification Coverage Measurement and Analysis.
Springer, New York, USA, 2004.

[21] A. Rau. Model-Based Development of Embedded Automotive Control Systems.
PhD thesis, Dept. of Computer Science, University of Tübingen, Germany, 2002.

[22] Jörg Schäuffele and Thomas Zurawka. Automotive Software Engineering. Vieweg,
Wiesbaden, third edition, March 2006.

[23] A. Trächtler, E. Münch, and H. Vöcking. Iterative learning and self-optimization
techniques for the innovative railcab-system. In 32nd Annual Conference of the
IEEE Industrial Electronics Society — IECON’06, Paris, France, 2006.

