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Abstract. During a typical development process of an embedded appli-
cation specific processor (ASIP), the architecture is implemented mul-
tiple times on different levels of abstractions. As a result of this redun-
dant specification, certain inconsistencies may show up. For example,
the implementation of an instruction in the simulator may differ from
the HDL implementation. To detect such inconsistencies, we use register
trace comparison. Our key contribution is a generic method for system-
atic trace synchronization. Therefore, we convert a micro-architectural
trace into an architectural trace. This method considers pipeline hazards
and non-uniform write latencies. To simplify the validation of a proces-
sor, we further have implemented an automatic validation environment
that includes a tool which points the developer directly to erroneous in-
structions. The flow has been validated during the development of our
CoreVA architecture for mobile applications.

1 Introduction

Our processor design flow is divided into the development of a compiler tool chain
and the development of the hardware description (see Figure 1). The compiler
tool chain consists of a compiler, an assembler, a linker, various debugging tools
and an instruction set simulator (ISS).

All these tools are generated from a central processor specification (UPSLA
[7] — Unified Processor Specification Language). This allows the rapid gener-
ation of a complete and consistent toolchain, which can be used to perform a
design space exploration of the processor. Using this approach, we can easily
add application specific instructions, re-generate the toolchain and evaluate the
processor using the ISS. The consistency within the toolchain is guaranteed by
the use of a central processor specification. All aspects (e.g., machine format,
write latencies) of an instruction are specified once in this specification and then
re-used throughout the assembler, linker, simulator, and disassembler. For the
hardware development we describe the processor in VHDL and use the standard
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Fig. 1. Overview of our design flow and validation environment.

design flow to obtain an FPGA prototype or the final ASIC implementation of
the processor.

The usability of the toolchain has been proven in multiple industry related
projects, in which very long instruction word (VLIW), multiprocessor system-on-
chip (MPSoC), or other non-orthogonal processor architectures were developed.
The toolchain covers the complete instruction set.

Due to the separate specification of the tool chain and the hardware descrip-
tion, inconsistencies may result. Therefore, we need to check the equivalence of
the ISS and the synthesized processor. To validate the consistency, we apply
a non-formal co-verification approach. Basically, we compare the traces of exe-
cuting a program on the ISS with the hardware implementation. If the traces
diverge, an error in the specification has been detected.

Of course a non-formal validation by simulation approach does not guarantee
the correctness of the implementation. The effectiveness of the validation heavily
depends on the set of test programs. The generation of such tests is covered in
[5] and is not subject of this paper.

The abstraction level of the ISS implementation differs from the micro-
architectural implementation. For example, the micro-architectural implementa-
tion executes instructions pipelined, whereas the ISS simulates each instruction
as a whole. As a result, the micro-architectural trace differs from the ISS trace
and hence synchronization is required (Section 3).

As an extension to existing approaches, we do not only perform a multi-

domain validation of the ISS and the RTL simulation, but also of the processor
emulation. Therefore, we have added a trace interface to the processor, which is
used to emit the state sequence (Section 4). The ISS is available in an early de-
sign stage and essential for a design space exploration. The RTL implementation
is more detailed but therefore also more expensive to simulate. The hardware



emulation approximates the final ASIC implementation most accurately and is
even faster than the ISS and RTL simulation. Some timing issues manifest them-
selves at the stage of processor development. The system can also be integrated
in real world systems (due to its real time ability). However, the implementa-
tion effort for the emulation is high. In addition, the observation of the internal
processor state is limited and therefore debugging is cumbersome.

We also attach importance to locating an error, in case that an inconsistency
between both traces is detected. Therefore, we have implemented a specialized

comparison tool, which processes two execution traces and dumps a meaningful
description of any detected inconsistency (Section 5).

2 Related Work

A formal verification approach for processor control is presented in [2, 8]. Both
papers regard a processor model with out-of-order-execution. They conceptually
flush the pipeline to synchronize the micro-architectural and the ISA model.
We extend this approach by considering pipelining effects caused by forwarding
circuits. In addition we also validate the datapath of the processor.

In [3] the trace of an ISS is compared with a Verilog simulator. The Verilog
simulator captures the state at the write-back stage at the expense of additional
hardware resources. The approach does not consider non-uniform write latencies.

The generation of test cases with coverage feedback is discussed in [5]. For
validation a co-simulation approach is used, where the RTL trace is converted
into an ISA trace. The authors mention this conversion to be a challenge beyond
the scope of their paper. The approach in [10] performs a co-simulation of an ISS
and an RTL simulator, both manually written in C. The authors also identified
the problem of trace conversion, but do not present a systematic solution. In
Section 3 we present a solution to this conversion problem.

The architecture description language “ArchC” to generate an ISS is pre-
sented in [1]. To validate the consistency of this simulator and a hardware de-
scription language (HDL) implementation, a validation approach which com-
pares memory-transactions is used. We have extended this method by a cycle
accurate comparison of registers, including the effects of a forwarding circuit.

The Tensilica tools [4] offer the generation of a toolchain and a hardware
description from a single processor specification. Their approach allows the ex-
tension of a predefined processor architecture by application specific instructions.
However, the core of the processor remains fixed and certain design parameters
like instruction format or pipeline depth are not exposed to the developer.

In [9] the authors describe the functional verification of a POWER5 proces-
sor. They use a coarse grained memory-trace mechanism that is well suited for
system-level verification. The tracing mechanism is tailored to the POWER5 ar-
chitecture. In contrast, our fine-grained trace-mechanism is generic and focuses
on core-level verification.



In summary, trace comparison is a widely accepted approach for processor
validation. Prior work has focused on specific architectures and does not offer a
generic method for synchronization of traces.

3 A Generic Tracing Approach for Pipelined Processors

In this Section we describe a general method for adding a trace interface to
a processor. Our method can cope with common processor architectures and
pipelining effects like stalls, flushes and non-uniform write latencies. We do also
consider forwarding of instruction results. Our approach does not require the
trace information to be emitted in a specific pipeline stage. Instead, each signal
can be captured at the most convenient stage to avoid additional hardware
overhead (Section 3.1). To incorporate the effects of forwarding, we introduce
a method to derive the publication cycle of an instruction result from its final
write-back cycle (Section 3.2). The publication cycle is defined as the clock cycle,
in which the result becomes visible to other instructions, i.e. when it is fed into
the forwarding circuit.

3.1 Synchronization of Traced Signals

A simple implementation for tracing in a pipelined processor would collect all
information at the last stage, which is typically the write-back stage. This may
introduce additional hardware overhead to pipeline signals that are otherwise
not needed in the last stage. Examples include the program counter and the
memory write ports. Instead, we capture the signals to be traced immediately
in the originating stage.
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Fig. 2. Example of virtual pipelining.

However, this introduces the problem of synchronizing the data, which has
been captured at different stages. For example stalls may defer the execution
of some instructions in the pipeline or a flush may invalidate an instruction.
To synchronize the information we use a virtual pipeline, which emulates the
hardware pipeline. The virtual pipeline is implemented in software and runs on
the computer that monitors the device under test (DUT). Therefore, it does not
require additional hardware resources. The virtual pipeline also receives the stall
and flush signals from the hardware pipeline, to accurately emulate its behavior.



The example in Figure 2 juxtaposes the operation of the hardware pipeline
and the virtual pipeline. In this example, stages 0 and 2 of the hardware pipeline
emit trace information which is passed to the respective stage of the virtual
pipeline. The trace information Ai represents a set of signals that were emitted
in stage i.

In cycle 0 instruction A is executed in stage 0 and emits information A0.
In cycle 1, instruction A is passed to the next stage, just like the information
A0 in the virtual pipeline. In cycle 2 the stages 0 and 1 are stalled. Stage 0
does therefore not emit information and a bubble is inserted in stage 2 of the
hardware pipeline. The bubble floats through the pipeline like a normal instruc-
tion without carrying any useful work. The virtual pipeline labels its bubble
with the originating stage (STL 2). This allows us to reconstruct the stall and
flush events. In cycle 4 stage 0 of the hardware pipeline is flushed and the vir-
tual pipeline records the number of the flushed stage (FL 0). In cycle 5 and 6
execution advances normally.

The final synchronous trace information is collected at the last stage of the
virtual pipeline. We will call this trace the stage trace in the following. However,
this trace does not reflect forwarding effects, which are covered in the next
Section.

3.2 Incorporating Forwarding Effects

In this Section we present a method to derive a storage trace from a stage trace.
The storage trace lists every instruction result, when it is published and therefore
visible to other instructions.

This publication cycle of an instruction result can not directly be derived
from the stage trace. It is not possible to calculate the publication cycle by
simply subtracting a constant from the stage trace cycle. There are two reasons
that prevent such an easy computation, namely non-uniform latencies and stalls.
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Fig. 3. Pipeline diagram illustrating the instruction execution.



In a processor architecture with non-uniform latencies, results are published
in different pipeline stages. Assume that instruction D in Figure 3 publishes its
result in stage 2 and E in stage 3. Hence, the result of D appears in cycle 7
and the result of E in cycle 9, whereas D and E show up at cycle 10 and 11
in the stage trace. The cycle difference between the publication cycle and the
stage trace cycle is not constant, but depends on the instruction. We therefore
need to know the publication stage of each instruction. This information can be
extracted from our processor specification.

To accurately handle stalls, information about pipelined execution is re-
quired. Assume that instruction A and B (see Figure 3) publish their results
both in stage 2. The difference between publication cycle and stage trace cycle
is 3 for instruction A, but 4 for instruction B. If A and B would instead publish
their results in stage 4, the difference would be equal. To derive the storage trace
from the stage trace, we need to know for every cycle, which instruction is con-
tained in a given stage. Therefore, we need to reconstruct the pipeline execution
from the stage trace.

We can reconstruct the instruction execution shown in Figure 3 from the stage
trace, i.e. the last line of the pipeline diagram. We construct the diagram during
a single right to left pass, i.e. from cycle 11 towards cycle 0. The instruction of
a given stage s and cycle c can be derived from the next cycle as follows:

instr(c, s) :=

{

instr(c + 1, s) stalled(c + 1, s)
instr(c + 1, s + 1) else

where the predicate stalled is defined as

stalled(c, s) := ∃s′ > s : isBubbleOrigin(c, s′)

This means that an instruction in a given stage and cycle is equal to the
instruction in the next cycle and the next stage, unless there is a stall. In the
example in Figure 3 the instruction in cycle 7 at stage 2 is the same as the
instruction in cycle 8 at stage 3, as there is no bubble in cycle 8 at stage 4 or 5.
The instruction in cycle 4 at stage 0 however is taken from cycle 5 at stage 0, as
there is a bubble originating in cycle 5 at stage 4.

The pipeline execution reconstruction gives us the information in which cycle
an instruction was executed in a given stage. Together with the information in
which stage an instruction publishes its result, the pipeline reconstruction allows
us to compute the cycle in which the result is published.

4 Emitting Traces

Our multi-domain consistency check is based on the comparison of states. We
define the processor state as the content of all memory elements in the architec-
ture. These are typically the register files and the data memories. The current
state of the processor can be derived from its initial state by continuously tracing
all write accesses to its memories. For VLIW architectures we additionally trace



the number of the functional unit (FU) which causes a write access. For con-
ditional execution, condition register files can be traced. Also single instruction
multiple data (SIMD) mode is considered.

To get a deterministic trace, the memories must be initialized at the begin-
ning of the simulation. Even correct programs may load uninitialized data from
memory into registers. One example is the copying of partially uninitialized
unions in C. Another example is an ISA where a single byte can not be loaded
directly, but only by a sequence of a load word and extract byte instruction.

4.1 Determining the Processor State

To emit a common trace format, we use a single trace library for all three do-
mains. The processor state is passed to a central trace_cycle function of this
library.

For the ISS the current processor trace can be directly constructed from the
memories. To compensate the pipelined execution of instructions in the hardware
implementation, we apply our synchronization method as described in Section 3.
Results that are written back to the register file are captured in the write-
back stage, which is usually the last stage. Memory signals and the program
counter are captured at earlier stages, thus requiring synchronization by virtual
pipelining.

Branches to unaligned instruction groups (VLIW architecture), accesses to
external memory (e.g., cache misses), as well as data or control hazards, can
stall pipeline stages of the processor core. These stall signals are forwarded to
the virtual pipeline to enable an accurate pipeline emulation.

In the RTL simulation we can access the internal signals of the design using
the ModelSim Foreign Language Interface (FLI). Just the signal names have to
be known by the trace mechanism. The processor core itself is not altered.
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To trace processor states from the hardware emulation, we offer the designer a
generic wrapper (CPU Control Unit, CCU, see Figure 4) to embed the processor
core. Only slight changes have to be made to the processor core, by making the
signals aforementioned available to the top entity. All signals are connected to
register inputs, no additional combinatorial logic is added. As we retrieve most
of the signals directly from pipeline registers, tracing has a negligible impact on
the timing.

Fig. 5. RAPTOR2000/X64 rapid prototyping environment.

The CCU is mapped to an FPGA and emulated in our rapid prototyping
environment RAPTOR2000/X64 (see Figure 5, [6]) This modular system allows
the use of a large selection of FPGA daughter boards or physical interfaces
(e.g., Ethernet), which enable the use in real environments. Also, the CCU is
suitable for ASIC realizations to assist testing. As our prototyping environment
features a modular design, the FPGA module can easily be replaced by the
ASIC realization after verification. Identical control and test software is used,
thus reducing developing time.

To gather all information of a processor state, multiple accesses have to be
made to the CCU. This requires clock gating for a cycle-by-cycle execution of the
processor core. As the latency of synchronous SRAM or caches is usually at least
one clock cycle, some additional considerations have to be made. If the processor
core performs a read access to instruction or data memory, it applies address
and control signals to the memory. For example, if the output of the memory
is registered, the requested data is valid one clock cycle later. As we perform
a cycle-by-cycle-based execution, this data cannot be stored in the processor
pipeline registers in the following clock cycle, so it has to be preserved in the
control unit. Between two steps of the processor core, unrelated memory accesses
can occur, disturbing the CPU state. Hence, before the next step the state of the
memory has to be restored by applying the preserved memory address before
the next CPU step.



4.2 Output of Traces

There are two possible ways of passing trace output to the consistency check:
by a trace file or online. A trace file enables offline regression tests between the
current and a former revision of each domain but has the disadvantage of very
large files to be stored and transfered. Even if considering a standard single core
as a lower bound, at least the program counter, one register or memory write
access (data and address) and some control signals have to be traced, which adds
up to about 10 Bytes per clock cycle. For just one simulated second of a 300 MHz
CPU, 3 GB of data are generated. Considering more complex architectures, like
VLIW or SIMD, multiplies this data. Compression could reduce the size by an
order of magnitude but would not completely eliminate the problem of large data
size. Another solution is an online consistency check, as used in our approach.

5 Validation Tools

To automate the execution of a large set of test cases, we implemented a valida-

tion environment as outlined in Figure 1. The environment allows the distributed
simulation on multiple systems.

The register traces from the simulators are compared state-by-state using
our tracediff tool. If states differ, the tool aborts with a meaningful error
description which points the developer directly to the location of the error.

c0=0x3 r0=0x10002f4 r3=0x2{A} r4=0x0

A [0x00000280] 0x70040020

B [0x00000284] 0x706004ff

AddressFU Disassembly

C [0x00000288] 0x71046002

A [0x0000027c] 0x703c0302

A [0x00000244] 0x70000000 nop

sub r0, r0, 0x20

mcr r4, 0xff

mov r3, 0x2

neq c0, r3, 0x2

c0=0x0{C} r0=0x10002d4{A}/0xfefffd2c{A} r4=0xff{B}

Machine Instruction State

r3=0x0 pc=0x27c{A}

Difference

Fig. 6. Example of a tracediff dump.

The description is a backtrace of the last n processor states interleaved with
a disassembly of the respective executed instructions as shown in Figure 6. Only
those registers that are relevant for debugging are listed. Accesses to the main
memory are treated the same way. If the register was written, the respective
functional unit is appended in curly braces. If the register value differs in the
traces, both values are printed. The disassembly between two states lists one or
more instructions that were executed in parallel. Each line is prefixed with the
identifier of the functional unit (A,B,...).



In Figure 6 the value of register r0 which was written by functional unit A

differs. Considering the sub instruction and its input value 0x10002f4, the result
in the right-hand trace is obviously wrong.

6 Evaluation

We have evaluated our system with our CoreVA architecture developed in our
research groups. This VLIW processor is a six stage pipelined harvard architec-
ture with non-uniform latencies (see Figure 7). Common features like branch
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prediction, conditional execution, pipeline forwarding have been implemented.
Two load store units access a dual ported memory. 30 general purpose registers
(32 bit) can be accessed by ten read and six write ports. Two condition register
files (8 bit each) can be accessed by four write ports each. The processor core
has been integrated in the CPU Control Unit (CCU). The resource consump-
tion, including 32 kBytes instruction and data memory each, is described in
Table 1. The CCU occupies about 6 % of slices of the total system. The FPGA
on-chip memory is used as instruction and data memory. The critical path of
the processor core is not affected by the connection to the CCU and the trace
unit.

For Co-Simulation we use the following setup: On one machine a graphical
user interface controls the processor core, and reads out the processor states.
On another machine the ISS runs in a Linux environment. Both, emulation
and simulation, transfer their traces to a third machine, where the validation
environment is executed as described in Section 5. Our test repository ranges
from microbenchmarks and synthetic benchmarks (e.g., EEMBC, Dhrystone) to
real world applications (e.g., 802.11b). Using this setup, we have successfully



Instance Registers LUTS Slices

RAPTOR Interface 142 36 268

CCU 460 1408 1340

VLIW Core 4875 43063 22344

Total 5477 44507 23952

Table 1. Resource consumption of the design mapped on a Xilinx Virtex-II 6000
FPGA.

tracked down an inconsistency due to an ambiguous specification. The error was
located in the decoder of the processor’s RTL description.

Certainly, tracing of every processor state has an impact on simulation and
emulation speed. The ISS and the RTL simulation have to invoke the trace_cycle()
function. Simulation speed of the RTL implementation reduces by 6% (1.92 kHz
vs. 1.83 kHz). For the ISS the execution speed is reduced from 4 MHz to 2 MHz.
The hardware emulation has to run the CPU cycle-by-cycle and read out the
processor state in between.

7 Conclusion

We have presented a generic validation method for processors to perform con-
sistency checks across multiple simulation and emulation domains. We have de-
veloped a generic method for systematic tracing of pipelined processors. The
method minimizes hardware overhead, by applying virtual pipelining for the
synchronization of traced signals. Processor states are derived from ISS, RTL
simulation, and FPGA emulation. It is possible to apply this method to final
ASIC implementations for improved testing. We have implemented a generic
framework in which a processor core can be embedded. The framework employs
our approach to perform tracing.

A validation environment is used to emit meaningful error descriptions and
to point the developer to the location of the error that caused the inconsistency.

Current work focuses on the cycle accurate integration of internal states of
hardware accelerators into our consistency check.
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