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Abstract. This paper presents a technique for automatically generat-
ing cycle-approximate transaction level models (TLMs) for multi-process
applications mapped to embedded platforms. It incorporates three key
features: (a) basic block level timing annotation, (b) RTOS model in-
tegration, and (c) RTOS overhead delay modeling. The inputs to TLM
generation are application C processes and their mapping to processors
in the platform. A processor data model, including pipelined datapath,
memory hierarchy and branch delay model is used to estimate basic
block execution delays. The delays are annotated to the C code, which
is then integrated with a generated SystemC RTOS model. Our abstract
RTOS provides dynamic scheduling and inter-process communication
(IPC) with processor- and RTOS-specific pre-characterized timing. Our
experiments using a MP3 decoder and a JPEG encoder show that timed
TLMs, with integrated RTOS models, can be automatically generated
in less than a minute. Our generated TLMs simulated three times faster
than real-time and showed less than 10% timing error compared to board
measurements.

Key words: Transaction Level Modeling, Timed RTOS Modeling

1 Introduction

The importance of embedded software (SW) in heterogeneous multi-processor
systems is increasing with increasing complexity of the systems. Choosing an ef-
ficient platform and a suitable SW mapping is essential to meet performance and
power constrains. Estimating software performance early in the design flow, e.g.
during design space exploration, is essential for achieving an efficient implemen-
tation. Traditional ISS-based approaches are performance limited, especially in a
multi-processor context. Abstract simulation of SW execution is one key solution
for rapid design space exploration and early prototyping.

Important influence factors for SW performance, are the hardware platform
(e.g. processor type, memory hierarchy) and, equally important, SW architecture
and configuration: task/data granularity, selection of scheduling policy, priority
distribution and the selection of an appropriate RTOS. Automatic generation
of timed TLMs that reflect the effects of the above design choices is needed to
enable informed decision in a simulation-based approach.



In order to accurately estimate performance of a SW task three delay con-
tributors have to be modeled: (a) Dexec, for execution of straight line code; (b)
Dsched, for communication and dynamic scheduling (e.g. scheduling of a higher
priority task); and (c) Dsys, the delay due to the system overhead as a result of
dynamic scheduling. Existing dynamic approaches only address (a) Dexec and
(b) Dsched. Dexec can be modeled through on-line code profiling, e.g. [16] or off-
line profiling and timing annotation of the modeled code, e.g. [13, 12]. Modeling
of Dsched can be addressed by using abstract RTOS models emulating dynamic
scheduling, e.g. [16, 8, 10]. However, current solutions do not model system over-
head, i.e. the overhead of executing an RTOS on the target processor remains
unaccounted.

Modeling system overhead is essential in guiding the SW developer in paral-
lelizing a given application. Choosing a too fine granularity of Inter-Process Com-
munication (IPC) may unnecessarily increase the number of context switches,
thus increase Dsys and therefore decrease system performance [4]. With cur-
rent modeling techniques the negative effects of such a design choice are only
discovered when executing on the final system, leading to an expensively long
design cycle. To increase efficiency of the design process, system overhead mod-
eling, Dsys, is required. In this paper, we present our approach for automatically
generating cycle-approximate TLMs that include timed abstract RTOS models,
hence reflecting all three delays Dexec, Dsched and Dsys.

This paper is organized as follows. Section 2 presents related work. Section 3
outlines the TLM generation framework, and describes our estimation and an-
notation approach covering Dexec. Section 4 outlines our abstract RTOS model
yielding Dsched. Section 5 introduces our analysis and modeling of system over-
head Dsys. Our experimental results, Section 6, show scalability and accuracy
based on several design examples. Finally, we conclude the paper and touch on
future work.

2 Related Work

Significant research effort has been spent for early performance estimation of
multi-processor systems, which can be broadly categorized as static, semi-static
and dynamic. Static approaches, such as [17], on one side use purely analytical
methods to compute application delays. Dynamic approaches on the other side,
use platform models to generate a timed executable model of the design, which
later produces the estimation data at run time. ISS and virtual platforms are
popular examples of dynamic approaches. Our solution is based on a dynamic
approach.

SW performance estimation techniques [13, 12, 2, 3] utilize the execution path
of the SW. The common approach is to multiply the cost of operation with the
total number of operations executed. Unlike above techniques, [14, 5] can take
into account the datapath structure. However, they use bus functional models
and generate ISS which provides accurate results at the expense of speed. Sim-



plescalar [1] is a well known retargetable ISS that can provide cycle accurate
estimation result but is several orders slower than TLM.

Abstract RTOS models have been developed on top of System Level Design
Languages (SLDLs) (e.g. SystemC [9], SpecC [7]) to expose the effect of dynamic
scheduling. Examples include [8, 20], modeling typical RTOS primitives on top
of an SLDL, and [16], implementing an POSIX API on top of SystemC. The lat-
ter offers an interesting combination of online estimation and RTOS-modeling,
which enables an optimized modeling of periodic interrupts. However, the so-
lutions do not include modeling of RTOS overheads, which we address in this
paper. An RTOS centric cosimulator using a host compiled RTOS is described
in [10], which, however, does not include target execution time simulation.

3 TLM Estimation Framework

Our support for RTOS overhead modeling and integration into TLM is built
upon the TLM based design infrastructure proposed by Gajski et al. [6]. In this
methodology, the user specifies the system definition consisting of application
code and a graphically notated platform specification. The application is ex-
pressed as parallel executing C/C++ processes, which communicate through a
set of standard communication channels. The framework generates TLMs based

Fig. 1. Estimation Tool Architecture

on the design decisions to verify system performance and functionality early in
the design cycle. The TLMs then serve as an input to cycle accurate synthesis,
which produces Pin/Cycle Accurate Models (PCAM) for detailed validation and
analysis. After finalizing the design, the PCAMs are used for low level synthesis
generating board level prototype design.

Figure 1 shows the architecture and implementation of our timing estimation
tool with RTOS support integrated into th framework. The input specification
contains untimed C code for each process and and its mapping to PEs in the
platform. According to the mapping decisions, the user code is analyzed based
on a HW processing unit model (PUM), which characterizes datapath, memory
hierarchy and instruction scheduling of the PE. We have implemented a C/C++
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Fig. 2. Threads in Abstract RTOS

front-end using the LLVM compiler infrastructure [15] which parses the appli-
cation code into CDFGs. For each basic block of the CDFG, the corresponding
DFG is input to an estimation engine. The estimation engine computes the DFG
delay by scheduling application instructions based on the PE’s PUM. Using the
LLVM source transformation API, the estimated delay is then annotated into the
CDFG data structure. Subsequently, timed C code is generated for the process
using the LLVM code generation API.

During TLM generation, the SW platform definition is used for configuring
the abstract RTOS model with overhead delays and scheduling policy. Finally,
the annotated C code and the configured RTOS model are compiled and linked
with a SystemC programming model of the platform to generate the executable
timed TLM. In this paper, we will focus on the timed abstract RTOS aspect.
Timed C code generation for single process mapping without dynamic scheduling
is described in [11].

4 Abstract RTOS Model

Multiple processes may be mapped to the same processing element, later sched-
uled by an RTOS on actual HW. For early exploration of dynamic scheduling
effects, an abstract RTOS is integrated into the TLM. Each mapped process
becomes a virtual process on the abstract RTOS. The RTOS model, as well as
the virtual processes are configurable in their scheduling parameters, supporting
a validation of the SW configuration (e.g. scheduling policy selection, priority
distribution).

As shown in Figure 2, our abstract RTOS executes as an SC THREAD inside
the SC MODULE of the PE. Each PE runs an own abstract RTOS. The RTOS
provides services to start, stop and control virtual processes inside its context.
It furthermore communicates with the outside of the processor through the bus
interface (provided by an an abstract bus model) and interrupts.

Our RTOS model uses pthreads, native to the host operating system, to
provide multiple flows of execution. Each virtual process (i.e. a time annotated
process) is executed in an own pthread. The execution of each pthread is con-
trolled by the RTOS model through condition variables to emulate the selected
scheduling policy. At any given point in time only one pthread (one virtual pro-
cess) for each PE is released through the condition variable, overwriting the
host’s scheduling policy.



The abstract RTOS, similarly to an actual RTOS, maintains a Task Control
Block (TCB) for each virtual process. Each virtual process is scheduled according
to a task state machine, with states such as RUNNING, READY, PENDING,
SUSPENDED; and the abstract RTOS maintains the appropriate queues.

Each primitive in the TLM, which could potentially trigger a context switch,
is executed under control of the RTOS These primitives include task control and
inter-process transactions. Figure 3 shows two virtual processes executing on top
of the RTOS model. Interactions with the model are indicated by arrows. The
RTOS model provides an fixed API and the TLM generator produces appropri-
ate wrappers for the generated timed process code (Section 3) to utilize this API.
To give an example, when a virtual process executes an inter-process transaction
(e.g. Figure 3, call ipcRecv() in process Timed P2 ), this transaction is executed
under RTOS control. Assuming it contains acquiring a non-available semaphore,
the virtual process state is set to PENDING, the next process is selected from
the ready queue according to the scheduling policy, set to RUNNING, and re-
leased through its condition variable. Finally, the old virtual process suspends
by waiting its own condition variable. Note that the actual context switch is
performed by pthreads of the host OS, the abstract RTOS only controls their
release.

In addition to classical RTOS primitives, our abstract RTOS model pro-
vides an API to simulate progress of time due to code execution. Our time
annotated code calls this interface (execDelay(), Figure 3), and subsequently
a sc core::wait() is executed under RTOS control. During this time, the vir-
tual process remains in the RUNNING state and primarily no other process is
scheduled. During the time progress, an incoming interrupt may release a higher
priority task. Similarly, our abstract RTOS provides services for external bus
access, which are the performed under RTOS control.
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Fig. 3. Abstract RTOS interaction



time
TLow

T H i g h

S y s

t W S -1 t s wi t c h t P E

(a)
e1

(b)(c) (f)(d)(e) (a) U s er  cal l s  s y s tem  cal l
(b) E x ec.  S y s tem  cal l
(c) S ch edu l er
(d) S av e o l d C o n tex t 
(e) R es to r e n ew  C o n tex t
(f) S y s .  cal l  en d,  u s er  cal l  r etu r n s

Fig. 4. sem wait() with context switch

5 Modeling of RTOS Overheads

An abstract RTOS exposes the effects of dynamic scheduling. In addition, a
system overhead delay model is needed to provide feedback about the overhead
in a multi-tasking application, capturing for example the delay due to IPC,
context switching and interrupt preemption. Modeling such overheads is essential
to guide the developer in partitioning the code (e.g. for deciding granularity of
data and communication handling). To illustrate, splitting an application into
too many tasks may lead to a system overhead that dominates the application
performance (too many context switches and inter-process transactions). The
execution time of user code may not be a sufficient indicator for a potential
performance bottleneck, which drives the need for modeling RTOS overheads.

Modeling RTOS overhead is challenging as it depends on RTOS, CPU, and
CPU configuration (e.g. caching). The analysis is further complicated by a lim-
ited source code availability especially for a commercial RTOS , as well as API
and structural/organizational differences between implementations. These fac-
tors inhibit a static source code analysis or make it prohibitly expensive.

We have developed a time stamping approach to analyze RTOS overheads
on RTOS API level without source code analysis. We characterize a RTOS on
the actual processor in supported configuration(s). The determined overhead
characteristics are stored in our database. As they are independent of processor
external HW and independent of the user application, they can be applied in
to many designs. Our TLM generator reads the DB to instantiate an abstract
RTOS inside a PE model with specific delay parameters.

We developed a special test application that captures time stamps and in-
vokes RTOS primitives in a controlled environment in which we know a priori
the scheduling outcome. We use a processor external timer to measure time.
The time stamp code and its data are exclusively placed in a non-cached fast
local memory (BRAM) to minimize impact on caching and execution time. We
disable timer interrupts while analyzing timing unrelated RTOS primitives to
eliminate the impact of unexpected interrupts.

Figure 5 and Figure 4 show an example of our analysis based on acquiring a
semaphore without and with a context switch. As system calls basically follow
the same sequence the example is representative.

In Figure 4, task THigh calls sem wait() to acquire non-available sema-phore
(a), which results in a context switch to TLow. We record time stamp tWS−1

in user mode before the call. Next, the processor mode is switched to system



mode, and the system call (the actual semaphore code) is executed (b). Then,
the scheduler (c) determines the next task to execute, the current task’s context
is saved (d), the new task’s context is restored (e). Finally, a system call returns
(f) in the new task’s context. In our application, Tlow had earlier relinquished
the CPU by posting a semaphore to Thigh. Therefore, the returned system call
is a sem post(), and we record time stamp tPE . Please note, that the code for
returning a system call is independent of the call type (e.g. the code is identical
for sem post() and sem wait() starting at the scheduler call (c)). We can therefore
use tPE for analyzing the duration of a sem wait().

Figure 5 illustrates the case of an available semaphore where no context
switch occurs. We record tWS−2 before the call. The sequence during the system
call is shorter. The scheduler (c) determined no context switch and the system
call returns (f) to the same task where we record tWE . Based on these time
stamps, we determine the duration for sem wait(), and for a context switch. We
separate these two, in order to simplify abstract modeling and database. Then,
only a single delay characterizes each RTOS primitive. Our analysis with these
time stamps, after eliminating the overhead of time stamping itself, is as follows:

Dur(sem wait) = tWE − tWS−2

Dur(switch) = tPE − tWS−1 − Dur(sem wait)

The duration estimation of sem wait is the difference between start and end
time stamp. We compute the context switch duration based on the duration of
the sem wait with a context switch (tPE − tWS−1) and subtract the time for
sem wait() without context switch. We chose sem wait(), since we expect por-
tion (b), execution of the system call itself, to be minimally dependent on the
scheduling outcome as sem wait() only manipulates the own task state. Con-
versely, sem post() shows a variance beyond the estimated context switch dura-
tion as it manipulates other task’s states.

We analyze other communication and synchronization primitives in a similar
manner. For each primitive we measure the time without and with a context
switch. After normalizing for the already determined context switch duration,
we calculate the average between the two cases to determine the primitive’s
duration.

In addition to the basic RTOS primitives, we also characterized standard
functions that are dependent on the data length. In particular, we have charac-
terized memcpy() as it is frequently used and its code is often heavily optimized.
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Fig. 5. sem wait() without context switch
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Fig. 6. Example applications.

We capture the delay results in a table, and use a linear extension to estimate
values beyond the table boundaries.

We store the analyzed RTOS characteristics in our database, with a separate
delay for each used RTOS primitives, and the basic context switch. During TLM
generation, the code for instantiating an RTOS is created. The selected RTOS’
characteristics are retrieved from the database and the abstract RTOS is config-
ured to reflect the selected RTOS. Upon execution of an abstract RTOS primi-
tive, the characterized delay – without context switch – (e.g. Dur(sem wait()))
is executed. Our abstract task dispatcher, switching between pthreads, is an-
notated with Dur(switch). We use this basically state less delay model to sim-
plify abstract RTOS implementation maintaining a high simulation performance.
While our analysis and modeling approach abstracts away many influences on
RTOS overhead (e.g. number of total, waiting, and manipulated tasks, scheduler
implementation) and therefore is not cycle-accurate, it already yields valuable
feedback for estimating system performance.

6 Experimental Results

To evaluate the benefits of our approach, we have applied it to three designs
based on an MP3 decoder, a JPEG encoder and a combined design running
both applications. Figure 6 shows the application flow. The MP3 decoder exe-
cutes in 3 tasks, and JPEG encoder with 5 tasks. The designs originate from an
hardware oriented design showing a fine grained task split. All tasks are mapped
in the target plaform to the same processor, a Microblaze [19] with 100Mhz, and
scheduled by Xilinx’s RTOS, Xilkernel [18].

We generate the timed TLMs with timed RTOS using our generation ap-
proach. SW binaries were generated for execution on the Xilinx Virtual Platform
(XVP) and for execution on the actual processor. Matching hardware designs
were synthesized using Xilinx ISE and EDK and downloaded to an Xilinx FF896
board to provide a cycle-accurate reference platform.

Table 1 shows the average accuracy of our abstract models for each of our
designs in comparison to cycle-accurate execution on the Xilinx FF896 board.
We analyze several abstraction levels providing insight about each delay’s con-
tribution. We analyze:
Timed TLM captures Dexec at basic block level (Section 3). Tasks may execute

concurrently.
TLM w/ RTOS adds an abstract RTOS (Section 4) resolving dynamic schedul-

ing, capturing Dexec and Dsched.
TLM w/ Timed RTOS additionally models system overheads (Section 5), re-

flecting Dexec, Dsched, and Dsys.



In addition to our models, we also compare to the XVP.

Timed TLM w/ TLM w/
TLM RTOS Timed RTOS XVP

JPEG -75% -35.56% -9.98% 50%

MP3 -41% -25.95% 5.29% 7%

MP3+JPEG -83% -33.25% -6.20% 37%

Table 1. Accuracy of abstract models [%].

Our results show that only modeling Dexec is not sufficient for parallel ap-
plications. The timed TLM shows 66% average error, up to 83% depending on
application parallelizm. Adding dynamic scheduling by an abstract RTOS dra-
matically improves accuracy. However, with the fine grained IPC, the designs
exhibit a significant system overhead and thus the TLM with RTOS underes-
timates by 32% on average. This result can be compared to other state of the
art solutions, which all do not model any RTOS overhead. Adding RTOS over-
head modeling reduces the error to less than 10%, yielding already sufficiently
accurate timing information. The remaining error is due to our abstract analysis
and modeling of RTOS overheads, which we chose in favoring automate ability
and simulation speed. Lastly, we compare against the commercial XVP. It sig-
nificantly overestimates our designs with 31% on average, which can be traced
back to inaccurate modeling of memory accesses [11]. Comparing all solutions,
our TLM with Timed RTOS yields the most accurate timing estimation. With
decreasing system overhead, an even smaller error can be expected. For a single
task version of the MP3 decoder our generated TLM exhibited only 0.9% error.

Table 2 summarizes the simulation time in seconds of real-time (or wall clock
time). In addition the above discussed models, we also included a purely func-
tional TLM without any timing annotation and execution on real HW.

As expected, native execution on the simulation host yields high performance.
Increasing model complexity increases simulation time. The functional TLM exe-
cuted the fastest (within milliseconds), as it requires the fewest context switches.
Executing time annotations (sc core::wait()) in the timed TLM, increases simu-
lation time to tens of milliseconds. Our TLM with RTOS model, which models
the virtual threads, executes in fractions of a second. No significant increase is
measurable for reflecting RTOS overheads. Our TLM with timed RTOS executes
about 3 times faster than real-time comparing to execution on the Microblaze.

Func. Timed TLM w/ TLM w/
TLM TLM RTOS T. RTOS XVP Board

JPEG 0.003 0.02 0.25 0.27 168 0.83

MP3 0.002 0.01 0.08 0.08 60 0.34

MP3+JPEG 0.004 0.04 0.32 0.33 213 1.17

Table 2. Simulation time (real-time) [sec].



Feature JPEG MP3 MP3+JPEG

# IPC / switch 720 / 1440 392 / 783 1112 / 2225

appl. cycles 53.2E+6 25.0E+6 78.2E+6

system cycles 21.1E+6 10.6E+6 31.7E+6

Table 3. Complexity of Models.

In addition, our solution is three orders of magnitude faster than the commercial
XVP. These results clearly demonstrate the advantages of our solution, simulat-
ing faster than real-time while exhibiting less error than the XVP.

Generation time is an addtional usability aspect. Our TLM generation time
is dominated by the SW performance estimation (Section 3), as it executes the
LLVM compiler. The additional effort for instanciating the timed RTOS is neg-
ligible. The measured total generation time ranges from 1.2 seconds (JPEG) to
33.3 seconds (MP3+JPEG).

In addition to advantages in accuracy and performance, our solution also
provides vital statistics. Table 3 shows a small excerpt, listing IPC calls, context
switches, as well as number of cycles for executing the application and sys-
tem (indicating the RTOS overhead). Especially the latter two reveal important
information for developing multi-tasking designs. It is alarming for the shown
design examples: a significant portion (about 30%) of the total execution time is
spend in system overhead. This should urge improving the SW implementation
by coarsening granularity – a feedback previously only available when executing
on the board.

7 Conclusions

In this paper, we have presented a tool for automatically generating cycle-
approximate TLMs. Our approach offers a complete solution for SW simula-
tion including three essential aspects: (a) cycle-approximate retargetable perfor-
mance estimation for SW execution, (b) dynamic scheduling through an abstract
RTOS, and (c) modeling of RTOS overheads. Especially the latter is important
as it offers a competitive advantage in guiding developers while designing multi-
tasking applications. It exposes performance bottlenecks earlier in the design,
thus enabling designing more efficient systems in fewer design cycles.

Results with MP3 decoder and JPEG encoder designs showed that our TLM
generation is scalable to complex platforms and simulation results are within 10%
of actual board measurements even for applications with high system overhead,
while simulating faster than real-time. Our results demonstrate generation of
TLMs for fast, early, and accurate estimation.

In future we plan extend our RTOS overhead analysis to finer grained de-
tail using non-intrusive time stamping methods and to extend state dependent
overhead modeling.
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